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ABSTRACT: A simplified fracture-mechanics-based model of compression failure of centrically or eccentrically 
loaded quasi-brittle columns is presented and the size effect on the nominal strength of a column is predicted. 
Failure is modeled as propagation of a band of axial splitting cracks in a direction orthogonal or inclined with 
respect to the column axis. The maximum load is calculated from the condition that the energy released from 
the column due to crack band advance be equal to the energy consumed by the splitting cracks. The axial stress 
transmitted across the crack band is determined as the critical stress for buckling of the microslabs of material 
between the axial splitting cracks, and the work on the microslabs during postbuckling deflections is taken into 
account. The critical postbuckling deflection of the microslabs is determined from a compatibility condition. 
Under the assumption of small enough material inhomogeneities, the spacing s of the splitting cracks is calculated 
by minimizing the failure load and is found to decrease with structure size D as D- 1/5

• The size effect on the 
nominal strength of geometrically similar columns is found to disappear asymptotically for small sizes D, and 
to asymptotically approach the power law D-215 for large sizes D (where D = cross section dimension). However, 
when the material inhomogeneities are so large that they preclude the decrease of s with increasing D, the 
asymptotic size effect changes to D- '12• The size effect intensifies with increasing slenderness of the column, 
which is explained by the fact that a more slender column stores more strain energy. The predicted size effect 
describes quite well previous tests at Northwestern University of reduced-scale tied reinforced concrete columns 
of different sizes (with size range 1:4) and different slenderness (ranging from 19 to 53). Finally, a simple 
modification is pointed out for the case of shear loading of concrete, in which a system of parallel tensile cracks 
in the diagonal compression direction develops before the maximum compressive stress is reached. 

INTRODUCTION 

The same as the tensile failure, the compression failure of 
quasi brittle materials such as concrete, rock, ice, ceramics, and 
composites often exhibits a size effect (e.g., van Mier 1986; 
Gonnermann 1925; Blanks and McNamara 1935; Marti 1989; 
Jishan and Xixi 1990). However, the compression failure, and 
especially its size effect, is more complex and less understood. 
Yet it often is the more important and dangerous mode of 
failure, which is highly brittle, lacking ductility. The reason is 
that compression failure is not controlled by a material 
strength criterion, as assumed in nearly all practical applica
tions up to now. Rather, as suggested or implied by some re
searchers (e.g., Ingraffea 1977; Bazant et al. 1993; Bieniawski 
1974; Hoek and Bieniawski 1965; Cottere111972; Paul 1968) 
and described mathematically in this paper, the compression 
failure in quasi-brittle materials is caused predominantly by 
the release of stored energy from the structure. This aspect is 
similar to fracture mechanics of tensile cracks. 

Whenever the consequence of material failure is the post
peak softening or the lack of ductility, a size effect must be 
expected. The size effect is the most important practical con
sequence of fracture phenomena, and observation of the size 
effect is an effective way to calibrate the parameters of a frac
ture model. For this reason, the analysis in the present paper, 
which expands on a previous conference presentation (BaZant 
1994; Bazant and Xiang 1994), will focus on the effect of 
structure size on the nominal strength of quasibrittle structures 
failing in compression. The objectives are to give a simple, 
intuitively clear explanation of the phenomenon of size effect, 
to formulate a simplified model for the global mechanism of 
propagation of compression fracture, and finally to use this 
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model to determine the size effect and compare the results to 
test data. 

CONCEPTS AND MECHANISMS OF 
COMPRESSION FRACTURE 

In ductile metals, compression failure (as well as tensile 
failure) is caused by plastic slip on inclined shear bands. This 
type of failure is ductile, without any significant postpeak de
crease of the applied load. It does not cause any size effect. 

In quasibrittle materials, however. such ductile compression 
failure is possible only under extremely high lateral confining 
pressures, which is a case beyond the scope of this study. Such 
pressures lacking, the shear slip in quasi brittle materials such 
as concrete cannot develop. The interlock of rough surfaces 
of cracks inclined to the principal compressive stress direction 
prevents any slip, unless the cracks are already widely opened 
and the material near the crack is heavily damaged. Macro
scopically, of course, shear failures are often observed, but 
their microscopic physical mechanism is different. It normally 
consists of tensile microcracking inclined to the shear direc
tion. 

On the microscale, one can discern the following three dif
ferent mechanisms trig~ering compression fracture: 

1. Pores with microcracks. It has long been known that po
rosity is the main controlling factor for compression 
strength of various materials. The linear elastic fracture 
mechanics (LEFM) was used to show that pores cause 
axial tensile splitting microcracks to grow from the pore 
under a compression load of increasing magnitude [Fig. 
l(a); see e.g., Cotterell (1972); Sammis and Ashby 
(1986); Ashby and Hallam (1986); Kemeny and Cook 
(1987, 1991); Steif (1984); Ingraffea (1977); Zaitsev and 
Wittmann (1981); Wittmann and Zaitsev (1981); Zaitsev 
(1985); Fairhurst and Cornet (1981); Ingraffea and 
Heuze (1980); Kemeny and Cook (1987, 1991); Sheffy 
et al. (1986); Nesetova and Lajtai (1973); Carter et al. 
(1992); Carter (1992); Yuan et al. (1993)]. An important 
point to note is that these axial cracks can grow from the 
pore only for a certain finite distance. which is of the 
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FIG. 1. Microscopic Mechanisms of Compression Fracture 

same order of magnitude as the pore diameter. Therefore, 
this mechanism cannot explain the global fracture. A 
similar conclusion applies to various configurations of 
several pores that enhance the local transverse stresses 
or produce shear stresses on axial planes. 

2. Inclusions with microcracks. A stiff inclusion, for ex
ample, a rigid piece of stone aggregate in a softer mortar 
matrix, causes tensile stresses at a certain distance above 
and below the inclusion, which can produce short tensile 
splitting microcracks [Fig. l(b)]. More effective gener
ators of transverse tensile stresses in a macroscopically 
uniform uniaxial compression field are various groups of 
inclusions, such as a group of two inclusions pressed 
between two others [Fig. l(c)]. Such a failure mechanism 
(proposed for concrete long ago by Brandtzaeg and by 
Baker) can be shown to produce short tensile splitting 
microcracks between the inclusions [Fig. l(c)]. Again, 
an important point is that the cracks remain short, of the 
same order of magnitude as the inclusion, and so the 
global fracture cannot be explained. 

3. Wing-tip microcracks. In a material without pores and 
without inclusions, cracks in a macroscopically uniform 
uniaxial compression field can be produced by weak in
clined interfaces between crystals. Slip on an inclined 
crack causes the growth of curved cracks gradually turn
ing into the direction of compression, called wing-tip 
cracks [Fig. led)]. Such cracks have been extensively 
analyzed by fracture mechanicists, both numerically and 
analytically (lngraffea 1977; Ashby and Hallam 1986; 
Nemat-Nasser and Obata 1988; Horii and Nemat-Nasser 
1982, 1986; Kachanov 1982; Lehner and Kachanov, in 
press, 1996; Batto and Schulson 1993; Schulson and 
Nickolayev 1995), and curved crack growth under com
pression has been clarified (Cotterell and Rice 1980). A 
fully realistic analysis of wing-tip cracks would have to 
be three-dimensional, which has apparently not yet been 
accomplished. It is important to note that the length of 
the wing-tip cracks is again of the same order of mag
nitude as the length of the inclined slipping crack, and 
so the global fracture cannot be modeled. 

The objective of the present study is the formulation of a 
simplified model for the global mechanism of compression 
failure, particularly for the accompanying size effect. This is 
a much more complex problem than the tensile fracture. 

In regard to the global fracture mechanisms on the macro
scale, one may distinguish those that cause a global energy 
release with size effect from those that do not. A mechanism 
that does not cause global energy release is represented by the 
propagation of a continuous macroscopic splitting crack [Fig. 
2(c)] , which is known to occur in small laboratory test spec
imens when the ends are sliding with negligible friction. While 
a transverse tensile crack causes a change in the macroscopic 
stress field [Fig. 2(a)], a splitting macrocrack does not change 
the macroscopic stress field [Fig. l(b)], and so it causes no 
global release of energy. The energy to form the crack and 

(a) (b) (e) (d) 

It 

IHIHIIHU 

'\IIOIH/' 
ffffffffffft 

tttttttttttt 

(e) (I) (g) (h) (I) 

l l l l 

IL 
I I 

!\ 

\i 17 
'f 1 

T f f T 

FIG. 2. Global Mechanisms and Hypotheses on Compression 
Fracture 

propagate it must come from a local mechanism, such as the 
release of stored energy from the fracture process zone. [This 
energy must be calculated from the triaxial constitutive rela
tion; BaZant and Ozbolt (1992)]. Because of the absence of a 
global energy release, this type of compression failure cannot 
cause any size effect, as confirmed by the numerical results of 
BaZant and Ozbolt (1992) and Droz and Bazant (1989). Since 
our interest is in failures in which a size effect has been ob
served, the splitting macrocrack will not be analyzed. 

If the load required to drive the local mechanism of axial 
splitting crack propagation is higher than that required to drive 
the global mechanism of failure due to energy release, the 
global mechanism will occur. As we will see, the global mech
anism is accompanied by size effect, and so it will prevail for 
sufficiently large sizes. 

The mechanism of global energy release must obviously 
involve some sort of transverse propagation of a cracking band 
(or damage band). Such a band may logically be supposed to 
consist of densely distributed axial splitting microcracks. The 
weakening of the material by microcracks may be expected to 
cause internal buckling. 

Although important contributions have been made by math
ematical modeling of the aforementioned mechanisms in 
which cracks are engendered by pores, inclusions, and slips 
on inclined interfaces, it must be recognized that these contri
butions explain only the microscopic initiation of compression 
fracture. They do not describe the global, macroscopic com
pression failure. The microcracks can grow in the compression 
direction only for a limited distance under increasing load but 
the maximum load is not reached according to these mecha
nisms. In the axial cross sections through a specimen under a 
uniform uniaxial compression stress field, each of these three 
mechanisms produces a profile of self-equilibrated, alterna
tively tensile and compressive, microstresses, which average 
to a zero transverse stress on the macroscale [Fig. 2(d)]. 

It cannot be denied that the compression splitting fracture 
begins microscopically as a series of straight, wing-tip, or 
other microcracks shown in Fig. l(a-d), but how these mi
crocracks connect and propagate macroscopically is not ex
plained by the aforementioned microscopic mechanisms. This 
needs to be described by a global mechanical model. A simple 
form of such a model, simple enough to allow a straightfor
ward analytical solution, is proposed in this study. The model 
is based on the hypothesis that the axial straight or wing-tip 
microcracks can become stacked in the lateral direction to pro
duce a transverse (inclined or orthogonal) compression-shear 
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band (in rock mechanics this is also called "en-echelon" 
cracks). 

Relatively little work has been done on the global mecha
nism of compression failure. Biot (1965), in relation to his 
previous model of internal instabilities such as strata folding 
in geology, proposed that compression failure involves internal 
buckling of a three-dimensional continuum, and pioneered 
elastic continuum solutions of such instabilities [Fig. 2(f,g)]. 
Biot's studies, however, were limited to elastic materials with
out damage, and consequently the predicted critical stresses 
for such instabilities were too high by far. BaZant (1967) ap
plied finite strain analysis to the bulging and other internal 
instabilities of thick compressed solids made orthotropic by 
microcracking damage [Fig. 2(f,g)] and showed that such in
stabilities can explain the failure of an axially compressed fi
ber-reinforced composite tube, describing realistically the de
pendence of the failure stress on the ratio of the wall thickness 
to the diameter (also Bazant and Cedolin, 1991, Sec. 11.8). 

The role of buckling was further clarified in an important 
contribution by Kendall (1978), who studied the axial splitting 
fracture of a prism compressed on only a part of its end sur
faces [Fig. 2(d)]. He managed to obtain rather simple formu
las. Simple formulas were also derived for axially compressed 
fiber-reinforced laminates in which internal buckling is engen
dered by the waviness of fibers in the layers of fabric [BaZant 
1968; Bazant and Cedolin 1991 (Section 11.9)]. In Kendall's 
model, however, the buckling of the specimen halves was 
caused by load eccentricity. His model could not explain the 
axial splitting fracture of a compressed specimen uniformly 
loaded over the entire end surface, for which the critical buck
ling stress is obtained much too high from his model. Nev
ertheless, the notion that instability of a specimen weakened 
by axial cracks is part of a global compression failure mech
anism has been clearly established. 

Another phenomenon that drives the compression failure is 
a release of the stored energy, the same as in tensile fracture. 
This concept was introduced in the analysis of stopes in very 
deep mines in Transvaal, South Africa, in the 1960s, and an 
empirical failure criterion based on the energy release from 
the rock mass as a function of the length of the stope was 
established (and simulated by an electric analog model at the 
Chamber of Mines in Pretoria, South Africa) (Hoek and Bien
iawski 1965; Bieniawski 1974). 

The global energy release aspect was brought into the mod
eling of compression failure in a study of the compression 
breakout of boreholes in rock (Bazant et al. 1993). A band of 
parallel splitting cracks was considered to propagate from the 
sides of the borehole, driven by the release of strain energy 
from the surrounding rock mass. It was shown that such a 
model predicts a size effect, which basically agrees with the 
recent test results of Haimson and Herrick (1985), Carter 
(1992), and Carter et al. (1992). This solution contrasts with 
previous plasticity solutions of borehole breakout, which pre
dict no size effect. The stored energy release due to propa
gation of a band of axial splitting cracks, coupled with buck
ling of the slabs of material between the cracks, have been 
two principal aspects of a model recently proposed by BaZant 
et al. (1993), which will serve as the basis of the present anal
ysis. 

A nonlocal constitutive damage model capable of capturing 
the energy release was used by Droz and BaZant (1989) and 
BaZant and Dzbolt (1992) for finite element modeling of com
pressed rectangular specimens. These studies predicted for 
such specimens no significant size effect. The absence of size 
effect does not contradict the available test data for normal
size laboratory specimens. These specimens are too small to 
exhibit size effect. For the size effect due to energy release to 
get manifested, the compressed structure must be much larger 
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than the localized compression cracking zone, which is not the 
case for normal test specimens. 

The delamination fracture, in which models involving buck
ling and fracture propagation are well established, is a rather 
special and broad topic, which lies beyond the scope of the 
present paper. So does a possible fractal aspect of the problem; 
for example, fractal comminution and fragmentation of 
crushed sea ice (Palmer and Sanderson 1991). 

ENERGY ANALYSIS OF COMPRESSION FAILURE 
OF COLUMN 

The plastic limit state analysis of compression failure is 
based on the hypothesis that a system of yielding surfaces 
creating a single-degree-of-failure mechanism develops at 
maximum load. With the exception of the case of strongly 
confined concrete under very high pressure, such a hypothesis, 
however, appears to be unrealistic for four reasons: (1) The 
load-deflection diagram for plastic failure of a stocky column 
would have to end with a horizontal yield plateau, but in re
ality there is postpeak softening; (2) material tests indicate that 
concrete is incapable of plastic deformation except under high 
confining pressure; (3) in experiments, the compression failure 
is actually seen to be caused by fractures; and (4) according 
to the recent reduced-scale tests (Bazant and Kwon 1994), 
there is a strong size effect, which is of the type associated 
with the propagation of crack bands. 

In brittle or quasi brittle materials, compression failure be
gins by the formation of axial splitting cracks. However, the 
axial splitting cracks do not change the macroscopic contin
uum stress state due to uniaxial compression. Consequently, 
they cause no energy release, and so they cannot by them
selves be the mechanism of compression failure, and cannot 
control the failure load. They can only be the mechanism that 
triggers the macroscopic compression failure. As already sug
gested in BaZant (1994), it is proposed that the principal mech
anism of compression failure of a concrete column is sideways 
propagation of a band of parallel axial splitting cracks, in a 
direction either orthogonal or inclined with respect to the di
rection of compression, as shown in Fig. 3. This figure shows 
several alternative geometries of the crack band, which lead, 
according to the approximate analysis to be presented, to 
equivalent results. 

We will analyze compressed columns of different sizes D, 

geometrically similar in two dimensions [Fig. 3(a)]. The col
umn length is L, the thickness is b = 1, and the width is taken 
as the size, or characteristic dimension, D. The bottom of the 
column is fixed. The top of the column is loaded by axial 
compressive force P of eccentricity e. To compare the load 
capacity of columns of different sizes, we define the nominal 
strength of the column, fIN = PmaJbD where P max is the max-
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FIG. 3(a-c). Splitting Cracks, Buckling of Microslabs, and 
Stress Relief Zone 
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FIG. 3(d,e). Stress-Strain Diagrams with and without Buck
ling, and Areas Representing Strain Energy Changes 

imum value of load P. We are interested in failure under load
control conditions (dead load), which means that failure occurs 
at maximum load. Therefore, P remains constant during the 
small deformation increment representing failure. 

The initial normal stress in the cross sections before any 
fracturing is 

(1) 

where E = Young's elastic modulus; u = load-point axial dis
placement; e = rotation of top end; and x = transverse coor
dinate measured from compressed face [Fig. 3(a)]. We now 
assume that, at a certain moment of loading, axial cracks of 
spacing s and length h, forming a band as shown in Fig. 3 
(a-c), suddenly appear and the microslabs of the material be
tween the axial cracks, behaving as beams of depth s, lose 
stability and buckle. This can happen in anyone of the three 
mechanisms shown in Fig. 3(a-c) and for all of them the 
mathematics turns out to be identical. If the length of the 
cracks in the two inclined bands in Fig. 3(c) is denoted as hi 
2, the critical stress for the microslab buckling for all the cases 
shown in Fig. 3(a-c) is, according to Euler's formula for col
umns, 

(2) 

The key idea is the calculation of the change in the stored 
strain energy caused by buckling. On both sides of the crack 
band, there is obviously a zone in which the initial stress aD 

is reduced. For the sake of simplified analysis, we assume that 
the stress in the shaded triangular zones of Fig. 3(a-c) is re
lieved to the value of a cr' Further, we assume that outside 
these zones the initial stress does not change (this is of course 
a simplification of reality, because stress concentration arises 
ahead of the crack band). 

The triangular stress relief zones are limited by the so-called 
"stress diffusion lines" of slope k, whose magnitude is of the 
order of 1. The value of k can be determined by experiment 
or by solution of the elastic stress field. Approximately, the 
value of k may be taken as the value that gives the exact stress 
intensity factor of the edge-cracked half-space according to 
linear elastic fracture mechanics, which is k = 'IT { [lID + h6(e 

+ w)]/[D + 6(e + W)]}2, in which NalD) andf2(alD) can be 
found in handbooks (Tada et al. 1985; Murakami 1987). How
ever, the value of k need not be known for our purposes. The 
only important point is that k is a constant having the same 
value for columns of different sizes. 

The strain energy density in the shaded triangular stress re
lief zones before and after fracture is equal to the areas of 
triangles 0120 and 0340 in Fig. 3(d). So, the loss of strain 
energy density at points on a vertical line of coordinate x is 

.1TI = a~(x) _ a~r 
r 2£ 2£ 

(3) 

The situation is more complicated in the crack band. The 

microslabs buckle, and the energy associated with the post
buckling deflections must be taken into account. This is an 
important point for the present solution (Bazant 1994). The 
strain energy density before buckling of the microslabs is 
given by the area 0120 in Fig. 3(e). The well-known solution 
of postbuckling behavior of columns [Bazant and Cedolin 
1991 (Sections 1.9 and 5.9)] indicates that the stress in the 
axis of the microslab follows, after the attainment of the crit
ical load of the microslab, the straight line 35, which has a 
very small positive slope (precisely equal to a cr /2). This slope 
is far smaller than the slope E before buckling and can, there
fore, be neglected. So the postbuckling behavior in Fig. 3(e) 
is approximately a horizontal plateau 35 (however, this is not 
the same as plastic behavior because unloading proceeds along 
the path 530). Because the micros labs remain elastic during 
buckling, the stress-strain diagram 035 is fully reversible and 
the energy represented by the area under this diagram is the 
stored elastic strain energy. The triangular area 0340 is Fig. 
3( e) represents the axial strain energy density of the microslabs 
and the rectangular area 35643 represents the bending energy 
density. The change in strain energy density in the microslabs 
is the difference of areas 0120 and 03560 in Fig. 3(e); that is 

- a~(x) [ a~r] 
.1TI c = 2£ - acr€c(x) - 2£ (4) 

where Ec = axial strain of microslabs in crack band after buck
ling [it is important to realize that this strain is generally not 
equal to 04 or 02 in Fig. 3(e)]. 

Integration of (3) and (4) yields the total loss of potential 
energy at constant u and e 

L
a ( 2 2) ao(x) aer 

.1TI = - -- - - 2k(a - X) dx 
o 2£ 2E 

La{2 [ 2J} ao(x) aer 
- 0 2E - acrEc(x) - 2E h dx 

(5) 

where a = horizontal length of crack band [Fig. 3(a-c)]. The 
rate of this energy loss must be equal to the rate at which the 
energy is consumed by formation of the axial splitting cracks. 
Thus, the energy balance criterion of fracture mechanics may 
be written as 

(6) 

where Gf = fracture energy of axial splitting cracks, assumed 
to be material property; and Gfhls = GJ represents fracture 
energy of crack brand. 

The axial strain in the crack band can be determined from 
the compatibility condition. The blank zone outside the shaded 
triangular stress relief zone [Fig. 3(a-c)] behaves during buck
ling as a rigid body because the load, and thus also the stress 
in this zone, are constant during the deformation increment 
representing failure. The line segment OJ in Fig. 3(a) at any 
x does not change length during buckling. Expressing the 
change of length of this segment on the basis of aero Eeo and 
aD and setting this change to zero, one acquires the following 
compatibility condition: 

ao(x) 2k a er 
Ec(x) = Eh [h + 2k(a - x)] - h (a - x) Ii (7) 

The length h of the axial cracks, representing the width of 
the crack band in Fig. 3(a,b) or double the crack band width 
in Fig. 3(c), is an important parameter that must be deter
mined. The critical stress according to (2) would decrease with 
increasing h, and so the largest energy release would be ob
tained for h ~ 00. Since the largest energy release is what 
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must happen {because of thermodynamic considerations; [Ba
zant and Cedolin 1991 (chapters 10 and 12)]), the prediction 
would be O'cr = 0, which, however, is unreasonable. 

In a recent study of the role of axial splitting cracks in 
borehole breakout (BaZant et al. 1991), the microslab buckling 
was assumed to be opposed by shear stresses on the micro
cracks taken as proportional to the slip on the microcracks. 
That assumption leads to a more complicated formula for O'cr 

than (2), and it is noteworthy that O'cr then attains a minimum 
for a certain finite value of h, which permits h to be calculated. 
A similar approach would be possible for the present problem. 
However, to keep the solution simple, we will not specifically 
consider shear stress transmission across the cracks and will 
simply assume that h is a constant to be determined empiri
cally. 

In tied reinforced concrete columns, there is also another 
feature affecting h-the ties, whose spacing probably poses 
an upper limit on the crack length. 

Now we can substitute (1)-(4) into (5) and integrate. The 
result is 

+ 3(k<T~ - 2h<T2<T3)a? + 3h<T~ex)] 

in which 

(8) 

- h 
h=

D 

(9) 

Substituting this into the energy criterion (6) of crack band 
propagation and noting that a/aa = (1ID)a/aex, we get 

+ 3h(<T~ - 2EGis) = 0 (10) 

This equation represents the failure condition; that is, the con
dition of crack band propagation at maximum load. It is a 
condition expressed in terms of displacements u and e because 
0'1> 0'2, and 0'3 are functions of u and e. However, we are 
interested in the nominal strength O'N, which is a parameter of 
the maximum load P. To obtain the failure conditions in terms 
of the load, we substitute the expressions 

in which 

(12) 

Here P is positive when compressive; M = bending moment 
at location of crack band; and w = column deflection [Fig. 
4(c)] at that location (maximum deflection within the column 
length). For a stocky column, one may use w "'" O. For a 
slender column, one may approximate w on the basis of the 
amplification factor, i.e., 

e+w=e(I-..f.)-1 (13) 
Pcr 

where Pcr = first critical load of column according to elastic 
theory as in the case of a simply supported (hinged) column; 
and Pcr = Ehr2/L2 where 1= bD3112 = centroidal moment of 
inertia of cross section. 

Substituting (11) into (10), one gets the crack band propa
gation criterion in terms of P, which has the general form 

F(k, ex, h, s, Gf ; P) = 0 (14) 
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FIG. 4. Reduced Scale Columns with Reduced Size Aggregate 
Tested by Bazant and Kwon (1994) 

To solve for P, one needs to know the five previously listed 
parameters. Of these, only two are free, namely ex and s, while 
Gf and h are material properties, which must be given, and k 
can be determined from elasticity, as already mentioned. The 
constancy of h is the central hypothesis of the present analysis. 

The relative crack band length ex at maximum load could, 
in principle, be determined from the criterion of stability loss 
of the crack band (in the R-curve model, this criterion repre
sents the condition that the energy release curve at constant P 

be tangent to the R-curve). Experience with other problems 
shows that application of this criterion usually gives ex. values 
that are nearly independent of D. For the sake of simplicity, 
we prefer not to complicate the solution with the condition of 
crack band stability, and simply assume that the values of the 
relative crack band length ex. = a/D for specimens of different 
sizes are the same. They can be determined by experiments. 

Similar to the solution of borehole breakout (Bazant et al. 
1993), we may assume that s will be such that the column 
fails at the first opportunity it has. This means that the value 
of s can be determined so that P would be minimized. The 
necessary condition of minimum is 

aF 
-=0 
as 

(15) 

Substituting function F according to (10) and differentiating 
with respect to s, we obtain 

Eqs. (10) and (16) define the solution of the size effect plot 
of O'N versus D. After substituting (11), (12), and (2), equation 
(10) can be rearranged to an equation that is quadratic in O'N 

and of fifth degree in s, and (16) can be rearranged to an 
equation that is linear in O'N and of fifth degree in s. To obtain 
a point of the plot, we assume a value of s. Then, O'N can be 
solved from (16) if parameters Gf , aID, and h are known. With 
O'N known, s can be reevaluated from (10). This calculation 
cycle is then iterated, converging to a pair of <TN and P values. 

Alternatively, one may solve (10) and (16) with the help of 
the Levenberg-Marquardt nonlinear optimization algorithm. If 
experimental data on the size effect curve of O'N versus D are 
given, one can use this algorithm to find the values of Gf , a/D, 
and h that minimize the sum of squares of the differences be
tween the experimental data and the solution of (10) and (16). 



ASYMPTOTIC SIZE EFFECT FOR LARGE SIZES 

Let us now examine the asymptotic size effect for columns 
of very large sizes, D --+ 00, under the assumption that h, a, 
and elD for columns of different sizes are constant. G" as a 
material property, must of course be constant, too. Analysis of 
(10) and (16) with (11), (12), and (2) shows that, for D --+ 00, 

P ex: bsDl12 and 

(17) 

where em = certain constant and ex: = proportionality sign. Be
cause (J'N = PlbD, the asymptotic size effect on the nominal 
strength is 

(18) 

or 

(19) 

It is also found that (J'l ex: (J'2 ex: (J'3 IX D- 21s
• For the buckling 

of microslabs, the large-size asymptotic behavior is 

(20) 

For the nominal bending strength (J'~ of short columns (for 
which w « e) with similar load eccentricities (same eID), we 
obtain (J'M = MD121 = 6PeDlbD3 

ex: SDlI2DDlbD3 or 

(21) 

To verify (19), note that the first and second terms in (16) 
are, for large D, of the order of D-21s (note that h(J'2 in the 
second term is of the order of D-91S, which is a higher-order 
small term than D-

21S and can, therefore, be neglected in com
parison). The last term in (16), proportional to lI(D- 31sD), is 
also of the order of V- 21S . The same type of analysis can be 
applied to (10). 

It is important to note that the asymptotic size effect in 
compression failure, as indicated in (19), is weaker than in 
LEFM, for which (J'N IX D- I12. This difference in the asymptotic 
size effect, which is the same as previously found for the com
pression breakout of boreholes in rock (BaZant et al. 1993), is 
caused by the fact that the spacing s of the axial splitting 
microcracks is not constant but, according to (17), decreases 
with size D asymptotically as D- lls

. This variation of s is the 
consequence of our minimizing the failure load P with respect 
to the microcrack spacing. Such minimization is physically 
correct only if the material inhomogeneities are sufficiently 
fine. We will comment on that more. 

SIZE EFFECT LAW FOR AXIAL COMPRESSION OF 
STOCKY COLUMN 

The size effect according to (10) and (16) is given implic
itly. However, for centric axial compression of a column of 
negligible slenderness, a simple explicit formula for the size 
effect can be obtained. For M = 0, we have (J'2 = 0 and (J'l = 
(J'3' From (10) we get 

Then, from (16) 

(2ka + h)(J'~ - 2iiEG1 = 0 
S 

_ 3h3G, 
(2ka + h)(J'3 + 27f2

S
3V = 0 

From the last two equations, we obtain 

(J' - -221 [ E3Gr ] liS 

3 - • (2ka + h)2 

(22) 

(23) 

(24) 

<al (bl 

Ipg~ 

f=~~. 
'-----<70 
~ 
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FIG. 5. Size Effect Deduced for Compression Failures: (a) In 
LInear Scale; (b) In Logarithmic Scala 

[ ]

IIS 

S = 0.41h E(2::
1 
+ h) (25) 

and consequently 

1T2Es2 [E3Gr ] liS 
(J'N = C1er - C13 = ---y;r- + 2.21 (2ka + hi (26) 

Finally, upon rearrangement 

C1N = 2.76 L2~3~r h)2 JIS (27) 

Now consider the limit cases of size effect. For V --+ 0 
(which implies a --+ 0), we have (J'N = 2.76(E3Grlh2)IIS = (J'o, 

repres61nting the material strength limit. For V --+ 00 (which 
implies a --+ 00), we have (J'N --+ O. Aside from that, we already 
know that the large-size asymptotic size effect is (J'N ex: D-21S. 

Based on these results, the size effect plot has the shape shown 
in Fig. 5. 

An explicit formula for C1N as a function of V cannot be 
obtained. It turns out, however, that an explicit formula can 
be constructed for the inverse relation (as already indicated in 
BaZant 1994). Indeed, denoting 0- = y2EG,hls, we can rear
range (22) to the following formula for the inverse size effect 
law: 

a = ~ (cr
2 

_ 1) = ~ (0- - (13)(0- + (13) 

2k C1~ 2k C1~ 

_ ~ (cr - C1er + C1N)(cr + (J'er - (J'N) 

- 2k (C1N - C1er)2 (28) 

in which (J'N = PIA. It may be noted that this formula is quite 
similar to the following formula obtained by Bazant (1994) 
after making greater simplifications: 

D _ D (C10 - C1p)(C1p + C10 - 2C1r) 
- 0 (C10 - C1r)2 

(29) 

EFFECT OF BUCKLING DUE TO SLENDERNESS 

A more slender column deflects more under the same axial 
load, and so it stores more strain energy. Consequently, it can 
also release more energy to drive the crack band, which means 
one should expect a size effect closer to LEFM, i.e., stronger. 
Indeed, the reduced scale laboratory experiments of BaZant 
and Kwon (1994) showed that the size effect in columns be
comes more pronounced with increasing slenderness, DIL. The 
question now is how the influence of slenderness on the size 
effect should be incorporated into (10) and (16). There are two 
ways to do that. 

Simpler Approach Based on Magnification Factor 

The size effect implied in (10) with (16) can be described 
as (J'N = /(V) where / is the function implicitly defined by these 
equations. The consequence of slenderness is to magnify the 
lateral deflection. The magnification can be approximately cal
culated as ~e in which ~ = (1 - PIPer)-1 = magnification 
factor [e.g., BaZant and Cedolin 1991 (chapter 1)], and Per = 
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first critical load of the column, whose value decreases with 
increasing slenderness liD. Writing now the same definition of 
the nominal stress as for small slenderness, and imposing the 
condition that the stress given by the size effect law be the 
maximum stress in the deflected slender column, we have 

erN =!.. (1 + 6e); !.. [1 + 6e (1 - ..f...)-lJ =/(D) (30) 
D D D D Per 

The size effect plot of erN versus D is the solution of this 
system of two equations, in which P figures as a parameter to 
be eliminated. The solutions indicate that, indeed, the size ef
fect is more pronounced for higher slenderness. 

Fundamental Approach Based on Additional 
Energy Release 

From the fracture mechanics viewpoint, the effect of slen
derness should be calculated on the basis of the additional 
energy release engendered by slenderness. This approach is 
not as simple as the previous one, but is not excessively com
plicated either. If the column is slender, the release of potential 
energy from the column must be taken into account. As will 
now be described, this can be done in the manner outlined in 
BaZant (1994). We begin by identifying within the column a 
short segment of length L (Fig. 3) confined between the cross 
sections at the end of the triangular stress relief zones, having 
relative displacement u and relative rotation e. 

To make the analysis simple, we may assume that, during 
the advance of crack band length, 00, the values of u and e 
remain constant. This means that the applied load, P, the load
point displacement u at the column end, and the midheight 
deflection w all change. In that case, the change of stresses 
and deformations due to column buckling does not interfere 
with the triangular energy release zones we considered earlier 
(Fig. 3). Of course, one could calculate the energy release at 
fixed load-point displacement or at fixed load. But in that case, 
the stresses and strains in the unshaded area of the column in 
Fig. 3 would not remain constant as the band of splitting 
cracks advances, but would change. This would make it im
possible to build on our preceding solution without slenderness 
effect, and would thus complicate the solution. 

The fact that u and e, rather than the column ends, are 
considered to be fixed is not objectionable. It is well known 
in fracture mechanics that the energy release of a fracture spec
imen can be calculated for different types of load control, e.g., 
for constant load, or constant deflection, or constant ratio of 
load and deflection, and always with the same result [e.g., 
Bazant and Cedolin 1991 (section 12.1)]. 

Considering the ends of the column to be supported on 
hinges, we may approximate the deflection curve as z = w 

sin( 1fyll) where w = midheight deflection and y = longitudinal 
coordinate. The change in the axial force at midheight can be 
calculated from the change of the stress distribution due to the 
extension of the band of splitting cracks by da 

dP = [erer - ero(a)] da; dM = [era - ero(a)] (~ - a) da (31) 

where erer = critical stress of microslabs. The axial load, P, is 
assumed to have constant eccentricity e at both ends of the 
column, and so M = P(e + w) or w = (MIP) - e. Differen
tiating, we have 

dw = [dM - (e + w) dP]IP (32) 

The axial shortening due to deflection w is u = f~ (zl)212 dy = 

1f2
w

2/41, and so the work of P during da is 

1f2
pW 

dW = P du = -- dw 
21 

(33) 
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The change of stored bending energy during 00 is dU = 
d f~ EI(zll)2/2 dy = d(1f4Elw2/41 3

), that is, 

(34) 

where I = bD
3
/12 = centroidal moment of inertia of cross sec

tion of column. 
The change of potential energy due to axial strains is dna 

= -d(p2112EA) where A = bD = cross section area of the 
column. Now the change of potential energy due to column 
deformation during crack band advance da is given by 

1f2 1 
d(an a ) = C§2 da = - 21 (Per - P)w dw - EA PdP (35) 

where Per = 1f2E1Il2 = first critical load of hinged column. 
Integrating (35), we obtain the following expression for the 
additional energy release that needs to be added to that cal
culated before in (8): 

ana = [ ~2 e (e + w - a + ~) + ~~J (exer2 - er3) (36) 

It may now be noted that if the column is axially very stiff 
and P = Pen there is no energy release due to column defor
mation, as expected. When P < Pen there is a positive energy 
release because P dw and P dP are negative during crack band 
extension. The additional energy release must obviously pro
mote fracture, and thus it must intensify the size effect. 

The subsequent calculation is the same as that which led to 
(10) and (16). One finds that the following terms need to be 
added to the left-hand sides of (10) and (16), respectively: 

(37) 

A2 = _[~;2 e (e + w + ~ - a) + ~J (38) 

The size effect curves for a slender column calculated on 
the basis of the additional energy release and on the basis of 
the magnification factor will further be discussed when they 
are compared with the test data in the next section. The size 
effect curve obtained when the slenderness is neglected is also 
shown. 

COMPARISON WITH EXPERIMENTAL DATA 

At present, apparently the only test data by which the pres
ent theory can be checked are the data reported by Bazant and 
Kwon (1994). Other tests of concrete columns either did not 
involve different sizes, or did not feature a sufficient size 
range. Some did not adhere to geometrical similarity (in which 
case inaccurately modeled shape effects are superimposed on 
the size effect, making the evaluation more uncertain). 

Bazant and Kwon tested, at Northwestern University, re
duced-scale reinforced concrete columns of square cross sec
tion (Fig. 4). Three different sizes D for each of three different 
slendernesses liD were tested. The size ratio was 1:2:4; the 
cross section sides were D = 12.7, 25.4, and 50.8 mm (0.5, I, 
and 2 in.); and the slendernesses were liD = 19.2, 35.8, and 
52.5. The reinforcement, which was scaled in proportion to D, 
consisted of four longitudinal bars in the comers of the square 
cross section [diameters 1.59, 3.18, and 6.35 mm (1/16, 1/8, 
and 1/4 in.)] and of ties [diameters 0.79, 1.59, and 3.18 mm 
(1132, 1116, and 1/8 in.)] spaced at 7.62, 15.2, and 30.5 mm 
(0.3, 0.6, and 1.2 in.). Portland cement microconcrete of max
imum aggregate size 3.35 mm (0.132 in.) was used. The con
crete cover of the bars was also scaled. For further details see 
BaZant and Kwon (1994). 

The test data are analyzed under the assumption that, for 
columns of different sizes as well as different slendernesses, 
the crack band width h, rather than the relative width hiD, is 
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constant. A reasonable assumption is that the crack band width 
is roughly proportional to the material length, I (the same as
sumption is reasonable for tensile crack bands). The material 
length is related to the maximum inhomogeneity size, i.e., the 
maximum aggregate size in the case of concrete, or to the 
combination of fracture energy and tensile strength t: of the 
material having a dimension of length, namely Irwin's char
acteristic length lch = EG/f: 2

• It has been checked that the 
assumption of constant h agreed with the test results much 
better than the assumption of constant hID. 

The values of aID have also been assumed constant for 
columns of different sizes, including those of different slen
dernesses. In this regard, it may be noted that differences in 
slenderness cannot represent important deviations from geo
metrical similarity of failure mode because, according to Saint
Venant's principle, the addition of mass to the column ends, 
making the column longer, cannot appreciably affect the stress 
field in the fracturing zone in the middle of the columns. 

Comparison of the present theory with these data is shown 
in Figs. 6-8. The solid lines show the theoretical results, and 
the data points show the test results. Fig. 6 gives the results 
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TABLE 1. Parameters for Optimization of Test Data 

Slenderness Magnification Additional energy 

Approaches neglected factor release 

(1) (2) (3) (4) 

aID 0.221 0.276 0.255 

h 33.6 mm (1.322 in.) 28.6 mm (1.125 in.) 23.1 mm (0.91 in.) 

Gf 15.5 Jim (0.089 Ib/in.) 19.7 Jim (0.112 Ib/in.) 16.7 Jim (0.095 Ib/in.) 

w 0.137 0.127 0.122 

when the slenderness effect is neglected. Fig. 7 shows the 
comparisons for the simpler analysis of slenderness effect 
based on the magnification factor. Fig. 8 shows the analysis 
of slenderness effect based on the additional energy release. 
The optimized parameters of the three different methods of 
analysis giving the best fit of the test data are listed in Table 1. 

As seen from Figs. 7 and 8, the present method, with both 
the simplified and the additional energy release approaches to 
the slenderness effect, can represent the test results for the 
reduced-scale columns quite well. It may also be noted that 
the size effect, which is neglected by the present code speci
fications, is quite significant. Size effect tests of columns of 
normal sizes and with normal size aggregate are, of course, 
needed. 

SPECIAL CASE: COMPRESSION WITH TRANSVERSE 
EXTENSION (SHEAR FAILURE) 

Finally, we should at least mention an important and partic
ularly simple special modification (Bazant 1996) of the pre
vious mechanism that occurs under shear loading or, equiva
lently, under compression loading accompanied by large 
transverse tensile strain. In that case, a system of major con
tinuous parallel cracks in the direction of compression may 
develop before the maximum compression load [Fig. 9(c)]. 
These cracks are not axial splitting cracks but are produced 
by transverse tension. If a sufficient restraint is provided, the 
opening of these cracks does not localize into a single crack. 
An example is the formulation of diagonal cracks under shear 
loading of a concrete beam in which a restraint is provided by 
the longitudinal reinforcement and stirrups [Fig. 9(d)]. The 
transverse tensile stress and the diagonal cracks caused by it 
have a large effect on the compression behavior in the direc
tion of the cracks (Hsu 1988, 1993). 

When a transverse tensile crack forms in an isotropic spec
imen, the stress is relieved approximately from the shaded tri
angular areas shown in Fig. 9(a) whose height is about the 
same as the width. But when a transverse tensile crack forms 
in a highly orthotropic specimen under tension, for example a 

(a) (b) 

i 
1 ____ \ h 

D 
l 

(c) 

unidirectional fiber composite, the triangular stress relief zones 
from which strain energy is released are extremely elongated, 
with sides almost parallel to the direction of fibers [Fig. 9(b)]. 
The same is true for compression loading when a transverse 
slit is cut out. From this analogy, it is clear that a system of 
continuous parallel tensile cracks can also cause a material 
such as concrete to become highly orthotropic on the macro
scale. The stress relief zone of a transversely propagating band 
of axial splitting microcracks can then become nearly a strip, 
which is limited by parallel tensile cracks and is shown as the 
shaded strip in Fig. 9(c) (Bazant 1996). 

The energy released from the shaded strip in Fig. 9(c), from 
which the stress is relieved by the band, is easily expressed as 

<T2 

.:iTI=2baD 
2E 

(39) 

in which <TN = applied, initially uniform, axial compressive 
stress. The energy consumed (dissipated) by the band of axial 
splitting microcracks is W,= G,bhals. The energy balance dur
ing the propagation of the band requires that -a.:in/aa = 
aw/aa. This yields the relation (<T~I2E)D = G,hls, from 
which (BaZant 1996) 

(40) 

where Cp = constant. So we see that this special mechanism 
of energy release, which is characteristic of the shear failure 
of concrete, also yields a size effect. 

The size effect obtained, being of LEFM type, is very 
strong; however, this is due to the fact that the width h of the 
band of splitting microcracks has been considered constant. In 
reality, h may be expected to become constant only after a 
certain initial growth, as approximately described by the equa
tion h = hoal(co + a) where ho and Co are material constants. 
In that case, the size effect obtained for the shear failure of 
reinforced concrete beams with or without stirrups is obtained 
in the same form as Bazant's (1984) original size effect law. 
See BaZant (1996), in which the truss model (e.g., Hsu 1993) 
(or strut-and-tie model) is modified to calculate the energy 
release due to localized crushing of compression struts and 
simple formulas are derived for the size effect in beams with 
or without stirrups. 

QUESTION OF VARIATION OF MICROCRACK 
SPACING WITH SIZE D 

By minimizing load capacity P, we found in (17) that the 
spacing of the splitting microcracks s = cmD- 1I5 where Cm = 

(d) 

crushing 
band 

diagonal 
cracks 

~s 
L'::;="':::::::"":;;t=::::::;z~====,==V 

compression 

stress struts 

relief 

FIG. 9. Energy Release Zones of: (a) Tensile Crack In Highly Orthotroplc Elastic Material; (b) Band of Compression Splitting Cracks 
In Concrete with System of Parallel Macrocracks due to Transverse Tension Loading; (c) Application to Size Effect in Failure of Com
pression Struts in Reinforced Concrete Beam with Stirrups under Shear Loading [after Balant (1996)] 
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constant. Strictly speaking, however, a continuous variation of 
crack spacing with the structure size is possible only for ho
mogeneous materials. For highly heterogeneous materials such 
as concrete, the dominant spacing of the main splitting micro
cracks must be an integer mUltiple of the dominant spacing of 
the largest aggregate pieces, So. Therefore, spacing s can vary 
only by jumps from one integer mUltiple of So to the next. Its 
value may be taken as the positive integer multiple as close 
to cmD- IIS as possible, i.e. 

S = So Int[O.5 + (cmD- IIS/so)] but s;;=: So (41) 

This means that for finite large intervals of the size range, 
the dominant microcrack spacing s cannot change in the case 
of a highly heterogeneous material such as concrete. It is easy 
to adjust the preceding analysis for the case of constant spac
ing s. A constant rather than variable s needs to be substituted 
into (18), (20), and (21). The main difference is that, instead 
of (19), the asymptotic size effect then becomes 

S IX D- 1I2 (42) 

which is the same as for all the types of tensile failure studied 
before (e.g., BaZant 1984). 

The materials that are not sufficiently heterogeneous for be
ing characterized by (41) and (42) probably include fine
grained rocks such as limestone, ceramics, and pure ice, and 
probably exclude concrete. 

CONCLUSIONS 

1. Quasibrittle compression failure of concrete columns 
may be considered to be triggered by the formation of 
axial splitting cracks. It can be approximately modeled 
as the propagation of a band of axial splitting cracks 
(microcracks) in a direction orthogonal or inclined to the 
direction of propagation. When the direction is inclined, 
the final failure surface may appear as a shear failure 
even though shear slip might not be the mechanism con
trolling the maximum load. 

2. The maximum load of centrically or eccentrically loaded 
columns can be calculated from the energy balance con
dition, stating that the energy released from the column 
as a result of crack band advance must be equal to the 
energy consumed by formation of new axial splitting 
cracks at the tip of the crack band. 

3. The residual compressive stress transmitted across the 
band is governed by buckling of the microslabs of the 
material between the axial splitting cracks. Compatibility 
of strains must be considered to determine the final post
buckling deflections of the microslabs. The work during 
the postbuckling deflections of the microslabs must be 
taken into account in the energy balance. 

4. The spacing s of the axial microcracks (or the thickness 
of the microslabs) can be determined from the condition 
that the failure load must be minimum. It is found that 
the spacing decreases with the cross section size D as 
D-

IIS
, provided that the material inhomogeneities (such 

as the aggregate size in concrete) are not so large as to 
prevent a continuous decrease of s. 

5. The proposed model exhibits size effect. In the limit of 
small sizes D, the size effect disappears, which corre
sponds to plastic limit analysis. In the limit of large sizes 
D, the size effect on the nominal strength of the column 
UN approaches the power law D-2

/s (which is the same 
as that previously found for the compression breakout of 
boreholes). The reason that this differs from the power 
law D-1/2 characteristic of LEFM is the aforementioned 
variation of spacing s of the axial splitting microcracks. 
However, if the decrease of s with increasing D is pre-

cluded by large enough material inhomogeneities, then 
UN approaches the power law D- I12

, the same as in 
LEFM. 

6. The theory predicts the size effect to intensify when the 
slenderness of the column increases. The intensified size 
effect can be explained by an increase of the strain en
ergy stored in the column with structure size D. 

7. The results of previous tests on reduced-scale tied rein
forced concrete columns of different sizes and different 
slendernesses are described by the present model quite 
well. 

8. When a quasi-brittle material fails due to a compression 
loading combined with transverse tension, as is typical 
of the shear failure of reinforced-concrete beams, a sys
tem of parallel tensile cracks may be produced before 
the maximum load is reached in compression. Then one 
may use a special, particularly simple modification of the 
proposed theory in which the stress-relief zone releasing 
energy consists approximately of a strip in the direction 
of tensile cracks (this is treated in detail in Bazant 1996). 
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