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Abstract 

 

Size effects exhibited by mechanical metamaterials when loaded may be positive such that 

reducing overall size towards that of the length scale of the underlying structure intrinsic to 

the material is accompanied by increasing stiffness or rigidity, a phenomenon that has been 

repeatedly observed and is also forecast by various more generalized continuum theories of 

deformation in loaded heterogeneous continua. However, such effects may in certain 

circumstances be contradictory in that decreasing size is accompanied by increasing 

compliance, the transition from the conventional, positive to this theoretically unanticipated 

negative behaviour having been explained recently in terms of the distribution of material 

within 2D continua subject to bending. Here we report on a novel phenomenon newly 

observed in periodic 3D lattice materials comprised of repeated cubic unit cells formed of 

exterior edge and interior diagonal connectors. Subtle redistribution of matrix material from 

edges to diagonals causes the size effect to change dramatically, inverting from positive to 

negative when loaded in the torsional mode while the corresponding effect for the flexural 

mode remains entirely positive under the same circumstances. This observation may lead to 

the prospect of optimising the design of 3D periodic metamaterials to provide a stiffer 

response in one loading mode and a more compliant response in another, a feature that could 

potentially be exploited in various innovative applications. 
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1. Introduction 

 

Mechanical metamaterials may exhibit size effects when loaded due to the influence of their 

internal structure on global deformation. These size effects are characterised by deformations 

that do not scale conventionally with overall size and thus contradict classical Cauchy 

elasticity theory which has to date provided the most universally accepted description of the 

deformation of homogeneous materials. More generalized continuum theories such as couple 

stress
 
[1,2], micropolar [3,4] (or Cosserat [5]), micromorphic

 
[4] and gradient elasticity

 
[6,7] 

do account for size effects and incorporate an intrinsic length scale, purportedly reflecting the 

size of the underlying structure, as an additional constitutive parameter that must be identified 

empirically. Ordinarily, these more involved theories forecast a positive size effect in which 

material stiffness increases as the overall size reduces to that associated with the internal 

structure, behaviour that has indeed been observed in a variety of heterogeneous materials 

[8,9,10,11,12,13,14,15,16]. Nevertheless, contradictory behaviour in which compliance 

increases with decreasing size, a contrasting negative effect, has been observed in other 

materials, notably hard biological tissues [17,18]. Very recently, both conventionally 

anticipated [19] and more involved [20] size effects have been reported in additively 

manufactured mechanical metamaterials. Some of these contrasting and more involved 

effects have been analytically explained for various materials notably those comprised of 

more rigid periodic inclusions within a compliant matrix [21], layered composite laminates 

[22] and those formed of periodic 2D lattices [23, 24].  

 

Theoretical and numerical predictions of size effects in materials formed of planar lattices 

have been derived previously [25,26,27,28,29,30,31], this being motivated by the desire to 

understand the mechanical behaviour of crystalline materials at the microstructural level as 

well as fabricated structural materials such as honeycombs. The lattice connectors or 

elements are usually assumed to be slender and straight with a uniform cross section 

throughout, all of the same length and connected at their ends only. Furthermore, each 

connector is generally assumed to possess extensional stiffness along its major axis and 

flexural stiffness perpendicular to this axis. These assumptions facilitate the representation of 

the connectors as beam like finite elements. The behaviour of the lattice material can then be 

established by considering the response of a unit cell comprised of such elements when 

subjected to a variety of mechanical loadings using either a minimisation of total potential 

energy based approach [25] or a matrix displacement method [28]. Both have been shown to 

be equivalent [27]. Lattice materials comprised of square, equilateral triangular and 

hexagonal unit cells have all been considered and compared in this manner [30]. In each case 

the predicted behaviour is found to be consistent with that anticipated by Cosserat type 

generalized continuum theories of deformation. This has enabled the additional constitutive 

properties, notably the length scale, to be identified in terms of the prescribed connector 

dimensions and stiffness parameters as appropriate. However, such predictions have been 

almost universally restricted to the planar case and, in addition, to lattices with a low matrix 

volume fraction, a consequence of assuming that the connectors are slender. The motivation 

for our work was to investigate both low and medium density additively manufactured 

metamaterials based on a lattice or array of cubic unit cells to identify whether the 



consistency with the aforementioned deformation theories was maintained at higher 

dimensionality and matrix volume fraction. Such materials offer significant potential in 

lightweight structural applications since they are more isotropic than conventional extruded 

honeycombs and, unlike stochastic open cell foams, their behaviour is deterministic. 

Therefore, we initially conducted mechanical tests on 3D printed samples of a given volume 

fraction assembled from unit cells containing only exterior edge connectors of prescribed 

dimensions. Subsequently we performed extensive finite element analyses using continuum 

elements to represent similar materials of various volume fractions in which additional 

interior diagonal connectors were initially absent then subsequently present.  

 

2. Experimental Methods and Numerical Simulations 

 

2.1 Sample Manufacture and Mechanical Testing 

 

Lattice material samples (Figure 1) were printed using a Stratasys OBJET500 Connex3 3D 

printing machine. The capacity of the printer enables a maximum build size of 342 × 342 × 

200mm and thus a unit cell size of 5 × 5 × 5mm with an edge connector half breadth of 1mm 

was deliberately selected to facilitate manufacture of the largest size samples which 

comprised of four cells by four cells across their section. The overall length of these samples 

enabled three point bend testing to be conducted at a maximum length to depth aspect ratio of 

16:1. The axial dimension of all sizes of sample was extended by four unit cells so that the 

samples could be supported inboard of their ends when testing at the prescribed aspect ratio. 

Sample sets in which the major axis was orientated in the horizontal plane both parallel and 

perpendicular to the predominant printer head motion were manufactured to ascertain any 

influence of print direction on flexural stiffness. Samples with their major axis aligned in the 

vertical direction were not manufactured since the limited machine capacity did not allow 

this. All samples were printed using the printable photopolymer VeroBlack Plus (RGD875). 

This is a relatively rigid acrylic based polymer with the manufacturer quoting values of 

between 2000 and 3000 MPa and from 2200 to 3200 MPa for the Young’s and flexural 

moduli respectively. Overhanging sections of the lattice were supported during printing by a 

soluble rubber like material that was thoroughly washed away from the polymer matrix prior 

to testing. The torsion test samples utilised the same unit cell dimensions as the flexural test 

samples. Again, these samples all had a square cross section, the dimension of which was 

limited to between two and six unit cells (Figure 2) by the printer capacity which, along with 

the testing machine capacity, also dictated that all samples now be of the same fixed length, 

170 mm, rather than geometrically similar (Figure 2). 

 

Flexural testing of the samples was performed in a Bose Electroforce 3200 mechanical 

testing machine equipped with a 450N load cell (Figure 3). All samples were loaded at a 

central deflection rate of 0.08mms
-1

 while being supported within the machine at the 

prescribed aspect ratio. This deflection rate was applied to each sample for 10s after which 

the maximum deflection (0.8mm) was maintained for a period of 30s before unloading at the 

same rate. The force applied to each sample centre was monitored by the load cell throughout 

the deflection cycle (Figure 4). To identify any influence of manufacturing orientation on the 



measured mechanical response each sample was removed from the supports after unloading 

and rotated by 90° about its major axis before reloading. 

 

Torsion testing was performed using an Instron ElectroPuls E10000 machine incorporating a 

load cell with a 25Nm torque capacity (Figure 5). To enable rotation transfer from the 

machine to each sample bespoke couplings comprised of an array of pins that could be 

precisely inserted into each void located on the sample end sections were custom 

manufactured. The couplings were deliberately designed to facilitate the distribution of load 

transfer across the end sections while simultaneously minimizing the suppression of warping 

of these ends which other attachment methods may not have achieved. However, since each 

individual pin has a circular cross section this precluded the testing of the smallest viable 

sample size comprised of a single unit cell across its section. Each sample was twisted at a 

rate of 0.5°s
-1

 for 10s and then held at the maximum rotation (5°) for 30s before unloading at 

the same rate. The applied torque was measured continuously during the entire loading 

sequence (Figure 6). 

 

2.2 Finite Element Modelling 

 

Initial finite element models of the manufactured test samples were created by repeatedly 

regenerating a cubic unit cell in which a structured mesh of 8 noded hexahedral elements 

(ANSYS element type Solid185) was used to represent the cell edge connectors (Figure 7). A 

convergence study revealed that four elements through the connector half section were 

adequate enough to obtain results of sufficient accuracy at reasonable computational cost. 

The number of element divisions along the connector length was selected to ensure that 

individual elements retained a cubic shape. Appropriate planes of symmetry were exploited 

to ensure that overall model size did not become excessive. The Young’s modulus and 

Poisson’s ratio for the connector material were specified as 2GPa and 0.3 respectively. The 

models were constrained in a manner representative of the support conditions imposed in the 

experiments and a fixed displacement prescribed at the midspan plane of symmetry. Flexural 

stiffness was determined from the ratio of the resulting reaction force determined at midspan 

to the prescribed displacement. Subsequent finite element models in which the void volume 

fraction was varied maintained the same number of elements through connector thickness but 

the number of divisions along their length was adjusted to preserve the cubic shape of 

individual elements. The overall length to depth aspect ratio of these models was restricted to 

4:1 to maintain a reasonable model size. Consequently, these models were loaded in pure 

bending rather than three point bending, this being achieved by specifying displacements 

consistent with a state of prescribed rotation at the end cross sections. Finally, for the finite 

element models of the lattice material containing diagonal connectors each unit cell was 

meshed using tetrahedral elements because of the more involved geometry of the 

intersections between adjoining connectors which precluded the straightforward use of a 

structured mesh of hexahedral elements. 

 

3. Results and Discussion 

 



3.1 Mechanical Testing Results 

 

The 3D printed samples (Figure 1) of a material comprised of an assembly of cubic unit cells 

formed of only edge connectors were each loaded in three point bending (Figure 3). While 

the samples differ in size, ranging from one to four unit cells across their square section, they 

are nonetheless geometrically similar and therefore have the same length, L, to depth, d, 

aspect ratio (Figure 1). Although the connectors are printed from an acrylic polymer the 

samples exhibit an approximately linear relationship between the imposed central 

displacement and the corresponding measured load (Figure 4). Only slight hysteresis is 

observed on unloading (Figure 4) so possible viscoelastic effects associated with the polymer 

matrix have been ignored and hence sample stiffness determined from the gradient of the 

associated load displacement relationship. Specific flexural stiffness (stiffness per unit 

sample breadth, b) was found to vary linearly with sample size as measured by the reciprocal 

of the section dimension squared (Figure 8) with smaller samples exhibiting a greater 

stiffness than their larger counterparts. In a homogeneous material stiffness would be 

expected to be size independent due to the geometric scaling. The positive size effect 

exhibited by the printed material is consistent with Cosserat elasticity theory which predicts 

the variation in specific flexural stiffness, K/b with size to be [12,15,32]:- 
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for a slender beam when out of plane deformations are neglected. Here E is the flexural 

modulus and lb is the characteristic length in bending, an additional material specific 

constitutive parameter present within the Cosserat theory. The former can be identified from 

the intercept of the stiffness variation while the latter can be determined from its gradient. 

The characteristic length in bending, lb, thus provides a quantitative measure of the observed 

size effect. For the particular lattice material considered here the values of these parameters 

ascertained thus ranged from 354 MPa to 430 MPa and from 0.714 mm and 0.986 mm 

respectively depending on sample print direction and orientation when tested. Matrix 

anisotropy arising from fabrication thus appears to have some identifiable influence on 

behaviour. Nevertheless, this is less significant than the influence of size which is evidently 

associated with the heterogeneous nature of the printed metamaterial. 

 

The material samples of the same length, L, but differing section dimension, d, ranging from 

two to six unit cells (Figure 2) were tested in torsion (Figure 5). The recorded torque, T, was 

found to vary linearly with the imposed rotation, θ, and minimal hysteresis was seen on 

unloading thereby indicating as previously that the material response to loading is 

predominantly elastic (Figure 6). The torsional stiffness of each sample could thus be 

identified from the measured response. A solution for the rigidity of a square sectioned prism 

subjected to twisting [33] when appropriately simplified by assuming that the warping 

constant, IP, is the same as that of a prism with a solid square section (IP =2.25d
4
/16) [34], 



approximates the variation in torsional rigidity, J (=TL/θ), with cross section dimension, d, 

as:- 

 

[ ]222 dlIG
TL

J tP +==
θ

    (2) 

 

Thus when the normalised torsional rigidity, (TL/θd2
), is plotted against the sample size as 

measured by the section dimension squared, d
2
, the variation in rigidity when extrapolated 

does not intersect the origin but exhibits an identifiable positive intercept instead indicating 

that a size effect is again present (Figure 9). In this case the shear modulus, G, can be 

determined from the slope of the variation while the characteristic length in torsion, lt, can be 

ascertained from the positive intercept. The parameter lt is analogous to lb but now provides a 

quantitative measure of any size effect exhibited in torsion rather than bending. For the 3D 

lattice material experimentally investigated here G and lt were thus identified as 38.9 MPa 

and 1.68mm respectively. Evidently, the shear modulus is an order of magnitude less than the 

flexural modulus as might be expected given that the lattice is devoid of internal diagonal 

connectors which if present would significantly enhance torsional stiffness. Nevertheless, the 

characteristic length in torsion is similar in magnitude to that seen in bending indicating that a 

distinct positive size effect is again exhibited in this alternative mode of loading. 

 

3.2 Numerical Results 

 

Complementary finite element models of the 3D printed samples were assembled using 

continuum element representations of each unit cell (Figure 7). Suitable loads and constraints 

were applied to replicate both loading modes. In the models the polymer matrix was 

represented by an isotropic linear elastic material with a Young’s modulus of 2GPa and a 

Poisson’s ratio of 0.3, the former value having been identified previously from flexural tests 

on entirely solid samples of the polymer printed with a uniform, continuous cross section. 

Since matrix isotropy was assumed the influence of sample orientation during manufacture 

and testing could not be investigated numerically. Nevertheless, all sizes of lattice sample 

investigated experimentally were also modelled and the variations in both flexural and 

torsional stiffness with size were thus determined. The flexural modulus and characteristic 

length in bending identified from the numerically predicted size effect were 351.2 MPa and 

0.86 mm respectively. The agreement between these predicted values and their 

experimentally determined counterparts therefore provides the assurance required in using 

finite element models exclusively to investigate the mechanical behaviour of additional 

periodic lattice materials based on a cubic or other suitable unit cell. 

 

After validating the initial finite element predictions against the experimental results 

additional models of lattice materials based on a cubic unit cell comprised of only edge 

connectors were then generated. Again, continuum elements were used to represent the 

connectors but for each sample size the connector cross section dimension was varied so that 

the effect of matrix volume fraction on stiffness and its variation with size could be 

established. The additional models were first loaded in pure bending by applying 



displacements consistent with constant end rotations, θ, thereby allowing the applied 

moments, M, to be determined from the computed reactions. By analogy with the torsion case 

(equation 2), in pure bending the flexural rigidity, D (=ML/θ), is given by:- 
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where I (=bd
3
/12) is the second moment of area of the section. Thus, for a square section 

(b=d) when the variation in the normalised flexural rigidity, (12ML/θd2
), is plotted against 

sample size, again measured by d
2
, and then extrapolated to the vertical axis a size effect will 

once more be exhibited by a positive intercept from which lb
2
 may otherwise be found. As the 

cross section of the edge connectors reduces the volume fraction of the void contained within 

each cell increases as does the characteristic length in bending (Figure 10) implying that the 

size effect, as measured by lb
2
, not only remains positive but also becomes more apparent 

with increasing void volume fraction. The additional models were subsequently loaded in 

torsion. Analogous behaviour was forecast with the characteristic length in torsion increasing 

as void volume fraction increased (Figure 11) indicating that reducing density is accompanied 

by a more marked size effect, as quantified by lt
2
, in torsion as well. 

 

Further FE models were generated but with the cubic unit cell now being comprised of both 

exterior edge and internal diagonal connectors (Figure 12). To reduce the complexity of 

modelling the geometry of both the intersection between the three diagonal connectors at 

each cell centre and that of their intersections with the edge connectors at the cell vertices, the 

cross section of the former was prescribed as circular, with radius RI, while the cross section 

of the latter was altered from a square to a quadrant of radius RE (Figure 13). Thus, when the 

unit cells were assembled together to form the overall element mesh, all connectors had a 

circular rather than a square cross section. Consequently, the range of void volume fractions 

considered was now more limited and varied from around 60% to 98%. This range resulted 

from specifying three (0.125, 0.25 and 0.5mm) and five (0.125, 0.25, 0.5 0.75 and 1.0mm) 

different interior and exterior connector radii respectively giving 15 different combinations in 

total. Due to the more involved geometry tetrahedral rather than hexahedral continuum 

element were used to mesh the connectors. Again, the models representing samples of 

different size but each with a square cross section and a constant length were initially loaded 

in pure bending. For all combinations of connector radii considered a distinct size effect was 

again observed with the extrapolated flexural rigidity variation with size exhibiting a positive 

intercept (Figure 14). For each particular combination the characteristic length in bending 

was derived from the positive intercept identified from the predicted rigidity variation (Figure 

14). For each prescribed edge connector radius the size effect, again measured by the 

characteristic length in bending, increases as the void volume fraction is increased by 

progressively reducing the interior connector radius (Figure 15) and, furthermore, as the 

interior connector radius diminishes to zero the characteristic length appears to approach that 

forecast previously for the samples comprised of unit cells containing edge connectors only 

suggesting that this provides an upper bound on the possible size effect. Conversely, 



increasing internal connector radius evidently suppresses the size effect for a given edge 

connector radius. Nevertheless, the flexural size effect clearly remains positive for all 

combinations considered. 

 

When the models of the samples are twisted about their major axis by applying suitable 

torques an entirely different form of behaviour may be observed depending on the radii 

prescribed for the internal and external connectors. When the radius of the former is small 

and that of the latter is large a positive size effect is identifiable from the intercept (figure 16) 

as in bending. However, as the internal connector radius is increased while the edge 

connector radius is reduced the size effect, once more quantified by lt
2
, rather than simply 

being suppressed may completely invert and actually become negative as evidenced by the 

discernible change in intercept (figure 16) implying that the smaller samples are now more 

compliant than their larger counterparts. This inversion occurs even when the redistribution 

of matrix material from edges to diagonals results in almost no change in volume fraction 

(figure 16). The causes of such size effect inversion have recently been explained for 2D 

layered [22] and latticed based materials [23,24] loaded in flexure. In the first case a layered 

material comprised of alternating stiff and compliant layers was shown to exhibit a 

conventional, positive size effect when the stiffer layers were located furthest from the 

neutral axis of bending and an opposite, negative effect when the more compliant layers were 

located thus. In the lattice materials changes to lattice topology that moved the average 

distribution of material away from the neutral axis resulted in a positive size effect while 

changes that moved it towards this axis produced a contrasting negative effect. Nevertheless, 

for the 3D lattice materials investigated here the effect of material distribution is arguably 

slightly more subtle, increasing internal diagonal connector diameter while simultaneously 

reducing edge connector diameter redistributes material towards the neutral axes of bending 

and twisting yet in the former case the size effect is only suppressed as already noted but 

completely inverts in the latter case. Furthermore, the  negative size effect in torsion becomes 

particularly apparent when the edge connectors are relatively slender and the internal 

connectors, albeit of of any given diameter, are nevertheless present (figure 17). It should be 

recognised that for consistency with bending the size effect in torsion has been quantified in 

terms of lt
2
 using equation 2. For the two specific configurations of similar void volume 

fraction compared previously (figure 16) it is interesting to note that the value of lt
2
, 

identified in the case where the edge connectors are more slender (lt
2
 ≈ -0.75) is comparable 

in magnitude to that determined when the internal diagonal connectors are more slender (lt
2
 ≈ 

1.2) implying that the associated size effects, while different in nature, are similar in scale. 

Although the identification of lt
2
 values that are less than zero (figure 17) using equation 2 

provides a means of quantifying the size effect when negative it implies that valid, material 

specific values of lt cannot then be identified for any of these cases. This apparent invalidity 

occurs because generalised continuum theories of the Cosserat type customarily forecast a 

positive size effect (equation 2) so interpreting a negative size effect within the context of 

such theories indicates that there may be a limitation in their applicability particularly when 

the unit cell size is comparable to the overall size as has been investigated here. However, it 

is at these scales that size effects are most significant and forecasting them becomes more 



necessary since when the unit cell size is much smaller than the overall size these theories, 

though possibly more applicable, anticipate that any size effect will be much less evident. 

 

4. Conclusions 

 

As mentioned earlier, the observation of size effects in a heterogeneous medium is not new, 

although previous reports of such effects have usually indicated that reducing overall size to 

that of the length scale of the underlying material heterogeneity will be accompanied by an 

increase in material stiffness or rigidity, behaviour described here as a conventional or 

positive effect which concurs with that forecast by more generalised deformation theories 

such as Cosserat (micropolar) elasticity. While more recent research [22,23,24] has indicated 

that 2D materials may exhibit both conventional positive and contradictory negative size 

effects when loaded in bending, the results presented here indicate that the nature of these 

effects may be even more involved than existing theoretical forecasts would imply or any 

previous work has identified. The complete inversion of the size effect from positive to 

negative in braced open cell cubic lattices subject to twisting while the corresponding effect 

in bending remains positive is an entirely new result that cannot be adequately predicted by 

such theories. In reporting this result we aim to inspire further research and development in 

three complementary fields. Firstly, the inability of existing more generalised continuum 

theories to adequately predict it indicates that these theories either require enhancing or need 

to be superseded by new ones capable of providing a more satisfactory prediction. Clearly, 

this is an impending imperative for the theoretical continuum mechanics field. Secondly, 

further empirical investigation of alternative metamaterials such as closed cell foams with a 

periodic structure is required to determine whether the anomalous size effects reported here 

are also exhibited by such materials. This is suggested as part of the forthcoming agenda for 

both the experimental and computational mechanics fields. Finally, and of most practical 

significance, we seek to stimulate the premeditated design of bespoke metamaterials whose 

stiffness in different loading modes can be optimised by selecting the appropriate size scale 

for the periodic internal structure. Interestingly, this might involve maximising stiffness in 

one mode while minimising it in another. As noted very recently [35], behaviour of this kind 

has traditionally been regarded as more of a burden than an opportunity in design, yet it has 

significant potential in many practical application areas such as, for example, sandwich panel 

structures where it may be possible to optimize the configuration of a core material based on 

a periodic 3D lattice to simultaneously promote flexural stiffness and torsional compliance. 

Such structures might then be of real utility in applications such as self pitching aerodynamic 

control surfaces. 
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Figure 1: Metamaterial samples of various sizes for flexural testing 

 

  



 

 
 

Figure 2: Metamaterial samples of various sizes for torsion testing 

 

  



 

 
 

Figure 3: Metamaterial sample being loaded in three point bending 

 

  



 

 
 

Figure 4: Measured load deflection data for typical sample 
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Figure 5: Metamaterial sample being loaded in torsion 

 

  



 

 
 

Figure 6: Measured torque rotation data for typical sample 
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Figure 7: Structured finite element mesh used to represent single unit cell 

 

  



 

 
 

Figure 8: Variation in specific stiffness with sample size as quantified by (1/d
2
) 
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Figure 9: Variation in normalised rigidity with sample size as quantified by d
2
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Figure 10: Variation in characteristic length in bending, lb
2
, with void volume fraction 
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Figure 11: Variation in characteristic length in torsion, lt
2
, with void volume fraction 
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Figure 12: Unit cell with exterior edge and internal diagonal connectors 

 

  



 

 
 

Figure 13: Plane of symmetry of cell through its centre parallel to any face showing 

connector cross sections 

 

  



 

 
 

Figure 14: Numerically predicted variation in normalised flexural rigidity with sample size 

when loaded in pure bending 
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Figure 15: Variation in characteristic length in bending, lb
2
, with void volume fraction for all 

connector radius combinations (dashed line represents a unit cell with no internal connectors) 
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Figure 16: Numerically predicted variation in normalised torsional rigidity with sample size 

when loaded in torsion for two metamaterials with diagonal connectors and the same volume 

fraction (≈81.6%) but different connector radii 
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Figure 17: Variation in characteristic length in torsion, lt
2
, with void volume fraction for all 

connector radius combinations (dashed line represents a unit cell with no internal connectors) 
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Figure Captions 

 

Figure 1: Metamaterial samples of various sizes for flexural testing 

 

Figure 2: Metamaterial samples of various sizes for torsion testing 

 

Figure 3: Metamaterial sample being loaded in three point bending 

 

Figure 4: Measured load deflection data for typical sample 

 

Figure 5: Metamaterial sample being loaded in torsion 

 

Figure 6: Measured torque rotation data for typical sample 

 

Figure 7: Structured finite element mesh used to represent single unit cell 

 

Figure 8: Variation in specific stiffness with sample size as quantified by (1/d
2
) 

 

Figure 9: Variation in normalised rigidity with sample size as quantified by d
2
 

 

Figure 10: Variation in characteristic length in bending, lb
2
, with void volume fraction 

 

Figure 11: Variation in characteristic length in torsion, lt
2
, with void volume fraction 

 

Figure 12: Unit cell with exterior edge and internal diagonal connectors 

 

Figure 13: Plane of symmetry of cell through its centre parallel to any face showing 

connector cross sections 

 

Figure 14: Numerically predicted variation in normalised flexural rigidity with sample size 

when loaded in pure bending 

 

Figure 15: Variation in characteristic length in bending, lb
2
, with void volume fraction for all 

connector radius combinations (dashed line represents a unit cell with no internal 

connectors) 

 

Figure 16: Numerically predicted variation in normalised torsional rigidity with sample size 

when loaded in torsion for two metamaterials with diagonal connectors and the 

same volume fraction (≈81.6%) but different connector radii 
 

Figure 17: Variation in characteristic length in torsion, lt
2
, with void volume fraction for all 

connector radius combinations (dashed line represents a unit cell with no internal 

connectors) 

 


