
SIZE EFFECT IN PENETRATION OF SEA ICE PLATE WITH 

PART-THROUGH CRACKS. II: RESULTS 
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ABSTRACT: After development of the theory in the part I paper, systems of up to 300 nonlinear equations are 
solved in this paper by the Levenberg-Marquardt optimization algorithm. The maximum load is reached when 
the circumferential cracks begin to form. Numerical calculations show a typical quasi brittle size effect such 
that the plot of log CYN versus log h (where CXN = nominal stress at maximum load and h = plate thickness) is a 
descending curve whose slope is negligible only for h < 0.2 m and then gets gradually steeper, asymptotically 
approaching -112. The calculated size effect agrees with the existing test data, and contradicts previous plasticity 
solutions. 

INTRODUCTION 

The part I paper (BaZant and Kim 1998) in this issue pre
sented the theory of a numerical solution of the fracture prob
lem of penetration of an object through a floating ice plate. 
The present paper will use the theory to obtain results on the 
size effect and compare them to experimental data. Broader 
issues of scaling will also be studied. All the notations and 
definitions from the part I paper will be retained. 

NUMERICAL CALCULATION OF DEFLECTION, 
STRESS, AND CRACK DEPTH PROFILES 

To study the vertical depth profile of the radial crack, the 
stress distributions and, most important, the size effect, ice 
plates with various thicknesses are analyzed numerically. The 
schematic picture of the part-through numerical analysis model 
of an ice plate is shown in Figs. 1 and 2 of part I. An ice plate 
with an angle of 600 between the radial cracks in a star pattern 
is chosen as the basic case to solve. This is the angle that was 
commonly observed in the field tests by Frankenstein (1963). 
Although his experiments were carried out on lake ice, it 
seems reasonable to assume that the wedge angle would be 
the same for sea ice. 

Because the structure is symmetric with respect to any crack 
line and the centerline of any wedge, one needs to analyze 
only a half wedge, with a 300 central angle. The ice plate is 
assumed to have a fixed support on a circle of radius 3L. This 
support is far enough from the applied load resultant to ensure 
that the region with the crack behaves almost as if the plate 
were infinite. 

The vertical load is considered to be applied on the plate as 
a uniformly distributed load along the edge of a circular hole 
of radius O.lL, where L is the flexural wavelength of ice. This 
is done for the sake of convenience, to avoid dealing with the 
moment singularity that would occur if the load were concen
trated. The behavior at the beginning of crack propagation is 
of course affected by the presence of the hole, but at radial 
distances that matter for the long crack at maximum load 
(which exceeds 0.2L for all L), the behavior is nearly the same 
as for a plate in which the load is either concentrated or ap
plied uniformly over the area of the circle. This fact (which is 

'Walter P. Murphy Prof. of Civ. Engrg. and Mat. Sci.. Northwestern 
Univ .• Evanston. IL 60208. E-mail: z-bazant@nwu.edu 

'Grad. Res. Asst .• Dept. of Civ. Engrg .• Northwestern Univ .• Evanston. 
IL. 

Note. Associate Editor: George V. Voyiadjis. Discussion open until 
May 1. 1999. Separate discussions should be submitted for the individual 
papers in this symposium. To extend the closing date one month. a written 
request must be filed with the ASCE Manager of Journals. The manuscript 
for this paper was submitted for review and possible publication on 
March 12. 1998. This paper is part of the Journal of Engineering Me
chanics. Vol. 124. No. 12. December. 1998. ©ASCE. ISSN 0733-93991 
98/0012-1316-1324/$8.00 + $.50 per page. Paper No. 17980. 

13161 JOURNAL OF ENGINEERING MECHANICS 1 DECEMBER 1998 

a manifestation of the Saint-Venant principle) justifies the as
sumed mode of loading. The reason that the radius of the hole 
is increased in proportion to L is to maintain strict geometric 
similarity, which makes it possible to obtain precise informa
tion on the size effect, free from the effects of shape (or ge
ometry). The crack profiles are shown in Fig. 1. 

The mechanical properties of sea ice vary widely (Sander
son 1988), depending on the type of ice, temperature, and 
salinity. In the present study, the following typical ice prop
erties are assumed: f: = 0.2 MPa, v = 0.29, E = 1.0 GPa, and 
Kc = 0.1 MN m -312 (Sanderson 1988), but some other values 
are also considered. The specific weight of water, p = 9,810 
N/m3

• 

The mesh used to calculate the compliance matrices has 60 
uniformly spaced angular nodes within one-half of the wedge 
and 100 nodes on the radial rays. The spacing of the nodes 
along the radial ray is dense near the hole and is getting grad
ually coarser farther away [Fig. 2 of part I]. The reason for 

1.0 

(a) 

~ 
'-" 
,Q 

.... 2.5 ...... 
'i:' (b) 
']5 

I 

B -!f::1. ... 

'i:' 
'-" 

~ 
2.5 

...... 0.5 

'i:' (c) 
'-' 
,Q 0.0 

I 

B 
~ ,-., 

~ 
Z 

...... 0.5 1.0 1.5 2.0 2.5 

'i:' 0.5 
'-' (d) ,.Q 

I 

B 
'i:' 0.0 
'-' 

~ 
'-' 

~ ·o.S 

~ 
0.5 1.0 1.5 2.0 2.5 

Relative Radial Crack Length, rlL 

FIG. 1. Calculated Profiles of Nominal Stresses due to Send
Ing Moment and Normal Force, Crack Depth Profiles, and Verti
cal Shift of Normal Stress Resultant 



the variable spacing is twofold: (1) The variation of the com
pliances near the hole is quite abrupt; and (2) the plastic zone 
at the crack tip is too short to get resolved with a coarser 
spacing (but even for the fine spacing used, the plastic zone 
could not be resolved for thick plates). 

Fig. 2(a) shows a few typical load-deflection diagrams plot
ted as (C7N - C7.) versus (u - u.), where u., C7. are the load 
point deflection and nominal stress at the elastic limit, i.e., just 
before the cracks start to grow. These diagrams terminate at 
the maximum load state. The maximum load is calculated un
der the hypothesis that the initiation of the circumferential 
cracks immediately causes softening in the load-deflection di-
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FIG. 2. Plot of: (a) Load-Displacement Diagrams for Plates of 
Various Thicknesses; (b) Calculated Radial Crack Length As 
Function of Plate Thickness; (c) Calculated Dimensionless Ra
dial Crack Length As Function of Dimensionless Plate Thick
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agram. This hypothesis is based on the experimental obser
vations of Frankenstein (1963). The calculated curves shown 
in Fig. 2(a) computationally verify the field test results ob
tained by Frankenstein (1963). However, even if the maximum 
load occurred only after some finite growth of the circumfer
ential cracks, this hypothesis would be on the safe side. 

Fig. 1 shows the distributions of stress C7M due to bending 
moment, stress C7N due to normal force, and crack depth her) 
along the ray with the crack, calculated for various crack 
lengths a. The distributions for different loading phases differ. 
Initially, as the radial crack extends, C7M and C7N gradually in
crease from the first node to the end of the radial crack. Note 
that, behind the crack front, the bending moment is positive 
and the normal force is negative. The normal force at the tip 
of the radial crack is negligible. The crack depth gradually 
increases as the crack length increases, and the crack edge has 
a descending slope except near the hole when the crack gets 
long. As the radial crack becomes sufficiently long, the bend
ing moment profile changes its shape from a gradually as
cending profile to a valley-shaped profile with a high peak at 
the front. The peak would doubtless become a singularity if 
the plastic zone were negligible and if the nodal spacing ap
proached zero. [Such singularities in the compliance function 
of a floating plate with many cracks were identified analyti
cally by Dempsey et al. (1995a,b).] The normal force contin
uously increases behind the crack front. The contribution of 
the dome effect caused by partial opening of the crack can be 
judged by comparing the load-deflection diagrams. 

When a .... OAL, C7M at the first node is about O.75L and C7N 

is about O.2L. At that moment, as revealed by Fig. 1, the rate 
of the vertical crack growth with the radial crack length a 
slows down near the hole, but no crack unloading [stage 4, 
Fig. 2(d)] nor shortening (stage 5) ever occurs. The slowing 
of the vertical crack growth is caused by the development of 
significant compressive normal forces in the uncracked portion 
of the ice plate thickness. As the radial crack length reaches 
about 2.0L, the vertical crack depth near the hole almost halts 
its growth and does not exceed the depth beyond about O.8h 
as the radial crack length increases. The circumferential crack 
initiates from the radial crack when this limiting vertical crack 
depth is closely approached. 

In the cracked ice plate, a part of the applied load is carried 
by in-plane normal forces, creating a sort of dome effect. The 
dome effect is characterized by the distance of the normal 
force resultant above the middle plane of the plate, which is 
8(r) = -M(r)IN(r). Fig. I shows the profiles of 8(r) at various 
stages of loading. From these profiles we see that the surface 
of 8(r) does not have the simple shape of a dome, but is quite 
complicated, with positive and negative peaks near the radial 
crack front. The surface 8(r) is above the middle plane in the 
central portion of the plane where the normal compressive 
forces are high and greatly contribute to the load-carrying ca
pacity. In the outer region, the surface is below the middle 
plane, but does not cause a significant reduction of load ca
pacity of the plate because in that region the normal forces 
and bending moments are very small. 

SIZE EFFECT AND INFLUENCING PARAMETERS 

The size effect is understood as the size dependence of the 
nominal strength C7N = P max1h2 when geometrically similar 
structures are compared (P max = maximum load). Character
ization of the size effect is the most important benefit of using 
fracture mechanics. Failures governed by criteria expressed 
solely in terms of stresses or strains exhibit no size effect (Ba
zant 1993; BaZant and Chen 1997; Bazant and Planas 1997); 
i.e., the nominal strength is independent of the structure size 
when geometrically similar situations are compared. Failures 
governed by energy criteria and described by fracture me-
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chanics generally exhibit a strong size effect (Ba!ant and Chen 
1997; Ba!ant and Planas 1998), provided that a macroscopi
cally large crack develops prior to the maximum load, as is 
the case here. Stable formation of such a large crack before 
failure is typical for quasi brittle materials, that is, materials 
with a large fracture process zone at the front of a major crack. 
In view of the in-situ tests reported by Dempsey et al. 
(1995a,b), Mulmule et al. (1995), and Dempsey (1996), the 
sea ice on the scale of interest for the penetration problem 
must be considered to be a quasibrittle material. 

The solution may be regarded as a functional relation among 
eight variables: O'N, h, G" t:, E, p, v, and ao. However, as 
already mentioned, the ratio alao, where a = crack length at 
breakthrough load P max' may be assumed to be so large that 
the effect of the radius ao of the hole on P max or O'N is negli
gible. Furthermore, E, p, and v influence only the elastic de
formations of the plate-water system, which are fully charac
terized by a single parameter, the flexural wavelength L. 
Therefore, the solution must be given by some function II of 
only five variables, ll(O'N' h, G" t:, L) = O. 

Buckingham's ll-theorem of dimensional analysis (Baren
blatt 1979) states that the solution must be reducible to a func
tion of Nv independent dimensionless variables, where Nv = 
Nail - Nlnd ; Nail = number of all independent variables; and Mnd 
= number of variables with independent physical dimensions. 
Here we have Nail = 5 and N lnd = 2, with the independent 
physical dimensions being the length and the force. So Nv = 
5 - 2 = 3. We may choose these variables as indicated in the 
following form of solution: 

C1'N = If> (!!., !1.) 
t: 10 10 

(1) 

where If> = some function~ = EG,If:
2 = K~If:2; and II = 

Elp IX L41h3
• Here Kc = V EG, = fracture toughness (critical 

stress intensity factor); 10 = Irwin's (1958) characteristic size 
of the fracture process zone [introduced for concrete by Hil
lerborg et al. (1976)]; and II = second independent length pa
rameter. Note that the flexural wavelength L = [/lh3/12(1 -
v2)] 114. 

The foregoing analysis shows that the elastic properties and 
specific weight of water influence the solution only through 
the ratio 11110 , As for the fracture characteristics of ice, G, and 
t:, they influence the solution only through the value of 10, but 
not individually. This means that the size effect curve of O'NI 

t: versus hllo has only one parameter, namely, 11110 , 

A set of size effect curves for various values of 11/10 will, 
therefore, characterize all the possible situations. This conclu
sion is very useful because the values of G, as well as t: for 
sea ice exhibit tremendous statistical variability and depend 
strongly on temperature, salinity, and the size and spacing of 
voids and channels filled with brine. On the other hand, the 
value of p is a constant and the value of Young's modulus E 
of ice does not exhibit such a large statistical variability as G, 

andt:· 
The values of Young's modulus E measured by ultrasound 

range approximately from 4 GPa (5.8 X 10' psi) to 11 GPa 
(1.6 X 106 psi). Because of the rate effect (or creep), however, 
the effective E value for static loading is much smaller. In the 
present computations, the value of E = 1 GPa (1.45 X 10' 
psi), the same as considered by Evans (1971), was considered 
as the basic value. 

According to the review by Sanderson (1988) and the data 
of Dempsey et al. (1995a,b), a representative value for the 
tensile strength t: of sea ice is 0.5 MPa (72.5 psi). The value 
of tensile strength, however, has only a minor effect because 
the plastic zone at the crack tip is, at maximum load, very 
small. The fracture toughness Kc is much more important. 

Sanderson (1988, page 91), based on small-scale tests, re-

1318/ JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1998 

ports Kc-values ranging from 0.044 MPa m -312 to 0.115 MN 
m- 312

• According to these data and the information from Urabe 
and Yoshitake (1981) and Weeks and Mellor (1984), the value 
Kc = 0.1 MN m- 312 [the same as considered by Ba!ant 
(1992a,b)] was used in computations. With E = 1 GPa, the 
corresponding value of fracture energy is G, = 10 N/m, which 
was used by Ba!ant (1992a.b). [For comparison, the thermo
dynamic surface Gibbs free energy of pure ice is about 0.1 NI 
m; Ketchum and Hobbs (1969)]. According to Dempsey (per
sonal communication, 1997), the representative value of the 
fracture energy of sea ice is G, = 10-15 N/m. 

A higher value of fracture energy is indicated by the size 
effect observed in the large-scale in-situ fracture tests of sea 
ice recently conducted on the Arctic Ocean near Resolute by 
Dempsey et al. (1995a,b). The reader is also referred to Mul
mule et al. (1995). These tests involved floating notched 
square specimens of ice 1.8 m thick, with sides ranging from 
D = 0.5 m to D = 80 m, loaded horizontally by a flat jack 
inserted into the notch of length O.3D at a distance 0.02D from 
the mouth. The size effect plot of the reported data closely 
approaches the linear elastic fracture mechanics (LEFM) as
ymptote of -1/2. Dempsey et al. (1995a,b) did not report the 
fracture energy, but its value can be easily figured out from 
the maximum load data they reported. To this end, one needs 
to fit the size effect law to their data, determine the location 
of the asymptote [as proposed by Ba!ant and Pfeiffer (1987) 
and explained in detail in Bazant and Planas (1997)], and use 
the formula for the stress intensity factor (Tada et al. 1985) 
for the type of specimen used in these large-scale in-situ tests. 
The calculation provides Kc = 2.1 MN m- 312 and, for E ... 8.8 
GPa, G, = 520 N/m. With t: .... 2 MPa, the characteristic size 
is then 10 ... 0.5 m, and 11110 .... 1.8 X 106

• These are the 
effective values for the whole thickness of ice whose temper
ature varies from about - 20°C on top to about -1°C in con
tact with seawater. 

The values of fracture energy of sea ice depend on its tem
perature and on the loading rate. They are also different for 
cracks that grow in the floating ice plate vertically (parallel to 
grains or columnar crystals, which is called the VH orienta
tion) or horizontally (normal to the grains, which is called the 
HH orientation) (Mulmule and Dempsey 1997). 

The values from Dempsey et al.'s tests near Resolute, how
ever, are pertinent to horizontal propagation of a long full
through vertical crack. In our problem, the crack propagates 
mainly vertically, which doubtless causes the fracture process 
zone to be smaller than in Dempsey's tests, and thus the ef
fective fracture energy to be lower. Also, the anisotropy of sea 
ice is likely to cause the effective fracture energy for vertical 
crack propagation to be less than that for horizontal propa
gation, because the fracture runs along, rather than across, the 
vertical hexagonal columnar crystals of sea ice and along, 
rather than across, the vertical brine channels. This gives an
other reason why the fracture energy for the penetration prob
lem should be considered smaller than in Dempsey et al.'s tests 
near Resolute. 

In view of the preceding discussion, the representative value 
of the characteristic size of the fracture process zone for the 
present computations is chosen as 10 = 0.25 m, with the ratio 
11110 = 4.5 X 10'. The size effect results for these parameters 
and for the failure mode with six cracks in a star pattern are 
shown by the data circles in the bilogarithmic plot in Fig. 3(a). 

To obtain information on the effect of parameter lillo, ad
ditional computations have been run for the value 11110 = 3.9 
X 104

• These are shown by the data squares in Fig. 3(a). It is 
immediately apparent from this figure that the difference be
tween the trends of the data circles and data squares is rather 
small. This is not surprising, since II and 10 differ by several 
orders of magnitude, which means that they can hardly inter
act. Therefore, the effect of parameter 11110 can be neglected. 
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FIG. 3. Diagram of: (a) Size Effect Calculated for Fixed Num
ber of Radial Cracks, n = 6; (b) Size Effect Calculated for Thick
ness Dependent Number of Radial Cracks Determined from 
Crack Initiation Analysis 

(Values of Lillo ~ 106 have caused convergence problems, ap
parently because the fracture process zone in that case is too 
small to be resolved for large ice thicknesses by the assumed 
mesh.) 

The calculated data circles in Fig. 3(a) trace a relatively 
smooth curve, except for a steep bump in the middle. This 
bump appears associated with the rapid rise in ratio alh seen 
in Fig. 2(b,c), which occurs when h increases from 0.5 m to 
I m. For small thicknesses, approximately h :s 20 cm, the 
radial crack length at maximum load remains approximately 
constant, which may be explained by the fact that the fracture 
process zone (or Lo) is not small compared to the plate thick
ness. In that case, the strength theory must be expected to 
apply, and indeed the size effect curve is initially horizontal. 
For thick plates, approximately for h ~ I m, the radial crack 
length at maximum load in Fig. 2(b,c) is approximately pro
portional to the flexural wavelength L (or to h3l4

). In that case, 
the quasi brittle size effect law should be followed, and it in
deed is. If aiL did not approach a constant for thick enough 
plates, the size effect plot would not approach an asymptote 
of slope -1/2. 

DEPENDENCE OF SIZE EFFECT ON NUMBER OF 
CRACKS 

The dependence of the number of cracks on the plate thick
ness was studied in a second round of computations. For this 
purpose, one needs first to understand crack initiation from the 
smooth surface of the hole on which the vertical distributed 
load is assumed to be applied. 

A simple method for determining the spacing of cracks ini-

tiating from the smooth surface of a half-space was proposed 
by Bafant et al. (1979) [see also Bafant and Cedolin (1991, 
section 12.6)] and was recently refined by Li and Bafant 
(1994) and Li et al. (1995). The method involves three con
ditions: (1) The stress before crack initiation attains the ma
terial tensile strength; (2) the energy release caused by the 
formation of cracks of finite initial length at is equal to the 
surface energy of these cracks determined from the fracture 
energy G, of the material; and (3) the cracks of initial length 
aj are in a critical state; i.e., their energy release rate is equal 
to G,. These three conditions have also been applied by Li et 
al. (1995) to the crack spacing in highway pavements. The last 
two conditions imply the neglect of possible acoustic radiation 
of energy, and possible additional energy dissipation by dis
tributed damage that is not included in G,. 

From the foregoing three conditions, one can determine the 
load level at which the initial cracks form, their initial length 
aj, and their spacing. Li and Bafant (1994) deduced from these 
three conditions the number nc of radial cracks initiating from 
a hole in the ice plate, as indicated in Table 1 of the companion 
paper; nc increases from three cracks for ice plates under O.IL 
thick, to 36 cracks for ice plates over 5L thick. 

Taking the numbers of radial cracks for various ice thick
nesses from the analysis of Li and Bazant (1994), and running 
the present computer program for each of these numbers, we 
obtain the size effect plot shown in Fig. 3(b). The numbers of 
radial cracks for various size ranges are indicated in the figure. 

Comparing this figure with the previous Fig. 3(a) for nc = 
6, we see that the effect of the number of cracks is not strong 
(which is a similar conclusion to that of the plastic limit anal
ysis of the penetration problem). The overall curvature of the 
size effect plot is only slightly less than in the previous case. 
The horizontal small-size asymptotic slope is slightly higher 
for the varying wedge angle analysis than for the constant 
angle analysis. The average slope between 0.001 m and 0.05 
m plate thickness is 6.084 X 10-3 and 7.744 X 10-3 for Figs. 
3(a) and 3(b), respectively, and the percent difference between 
the slopes is 0.21 %. The large-size inclined asymptote, which 
has again the slope of -112, is slightly lower for the varying 
angle case than for the constant angle case. The slopes are 
0.502 and 0.463 for Figs. 3(a) and 3(b), respectively, and the 
percent difference is 0.08%. The numerical results for varying 
numbers of cracks can again be closely described by Bafant's 
generalized size effect law in (2), in which Ao = 2.55, m = 
112, r = 1.2, and 10 = 0.25 m. This law is shown in Fig. 3(b) 
by the continuous curve. 

ANALYSIS OF SIZE EFFECT RESULTS 

The size effect was initially studied under the assumption 
of full-through bending cracks for which the large size behav
ior was found to be fIN ex: h- 318

, as confirmed by the studies of 
Slepyan (1990), Bazant (1992a,b), Bazant and Li (1994a,b), 
and Li and Bazant (1994). [For long full-through thermal 
bending cracks, a similar size effect was found by Bafant 
(1992a,b).] The reason why for full-through cracks the as
ymptotic size effect is not fIN ex: h- 1I2 is because the plate thick
ness h is actually not a dimension in the plane (x, y) of the 
boundary value problem of the infinite floating plate, but 
merely a parameter giving the cylindrical stiffness D. No phys
ical dimension in the plane (x, y) exists (except for the hole, 
whose effect is, however, considered negligible). The only di
mension present is the flexural wavelength L, which depends 
on the thickness as L ex: h3l4

• Thus, for full-through fracture, 
the size effect must be expected in the form fIN ex: L -112, or fIN 

ex: (h
3l4

)-112 ex: h-3Is
• This was evidenced by the penetration stud

ies of Slepyan (1990), Bazant (1992a,b), Bafant and Li 
(l994a,b), and Li and Bafant (1994) [and for thermal fracture, 
Bafant (1992a,b)]. 
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A different asymptotic size effect, however, is exhibited by 
the present numerical solution. As seen in Figs. 3(a) and 3(b), 
the large-size asymptote of the size effect curve has the slope 
-112, i.e., aN ex: h- 1I2 for h ~ 00, which is the standard as
ymptotic size effect. The reason why the asymptotic size effect 
aN ex: h-3/8 does not apply is because the crack is not full
through, but is growing across the plate thickness, which is a 
standard crack propagation problem. Even though the numer
ical solution is two-dimensional (in the horizontal plane), the 
fracture propagates only in the third dimension and its behav
ior is embedded in the Rice-Levy springs. An interesting the
oretical question is whether the (3/8)-power law for full
through cracks can be obtained as a limiting case of the present 
solution. The answer is no, because the Rice-Levy springs can
not simulate the conditions at the tip of a horizontally propa
gating full-through bending crack. 

In a recent simplified solution of Dempsey et al. (1995a,b), 
in which the depth of part-through cracks was assumed to be 
constant over the entire crack length, the ice was assumed to 
follow LEFM, and the case of many cracks was considered, 
the size effect was of the type aN ex: h-

l12 for all h. 

As is typical of quasi brittle fracture (Bazant 1984; BaZant 
and Chen 1997; Bazant and Planas 1998), the small-size as
ymptote of the calculated size effect plot in Fig. 3(a) is hori
zontal and corresponds to a solution according to plastic limit 
analysis (strength theory), whose applications to the penetra
tion problem were reviewed by Kerr (1996) [see also Sodhi 
(1995a,b, 1996)]. The present computations show that plastic 
limit analysis (strength theory) corresponding to the horizontal 
asymptote of the size effect plot, is a good enough approxi
mation only for ice thicknesses up to about 0.2 m (assuming 
that Lo = 0.25 m). At the same time, the aN values for the 
horizontal asymptote can scatter widely, depending on the type 
of ice and the environmental conditions (air and water tem
perature). This may explain why no size effect was observed 
in small-scale laboratory experiments. 

The large-size asymptote of the size effect plot, which has 
the slope of - 112 corresponding to LEFM, is seen to be a 
good enough approximation for ice thicknesses over 1.0 m. 
The value of parameter 1..0 is chosen so that h = AoLo would 
represent the thickness at the intersection point of the two 
asymptotes. From the present numerical results, Ao = 2.26. The 
ratio f3 = h/(AoLo) determined in this manner has been called 
the brittleness number (BaZant 1987; Bazant and Pfeiffer 1987; 
Bazant and Planas 1997). The limit f3 ~ 00 indicates the per
fectly brittle response, i.e., LEFM, and the limit f3 ~ 0 indi
cates the perfectly ductile (plastic) response. 

The present numerical results, spanning over four orders of 
magnitude of ice thickness, can be closely fitted by the gen
eralized form of Bazanfs size effect law (Bazant 1985; BaZant 
and Pfeiffer 1987; Bazant and Chen 1997; BaZant and Planas 
1998), shown by the continuous curve in Fig. 3(a) 

aN _ [1 + (~)r]-li2r 
Bj: - !..olo 

(2) 

Here, the dimensionless parameters found by fitting of the nu
merical results are B = 1.214; 1..0 = 2.55; m = 112; r = 1.55; 
t~e dimensional parame~ers used i? Fl.g. 3 are 10 = O.~~ m; ~d 
I, = 0.2 MPa (from whlch Kc = I, V/o = 0.1 MN m ). ThlS 
approximate law has been derived as the asymptotic matching 
between the large-size and small-size expansions of the size 
effect (Bazant 1995a,b, 1997). 

Eq. (1) can be written as Y = AX + C, where X = h
r

, Y = 
(aN)-2r, A = (BI:)-2r, and C = 11(1..01081:2)'. This means that, if 
r is known, the values of BI: and 1..0/0 can be determined by 
linear regression. The regression may be conducted for various 
chosen r values such that the optimum r is found. 

With the aforementioned dimensionless values of B, A, m, 
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and r, (2) can be used as a general approximate prediction 
formula, provided, of course, the values of 10 andl: are known. 

The present numerical results confirm that the (3/8)-power 
law previously obtained for full-through cracks is not appli
cable. The (3/8)-power law would apply when the horizontal 
forces are sufficiently small compared to the bending mo
ments. This would have to happen for a floating plate that is 
sufficiently thin and sufficiently fragile so as to fail by fracture 
rather than by plastic yielding. Such conditions may be ex
pected to occur when 10 « h « L. But this does not occur in 
the realistic range of ice properties. 

The (3/8)-power law does, nevertheless, apply to the scaling 
of the critical temperature difference that can produce long 
thermal fractures running in a stationary state, analyzed by 
BaZant (1992a,b). The reason is that, despite the presence of 
a large fracture process zone with a part-through crack, there 
exists around the front of a long enough crack a control region 
that moves with the crack front, remains in a stationary state, 
and is so large that ahead of this region there is no deflection 
and no damage, while behind this region there is a full-through 
crack if the crack is long. 

Another interesting plot is that of the radial crack length a 
versus ice thickness h, shown in Fig. 2(b). Two values of a 
are shown: the length to the front of the plastic zone at the 
bottom surface of the plate, and the length to the front of the 
open LEFM crack. As can be seen, both crack lengths are very 
close and are undistinguishable for large thicknesses. This 
means that the plastic behavior is not important for the overall 
response, and confirms that a very accurate but complex mod
eling of the plastic zone at the crack front is not necessary. 
The reason that no plastic crack length is seen in Fig. 2(b) for 
large plate thicknesses is that the nodal spacing is increased 
in proportion to the ice thickness. For thick plates the nodal 
spacing becomes larger than the length of the plastic zone. 
This is clear from Fig. 2(c), showing the dimensionless crack 
length aiL versus dimensionless ice thickness h/L. 

COMPARISONS WITH TEST DATA 

The present results on the number of cracks roughly agree 
with the field observations of Frankenstein (1963, 1966) and 
Lichtenberger et al. (1974). Frankenstein made extensive ob
servations on lake ice, which can be assumed to behave sim
ilarly as sea ice. Despite irregularities in the observed crack 
patterns, Frankenstein's tests clearly show that the number nc 
of cracks increases with the ice thickness h. 

The aforementioned experimental data on the size effect in 
penetration of sea ice were analyzed by Sodhi (1995a,b, 1996) 
under the assumption that sea ice is a plastic material. Sodhi 
concluded that these data confirm the absence of size effect, 
which is characteristic of his solution based on plasticity. 

However, this conclusion is due solely to a questionable 
statistical treatment of the data. Sodhi (1995a) based his con
clusion on the plot of P max versus h, as shown in Fig. 4(a). 
This kind of plot seems, indeed, to suggest that P max is ap
proximately proportional to h

2
, which would mean that aN is 

constant, free of size effect. However, such a way of reasoning 
is deceptive. The main reason is that, implicitly, a strong de
terministic variation obscuring the size effect, namely, the pro
portionality of P max to h2

, has been superposed on the test data 
by Sodhi's choice of coordinates of the plot. 

What a misleading effect such a choice of coordinates can 
have is illustrated in Figs. 4(b and c). In Fig. 4(b), we assume 
hypothetical perfect data, conforming exactly to BaZant's size 
effect law. Then we plot the same data in the graph of log 
P max versus log h [Fig. 4(c)]. According to Sodhi's viewpoint 
that there is no size effect, one would pass the regression line 
of slope 2 shown in the figure. The comparison of this re
gression line with the data seems now acceptable, indicating 
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a relatively low coefficient of variation of the deviations from 
the regression line. The comparison would look even more 
acceptable if the inevitable random scatter were superposed. 
Yet this is the case of perfect agreement with the size effect 
law. 

A second questionable aspect of Sodhi's (1995a,b) evalua
tion of test data is that he correlated in the same diagram the 
test results from different test series while implying the 
same ice properties. However, the ice properties were most 
likely quite different. If the differences in ice properties 
among the two test series of Frankenstein (1963, 1966) 
and that of Lichtenberger et aI. (1974) were taken into 
account, the groups of data points for these tests could shift 
vertically in the plot in Fig. 4(a). Thus, what looks like a good 
agreement with the proportionality of P max to h2 could be lost 
by such vertical shifts. It is probably by chance that the 
differences among the ice properties compensated for the size 
effect. 

Since the size effect is the deviation from the proportionality 
of P to h2

, the only nonobfuscating way that can bring the size 
effect to light is to plot the values of (IN = Plh2; i.e., to con
struct the plot of the measured values of log (IN = log(Plh2) 
versus log h (rather than a plot of P versus h). Because the 
ice properties in different test series were not the same, the 
plots intended to check for size effect should be made sepa
rately for each test series. This is done in Fig. 5(a) for the 

three data series reported by Frankenstein (1963, 1966) and 
Lichtenberger et al. (1974). Looking at these plots now leads 
to a conclusion very different from Sodhi's: There is a clear 
size effect in each test series. 

Furthermore, Fig. 5(b) shows the linear regression plots of 
1I(I~ versus h, in which the size effect law (2) with r = 1 is 
represented by the regression line. These linear regression 
plots make it possible to determine the coefficients of variation 
of the slope of the regression line. However, the data are too 
few and the size range too narrow to obtain meaningful sta
tistics. 

Finally, Fig. 5(c) shows all three data sets in one plot of 
10g«(INIB/;) versus log(hl>-..olo), and in another plot of 
(B/; I(IN) versus hl>-..olo. These unified plots use the optimum 
values of B/; and Aolo obtained by a previous separate regres
sion of each data set. These two plots [Fig. 5(c)] confirm that 
the present theory is in overall acceptable agreement with the 
available test results. 

In view of the high scatter and limited size range of the 
available data, it cannot be claimed, however, that the existing 
test results actually prove the present theory. There might exist 
another theory that fits these limited data also. The answer to 
this question and the verification for large ice thicknesses will 
have to await measurements of a much broader size range. 
Nevertheless, all the plots in Fig. 5 visually demonstrate the 
invalidity of Sodhi's claim that there is no size effect. 
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SOME REMAINING QUESTIONS 

Although the present study probably answers the main ques
tions in the ice penetration problem, several questions still re
main. Due to temperature variations through the ice plate and 
diffusion of brine, the ice plate is not homogeneous. Its bot
tom, where the temperature is near the melting point, is very 
soft and weak, while the top is cold and thus stiff and strong. 
The present analysis must be interpreted in the sense of a 
certain effective ice thickness that gives about the same bend
ing stiffness as that of the actual ice plate, and the values of 
KI , f:, and E must be interpreted as the equivalent effective 
properties throughout the thickness. An accurate analysis, 
however, would have to take these differences into account. 

Another question is the neglect of the rate of loading. Sea 
ice exhibits creep, and the effective fracture energy as well as 
the strength depend on the rate of crack growth. Regarding 
the number of cracks, there is another phenomenon that may 
play a role. It could happen that some of the radial cracks 
could grow longer than others. A bifurcation of the equilibrium 
path, in which a bifurcated solution with unequal crack lengths 
may be followed, is a possibility. This problem could be an
alyzed similarly to the problem of bifurcation and changes of 
spacing in the evolution of a system of parallel cooling cracks 
in a half-space (BaZant et al. 1979; BaZant and Cedolin 1991, 
section 12.6). Analysis of this problem would require aban
doning the present assumption of symmetry of response. 
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Finally, the value of 10 might be larger for a thicker ice plate, 
because of its higher heterogeneity. 

CONCLUSIONS 

1. The mechanism of penetration of a floating sea ice plate 
involves the growth of radial cracks that cut only through 
a part of the ice thickness. The crack depth at maximum 
load is about 80% of the ice thickness. 

2. The nominal strength of the sea ice plate exhibits a 
strong size effect. For small ice thicknesses (up to about 
0.2 m), the size effect can be neglected. For large thick
nesses (exceeding about 1 m), the logarithmic size effect 
plot approaches an asymptote of slope -1/2, which is 
typical of LEFM. The previously derived asymptote of 
slope -3/8, which corresponds to full-through cracks, 
cannot occur for realistic properties of sea ice. 

3. The characteristics of an effective numerical model are 
as follows: (1) The cracked radial section is subdivided 
into vertical strips in which the crack is assumed to grow 
upward, independently of the cracks in the adjacent 
strips; (2) the cracked vertical strip is modeled by the 
Rice-Levy nonlinear softening line spring; (3) a yield 
criterion is adopted to decide crack initiation in the ver
tical strips, and the initial plastic crack growth follows a 
nonassociated LEFM flow rule; (4) compliance matrices 
are used to characterize the uncracked sector of the ice 



plate on the elastic foundation; (5) the Levenberg-Mar
quardt nonlinear optimization algorithm is used to solve 
a large system of nonlinear equations based on the initial 
estimate provided by the solution of the previous loading 
step; and (6) the maximum load is calculated under the 
assumption that the initiation of the circumferential 
cracks immediately causes softening in the load-deflec
tion diagram. 

4. The previously established dependence of the number of 
radial cracks on the ice thickness does not have a strong 
influence on the size effect plot. 

5. Dimensional analysis shows that, with some mild sim
plifications, the dimensionless nominal strength of the 
plate depends on only two parameters-the dimension
less size and the dimensionless elastic modulus of ice. 
The latter is further shown to have little influence. Con
sequently, one dimensionless size effect curve can ap
proximate the response in general. 

6. The existing field measurements of size effect agree with 
the present theory well, although their size range is too 
limited for actually proving the theory. Sodhi's opinion 
that there is no size effect is invalid for ice plates thicker 
than about 20 cm. 

7. Until calibration by more extensive test data becomes 
possible, based on (1) it is recommended to predict the 
static load capacity of the sea ice plate from Fig. 3(b) or, 
approximately, from the formula 

1.214f:h
2 

APPENDIX I. LEVENBERG-MARQUARDT 
NONLINEAR OPTIMIZATION ALGORITHM 

The Levenberg-Marquardt iterative algorithm (Levenberg 
1944; Marquardt 1963) combines the best features of the in
verse-Hessian method and the steepest descent method to min
imize the sum of squares of m nonlinear functions fi on n
dimensional vector x (column matrix); f2(x) = L~I flex) = min. 
In the initial iterations, when the trial values are not close to 
the solution, the steepest descent method (or gradient method) 
is used 

(3) 

where f = column matrix of components fi, and the constant 
must be chosen small enough. In proximity of the correct so
lution, the inverse-Hessian method is used to converge rapidly 
to the best estimate 

(4) 

where H = Hessian matrix whose components are the second 
partial derivatives of the function. To judge the accuracy, the 
algorithm also calculates the standard deviations of the initial 
guess of the solution and of the final solution. 
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