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ABSTRA CT: In the design of sandwich plates and shells for very large structures, such as ships in the 

range of 100 m length, it is very important to take the size effect on the nominal strength into account, and 
do so in a realistic, physically justified, manner. Before the size effect is addressed for a sandwich 
structure, it must be understood for its components-the/Dam core and the laminate skins. In the current 

practice, the size effects are automatically attributed 10 the randomness of material strength. as described 

by the Weibull theory. The purpose of this paper is to show that in both the foam and the laminate there are 

deterministic size effects, which are generally more pronounced. They are caused by stress redistribution 

and energy release due to the growth of large fractures or large cracking zones prior to attaining the 

maximum load. This deterministic size effect is verified and calibrated by new tests of notched specimens of 
rigid close-cell vinyl foam. A combined deterministic-probabilistic theory of size effect of the laminates is 
proposed and verified by extensive test data. 

Introduction and Nature of Problem 

The basic property of the c1assical theories of solid mechanics, particularly p1asticity and elasticity with 
a strength limit, is the absence of size effect, i.e., the nominal strength of a structure (defined, e.g., as the 
failure load divided by the cross section area) is independent of the characteristic size of the structure. 

Recently, however, this has been shown untrue when the material does not exhibit plastic yielding [1-3]. In 
that case, a strong (non-statistical) size effect may be caused by energy release associated with the 

localization of damage into a finite-size fracture process zone by propagation of large cohesive fractures 

prior to reaching the maximum 10ad. When this deterministic size effect occurs, it normally prevails over 

the size effect due to the randomness of strength, described by the classical Weibull theory. Understanding 
of the size effect is particularly important for extrapolating the results of laboratory testing to large 
structures, such as large ships whose design is currently of great interest. 

In the existing textbooks on composites and sandwich structures, as well as in the current design 

practice, the deterministic size effect due to the energy release is, unfortunately, ignored. The recent 
researches at Northwestern University show that this can be dangerous when large structures are designed. 
In regard to fiber-po1ymer laminates, which are used for the skins of sandwich structures, it was frrst shown 
that when the laminate fails only after a large damage (or fracturing) zone develops, a very strong 
deterministic size effect is observed in the case of tensile failure [4]. Subsequently, it was shown that the 

same is true for the compression failure of fiber composites caused by the propagation of a kink band with 
fiber microbuckling [5J. For both cases, the classical theories exhibit no size effect, but are acceptable only 

for very small structures. For the design of sandwich structures to be used in the construction of large 
ships, the mastering of the fracture and scaling properties is very important. The purpose of this paper is to 
report new results on this complex problem obtained as part of a project on failure of sandwich structures at 
Northwestern University. The results involve new experiments as well as reinterpretation of previous 
experimental studies. 

The sandwich structures, because of their very low stiffness/weight and strength/weight ratios, 
represent a very effective structural system for large ships. The sandwich structures have been investigated 
systematicaIJy since the 1950s. The early researches have led to exceIJent understanding of the elastic 
deformations and stability, and particularly the role of high shear deformability of the light polymer foam 
cores, which distinguishes the sandwich-type from homogeneous plates and shells [6-11]. Later, the 
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inelastic behavior and failure characteristics of sandwich structures have been studied by many researchers 
[12-20]. Several basic mechanisms of failure have been identified [21-24] . The skins of a sandwich may 
fail by buckling delamination with fracture or by buckling triggered by indentation. They may also fail by 
quasi-plastic extension with distributed damage or by compression or tensile fracture of the skin. The core 

may fail by plastic yielding or by fracture. The overall failure may be triggered by anyone of these 
mechanisms, and a complete failure typicaUy involves a combination of failures in both the core and the 

skins. 
A difficult aspect of sandwich failure is the development of distributed damage and its localization. 

This phenomenon has been shown to cause large deterministic size effects in other quasi brittle materials, 
and by analogy the same must be expected for sandwich structures. With this motivation, a microplane 
constitutive model for a rigid c1osed-cell polymeric foam and a finite element model for the nonlinear 
failure behavior of a sandwich plate have been developed at Northwestern University [25-26]. The 

computed load-deflection curves of a sandwich beam exhibited a distinct deterministic size effect. 

However, quantitative predictions of failure behavior and size effect for a broad size range would make 
little sense because the quasi brittle fracture properties of the material are not known adequately. 

For a realistic prediction of the size effects and scaling of failure of sandwich structures, one must first 
obtain experimental information and mathematical models for the size effects in the components. 
Therefore, attention has now been focused first on the size effect in the basic components, which are, (1) 
the fiber-composite laminates which are used for the skins, and (2) the rigid closed-cell polymeric foam 

which is used for the core. The purpose of this article is to report progress in both fronts of inquiry. 

Deterministic Size Effect and Quasibrittle Fracture Properties of Foam 

Tensile fracture tests of single edge-notched prismatic specimens of closed-cell polymeric rigid foam 

(Divinycell 100) have been carried out. All the specimens had the same thickness b = 25.40 mm. To 
determine the size effect, specimens geometrically similar in two dimensions of various depth, D = 6.35, 
43.94, 304.80 mm (Fig. la), were made, with a constant length-to-depth ratio 5:2. Notches of width 1.00 

mm and depth 0.4 D were cut with a band saw. The tip of the notch was made sharp by a blade having the 

thickness of 0.25mm. The ends of specimens were glued by epoxy to very stiff steel platens which were 
gripped in the loading machine. with an'y rotation of the ends prevented. The specimens were loaded in an 
Instron-8500 testing machine in tension (Fig. Ib). To avoid the viscoelastic effects due to differences in the 
loading rate, the displacement rate of the platens was uniform throughout the test and was chosen such that 
the specimens of any size would reach the maximum load within about 5 minutes. Displacements were 
measured by L VDT gages mounted across the notch mouth (Fig. 1 b) spanning a base length of 11.50 mm. 

(b) 

(a) 

Fig. 1 (a). Foam Specimens geometrically similar In two dimensions for tensile fracture 
test(Divinycell Hl00); (b). Test set-up for a median size specimen in tensile fracture test. 
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The measured curves of load versus end displacement are shown in Fig. 2a. The nominal strengths of 
the individual specimens, aN = P max I bD , as functions of the characteristic specimen size, D (taken as the 
specimen depth), are plotted in logarithmic scales in Fig. 2b. Now it should be noted that if the foam 
behaved in a ductile manner, following the theory of plasticity, the size effect plots in Fig. 2b would have 
to be horizontal. The fact they are not proves that there is a size effect, in fact a very strong size effect 

If, on the other hand, the foam obeyed linear elastic fracture mechanics (LEFM), the logarithmic size 
effect plot would have to be a straight line of downward slope -1/2, shown in Fig. 2b. The results are very 

close to that line, which means that on the scale of the tests the material behaves in an almost brittle 
manner. The term 'brittle' is understood as the adherence to LEFM, while the term "quasibrittJe" refers to 

nonlinear cohesive softening fracture behavior deviating from LEFM (the cohesive plastic, or non

softening, fracture behavior, with a plastic yielding zone in front of the crack tip, is termed "brittle
ductile"). 

Note that if the nominal strength obeyed Weibull theory of size effect, the plot of log aN versus log D, 
corresponding to the typical values of Weibull modulus, would have to be a straight line of a slope much 
less than that of the data in Fig. 2b. This is evidently not the case. 

According to the size effect method of measuring nonlinear fracture properties [27, 28]. the location in 
Fig. 2b of the asymptote of slope -1/2 determines the fracture energy G f of the material, and the rate at 

which this asymptote is approached determines the effective size of the fracture process zone, C f ' 

representing the distance from the actual crack tip to the tip of an equivalent LEFM crack for which the 

best fit of the actual size effect curve is obtained. From c /' G f and elastic modulus E, one can also 
determine the fracture toughness, K c = ~ EG, ' and the critical crack-tip opening displacement, 
OcroD = (8G ,c ,I E)1/2 I n introduced for fractW"e of metals by Cottrell [29] and Wells [30]. 

Although a rigorous derivation of the size effect method can be given on the basis of the J-integral and 
asymptotic expansions in terms of a power series in (J:;;; c,' D , let us sketch a brief and simple derivation 

from equivalent LEFM. From the conditions that the energy release rate G = G, and that the derivative of 

G with respect to crack length vanishes at maximum load, one obtains for the nominal strength the wen 
known expression: 

(1) 

in which g(a) = k2(a) = dimensionless energy release rate of the specimens, k(a);; dimensionless stress 

intensity factor, a = a' D , a "" crack length. For fracture situations of positive geometry (increasing g), 

which includes the present tests, the fracture process zone at maximum load is attached to the notch tip, and 

so a = ao + C f or a = ao + (J where ao = a' D , (J = c " D ,and C f ... half-length of the fracture process 
zone [28]. Introducing the approximation g(a) = g(ao + cf ) = g(llo) + g'(ao)c, ,one gets 

~l+DIDo 
(2) 

in which Do aNO = (3) 

Here Do represents the transitional size delineating the brittle behavior from nonbrittle behavior and 

corresponds to the intersection of the asymptotes in Fig. 2b; Do and an are constant because, owing to 

geometric similarity, ao is a constant for all the specimens tested. The fo~going expressions for UN can be 
easily fit to the test data, either by nonlinear optimization ~venberg-Marquardt algorithm) or by linear 
regression if Eq. (2) is reaarranged to an ex.pression for aN -2 as a function of D , which represents a 
linear regression plot (Fig. 2c). The optimum fit, in the least-square sense, is shown by the curve in Fig. 

2b. From the optimum values of Do and aN' one can identify G, and C f ' and from these values the 
other fracture properties. The results for the pr~nt foam are: 

G f = 0.61 J/mm
2

, c f = 0.33 mm, Kc = 10.27 N m-
312

, 0crOD = 0.37 mm (4) 
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Knowledge of these parameters makes it possible to analyze the fracture of the core in a sandwich plate 
by cohesive crack model or crack band model. This approach is of course applicable only if the maximum 
load is reached only after a large stable crack growth (when the crack at maximum load is only 
microscopic, another deterministic size effect law applies and a Weibull-type size effect may be expected 
to be present for large sizes). 
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Energetic Size Effect on Flexural Strength of Laminates 

Calculations of delamination of the skin of a sandwich structure require the knowledge of flexural 

strength of the laminate used for the skins. Therefore, the size effects on the strength of laminates have 

been investigated. While the previous studies at Northwestern University dealt with the size effect on the 
nominal strength of fiber-composite laminates containing a large crack or notch, or a kink band [4, 5 J, the 

present study is focused on the flexural strength (or modulus of rupture) of laminate without any 

macroscopic crack or notch. 

The size effects on the tensile, compressive and flexural strength of fiber composite laminates 

containing no notch nor crack prior to maximum load have been investigated intensely [31-35]. However, 

all these studies assumed a priori that the size effect is purely statistical, as described by Weibull theory of 

random local strength of a material [36, 37]. Recently, though, it has been established [38, 39] that this 

theory is valid only if (1) the structure has a positive geometry (Le., the energy release function is 

increasing, rather than decreasing, with the crack extension), and if (2) the failure of a microscopic material 

element causes the whole structure to fail, as described by the weakest link model [40-42]. The Weibull 

theory describes very well the failure of fine-grained ceramics and fatigue-embrittled metals but, as 

transpired recently. not the heterogeneous quasi brittle materials [28]. For such materials, the energy release 
caused by the stress redistributions due to the growth a fracture is a potent source of size effect. 

For the sake of simplicity, we consider the cross section of laminate to be homogeneous, in which case 

the elastic bending stress diagram is linear (Fig. 3). As a crucial assumption of our analysis, we note that 

the peak bending moment M 0 is not reached when the elastically calculated bending stress at tensile face 

reaches the material strength fl' Rather, before reaching M 0' a zone of a certain finite thickness 2Db that 

is a property of the fiber composite is assumed to develop at tensile face, causing stress redistribution and 

energy release. 

Microstress 

Dt/2 ~ 

Fig.3 Stress redistribution due to boundary layer of cracklng. 

The Simplest way to take this into consideration (with an accur.lcy up to the frrst two terms of the power 

series expansion in terms of 11 D) is to consider that frO is approximately decided by the average 

elastically calculated stress within the boundary layer of thickness 2Db • Consequently, from the bending 

stress formula, f,o = M 0 (D- Db) /21 where D = beam depth, M 0 = bending moment, and 1 == D3 /12. 

Noting that the flexural strength of a laminate (or modulus of rupture). f,. chosen to represent the nominal 

strength, is defined as the elastically calculated maximum stress in the beam, fr = (TN = MoD 121 , we 

obtain 0' N == f,o 
(1- Db I D) -I. This formula. however, is acceptable only for D» Db; it gives a 

negative (TN for small D. It can be shown that this formula is correct only up to the first two terms of the 
asymptotic series expansion in terms of the powers of 11 D [43]. Therefore, any other formula that 

exhibits the same first two asymptotic terms is equally justified. This observation suggests the use of 
asymptotic matching, which is a technique to obtain an approximate solution for problems in which the 

extreme situations are much easier to solve, by 'interpolating' between the opposite extremes, 

corresponding here to D -70 and D -7 co [44-46]. In this spirit. we need to modify the formula such that 
the first two terms of the large-size asymptotic expansion would be unaffected while a realistic small-size 
solution is matched. 
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It ma~ be cltcokl::d III" b~ "",!<in, !he repl""em .... ' (1- D. I D) -I : (I + rD. I D)'" (r bc:Ing lny 
puoitivo ",,,,,,tom). ,100 t<rSl'wo """"a of tho .. ymptotic expons,on in te"". of If D arc net .ffeeted whlle 
ollhe •• me Urn< <f ~ bee"", .. p''',tiv •• finite "lid monoronically dct:1'CIIStn8 through tIw .n~ ,"nge of D. 

This lead. to the SIze elfee' formul. [47], 

<', 

whOle qeD) i,. )JOoilive dimen.lonlc .. do"" .... in! [ullI:tion ohi •• D having. finite limi' fur D --> _. 
A ",or. roalioli<: .uortina; hypothesi. i. '" con,ider Ill ... up to the maximum load, the <rocking remains 

di<lributcd (Ih<: diocreIC crllCk being formed only 01. en Ifler. the m ... "nunt load) •• nd thOl the c .. ckin~ is 
described by • btllne ... tress·main diagram with pootpelk .lrun-,of!ening clwocterilcd by tonlCn! 
modul .. t·,. The di.tributcd crocklns at maX' mum 100<1 i, ... umed to "'''''PY' boundary llyer.t ,en"le 
.urfocc. h.vlnll 0 certaln filed thick"",,, denoted by It . Tho cOI"l"OS[lOJldlnll .treIlS dj,lI'IbuHon I, ,ketched 
in F'a. l. The ","01, of auch • coJcul.L1<ln [28.48] i. a f",""",lo thot coIncides with rr 1/ _ 1,'(1-D. I D)-' 

up 'uthe ~ term of tho .,ymptouc exp...,.;onof <fN I •• po~_ie, in II D, provided 1lI.1 one .... 
J! _ D. 12 • difference. being foond only ill the third .I.Ild hlSbet tcrmI. 

A mol. pner111 and mo,e fund.mentol oppmadl " ,n a.ymptotic lIrIo.Iysls bued on .. plnc!ing the 
"""'if reloue function 01 fracture mocbaaicl. It "' •• pur.uod in [38. 39J. At flll'.s the: fin! two IOrInj of 
the: .. ymplOtic e,pln.ion of the ,iJ.C effecl are conoerned. the 'OJu', of luch ln4lyai. hlppons to be .pia 
tho same. e"""pt thot I ,Ught oliecl of .pedmen ~metry is brouf,ht in throu(lh 1(<1'). 

1\ further seneralizatlon may be "hloved with llIe formula: 

, 
q(D) _ (1+ rD. )' 

D; "D. 
<0, 

wher. I i •• tIOI\.""jllllive """"on .. Thi' I~rmu", ai •••• fm,t •• ~nath!<II D --> .. ond. for luae Ii ..... " 
_glin .. ymptotlco.lly "'lui.olon' 10 tho orijjJnll [onnul. (1" ~ I, (I-Do I D) , 01' to !he _000 torm nf 
""wer wi ••• ''''1'I&ioa,a liD. 0 .. cln verify il by tho following aPl""xi"",~on'. whIch i •• cc .... I. up 
to tho •• ""nd term of 11>0 .. ymptotic po ..... _i •• in term. of ~ • witlt ~ _ D, I D; 

. [ l+r .. ~ 

1+r(s+I)~ r· 
Combined EnerptJc·SltItbtlcal SIze F.:rrect un flexural Stunglh or LIIminllw 

'" 

In tho cue 'hot tho m .. im"m bendmC moment i. covorO\lld by tbe ten.,I •• <renlPh. tit. ,ando,,,,,,,., of 
!...,.J wonKth can .mplify the ,ize .nOCl on II-.: "' .... nomin'l 'lJeaglh. A 1:<'"",,1 "nd fund.montol 
aw:ooch to the combill<d eucrgetic·,au.u<o' .i.e effect i, tho now,1 W.,bullth""ry [381. in which tho 
mlteri.1 failure probability at. Biven "",a' of the body doe. oot depend un !he ,."", at that poinl but 011 
the ",eighted avertlC of .<raon wlthin • "" .... in chareeteristic volume of material 'UfI"Oundioa tlte poinl. 
Thi. thOOf")" boo been wood in n"morioal ,tudie, of flo.unol I_nUn!> [:¥J] from which i. tra"'l'ired Ill .. tho ,i.., 
elie't lOt very IIIln pl_te, i •• 1000" totally "",&"tic (det.rmini.tic) ond fo, very thick pta"', .lm",,' "'tolly 
.tati"tiocoJ. of W.ibull typo. Theso two .. ympl<ltic condition, may be , .. i.fiod by tho fnllowinll.imp\e ,i,., 
eflee' formula, 

a-I"' +'" [( D)''''· D j' 
H -, D+"D. D+rsD, '" 

where n" ~ number ofop.,ioJ dimensiorul in wbich the ",,,,,'utO i.o "'filcd (n" _ 1. 2 or 3). m _ m...".;.1 
co,",an' = W .. bull rn<Klulu,. For I..,k of preei" lind brood ... , do.o, the value of • connot be <ktermined 
expenmentolly ond !/>eref", ....... ".me ,_ O. N<lte!hot for I/O -->_ (.tId • = 0) 0"" TWUver. the 
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foregoing energetic (deterministic) formula, while for Db = 0 (and .r = 0) one recovers the classical 
formula for Weibull size effect. (Experience with concrete, however, showed that the statistical part of the 
size effect on flexural strength is significant only for extremely thick structures such as dams.) 

Reinterpretation of Previous Experimental Studies of Size Effect in Laminates 

To check and calibrate the energetic-statistical theory of flexural strength of laminates, a systematic 
study of the numerous test data that exist in the literature has been initiated [31-35]. One data set that has 
already been evaluated is that recently reported by Jackson [31]. This data set involves apparently the 
broadest size range. with the laminate thickness ranging from 1 mm to 6 mm. The specimens geometrically 
similar in three dimensions were constructed of a high-modulus graphite-epoxy (AS4/3502) composite pre
preg material. The laminate stacking sequence includes unidirectional, cross-ply, angle-ply and quasi
isotropic arrangements. The testing method was unusual: Very slender and long laminate strips were loaded 
by axial force causing them to buckle, with deflections of the order of the specimen length. 

The axial shortening and force were measured but the maximum deflections, unfortunately. were not. 
However, it may probably be assumed that the specimens behaved almost linearly up to failure. Under that 
assumption, the deflection curve is the well-known 'elastica', for which the ordinates may be solved by 
elliptic integrals in a manner due to Kirchhoff [49] and thus the bending moment at failure assessed. 
Calculation of the elastica was exploited in [50, 51] for developing a very simple testing method of long
time (multi-year) stress relaxation in polymeric laminates. In this method constant (which was possible 
because of the linearity of viscoelastic behavior), a laminate strip was strongly bent and its ends mounted at 
supports on a fixed base that kept the chord length of the arc. The axial force was measured at periodic 
intervals as the force needed to effect a very small shortening displacement between the ends. The results 
were translated into bending moments by a calculation of the elastica. A table was calculated from the 
elliptic integrals for this purpose (see Table 1). The same table has presently been used for calculating the 
maximum bending moments in Jackson's bent strips from the reported end displacements (chord 
shortenings), assuming elastic behavior up to the peak load. From these bending moments, the flexural 
strength UN was calculated for each tested specimen. 

Table 1. Geometrical Properties of Elastica 

IJp ~p) fila lIlo If d(lllo)l Io'p fila lIIo If d(lllo)ld 

d(loIp) (lo'P> 
1.000 0.204 0.100 0.975 18.20 0.050 5.100 0.3772 0.480 87.80 0.157 

1.207 0.W7 0.120 0.963 W.94 0.061 5.355 0.3842 0.440 91.65 0.158 

1.418 0.211 0.140 0.948 25.75 0.072 5.608 0.3899 0.400 95.37 0.158 

1.634 0.216 0.160 0.932 29.63 0.082 5.860 0.3945 0.360 98.99 0.157 

1.856 0.222 0.180 0.912 33.60 0.091 6.116 0.3981 0.320 102.57 0.155 

2.086 0.230 0.200 0.891 37.69 0.100 6.382 0.4007 0.280 106.20 0.151 

2.325 0.239 0.220 0.866 41.91 0.108 6.649 0.4023 0.024 109.75 0.148 

2575 0.250 0.240 0.838 46.30 0.115 6.921 0.4030 0.020 113.25 0.145 

2839 0.264 0.260 0.806 50.89 0.120 7.1i1l 0.4027 0.160 116.75 

3.121 0.282 0.280 0.772 55.48 0.128 7.498 0.3988 0.120 120.32 

3.427 0.306 0.300 0.734 60.94 0.125 8.445 0.3913 0.000 130.72 

3.765 0.338 0.320 0.692 66.58 

4.148 0.383 0.340 0.648 72.85 

4.602 0.454 0.360 0.602 80.11 

The results of these calculations are shown in Figs. 4 and 5 in logarithmic plots of flexural strength UN 

(modulus of rupture) versus laminate thickness D. The data are first fit separately for unidirectional, cross
ply, angle ply and quasi-isotropic laminates, and the energetic (deterministic) formula is fit to each of these 
data (Fig. 5). This yields the optimum values of constants Db and frO for each case. Then the relative 
strengths UN I frO are plotted versus the relative size D I Db' where the values of frO and D I Db are 
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different for each case. It is seen that these data agree with the energetic formula very well (see Fig. 4a, 

where (() is the coefficient of variation). 
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Figure 4. Optimum fit of Jackson's (31) data on modulus of rupture versus relative size In 

dimensionless coordinates. (a) Deterministic'energetic formula. (b) Energetic-statistical formula. (c) 
Weibull size effect formula with m = 3, (d) Weibull size effact formula with m = 3 (to save space, the 
label such as (45.213.6) means ,,0 = 45.2 MPa and D • .:3.6 mm. and similar for all labels). 

0.1 

Subsequently the same fitting procedure is repeated with the general energetic-statistical formula. The 

resulting fit is shown in Fig. 4b. As can be seen, an improvement is hardly noticeable on this set of data; {() 

is nearly the same as in the previous case. Nevertheless broadening the size range to much thicker 

laminates would be likely to bring about considerable improvement. 

Finally, the same data are plotted using only the Weibull statistical size effect formula, 

C1 N = frO (Db I D)n~ 1m. The resulting fits are shown in Figs. 4c and 4d for very different value of m. It is 

seen that the match of these data with the statistical theory is poor in the overall plot. The value m=3 is 

suitable for angle-ply and cross-ply specimens in the individual data sets, while m = 30 is suitable for the 

unidirectional specimens. 
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Figure 5, Optimum fits of Jackson's [31] individual data sets by the foonula used in Fig. 4 (numbers 1, 2, 

3, 4 correspond to angle-ply, cross-ply, quasi-isotropic and unidirectional specimens presented in Fig. 4, 
and a, b, c, d to the four plots in Fig. 4). 

10 

The individual fits corresponding to Fig. 4 are presented in Fig. 5. The fits of the available individual 
data sets using different size effect formulae (pure Weibull, pure energetic. energetic-statistical) can result 

in a deceptively straightforward conclusion: Because the plots of the data in the log-log scale look very 
close to straight lines, the pure Weibull-type formula might seem to be the best model. although the 
Weibull modulus ranges widely. from 3 to 35 (Figs. 5c and 5d). The reason is that both the deterministic
energetic and statistical-energetic formulae for very small and very large sizes contain straight segmnets in 
the log-log scale. and the optimization procedure automatically positions the straight segment on these data. 
As demonstrated by Bahnt and Novak [39] for concrete, determination of the Weibull modulus from tests 
of such a limited size range is highly ambiguous and can yield widely ranging results. Instead of this 
approach, one must optimize the fit of the combination of all the available data in one plot while the value 
of Weibull modulus is forced to correspond to a common asymptotic value for very large sizes. In the 
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energetic-statistical formula, the quasibrittle behavior implies a decrease of the modulus of rupture with the 
size, with the pure Weibull size effect of slope -ndl m approached asymptotically. Such a Weibull modLllus 
may be called the asymptotic Weibull modulus (for sizes approaching infinity); its value is common for all 
the data sets. Then, in the overall plot of the data, the individual data sets are positioned according to the 
'individual' apparent Weibull modulus (those with a small m in the individual Weibull fit will be close to 
the small-size asymptote, those with a large m will be close to the large-size asymptote of the overall 
combined size effect plot). 

Since the available data are mainly limited to the range of small sizes, the iterative fitting procedure that 
was applied successfully for concrete [39] could not be applied here. Parameter 7 and WeibLlll modulus m 
(asymptotic), used in Fig.4 and Fig. 5(a,b), had to be estimated heuristically (7:;: 0.8 and m;;;;; 35). This is of 

course a crude approximation in the present study. It can be overcome only after accumulating more 
experimental data, for a broader size range. 

For the sake of illustration, Fig. 6 shows the energetic-statistical size effect for angle-ply specimens in 

the actual linear scales, calibrated from Jackson's [31J data. 
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Fig. 6 Energetic-statistical formulae of Jackson's angle-ply data (actual scale). 

It must be concluded that the size effect in Jackson's L31] tests was primarily deterministic energetic. 
caused by stress redistribution within the cross section of the laminate, with the corresponding energy 

release. 

Conclusions 

1. The failure of the basic components of sandwich structures. i.e., polymeric foam for the core and fiber 
laminate for the skins, have so far been treated according to the strength theory or plastic limit 
analysis, which exhibits no size effect, and all the size effects have been considered as purely 
statistical. The present analysis of experiments indicates that this current view may have to be 
fundamentally revised. 

2. Although a polymeric foam with no large defects (cracks or notches) behaves essentially in a ductile 
manner, a foam that has suffered cracks or cracking bands, for instance due to impact. may behave in a 
very brittle manner and must be analyzed according to fracture mechanics. 

3. The size effect on the flexural strength of laminates appears to be primarily energetic (deterministic) 

rather than statistical, except possibly for very large thicknesses for which the statistical size effect 

might also be significant. This further implies that fracture mechanics, rather than a strength criterion, 
needs to be used for evaluating the strength of laminates. 
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