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Size effect in the strength of concrete structures
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Abstract. This paper reports on the range of applicability of the various size effect
formulae available in the literature. In particular, the failure loads of three point
bend (TPB) beams are analysed according to the size effect formulae of Baz̆ant and
of Karihaloo for notched beams and according to those of Baz̆ant and of Carpinteri
for unnotched beams, and the results of this analysis presented. Improvements to
Karihaloo’s size effect formula are also proposed.
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1. Introduction

The fracture mechanics size effect, as opposed to the Weibull statistical size effect, is a
controversial topic in the fracture of concrete. Yet, it is fracture mechanics alone that can
illuminate the hitherto unexplained size effect observed in the strength of concrete structures.
It would therefore seem appropriate to conduct dedicated experiments in order to establish
the range of applicability of the several fracture mechanical size effect formulae available in
the literature (Băzant 1984, 1997; Carpinteri 1994a; Karihaloo 1999).

Baz̆ant (1984), using the energy release rate concept, proposed the formula,

(σN)u = A1 [1 + (B1/W)]−1/2 , (1)

where(σN)u is the nominal stress at failure of a structure of specified shape and loading
condition,W is a characteristic size of the structure, andA1 andB1 are positive constants.
These depend on the fracture parameters,Gf andcf , of concrete and on the notch to depth
ratio. Gf represents the specific fracture energy andcf the corresponding fracture process
zone (FPZ) length of an infinitely large specimen. They are determined by regression analysis
of tests on geometrically similar notched specimens. Baz̆ant’s formula reduces to the linear
elastic fracture mechanics (LEFM) limit asW → ∞. In fact, (1) has been established by
Taylor’s expansion from this asymptotic limit (Karihaloo 1995).

Karihaloo (1999), using the stress intensity factor and the fictitious crack concepts, proposed
the formula

(σN)u = A2 [1 − (B2/W)]1/2 , (2)
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whereA2 andB2 are constants. These constants also depend on the fracture parametersGF

and`p of concrete and on the notch to depth ratio. Note thatGF and`p are consistent with the
Hillerborg fictitious crack model. They differ fromGf andcf in (1). Equation (2) also reduces
to the LEFM limit asW → ∞. It is, however, unlikely to be applicable whenW is small,
which is a consequence of several approximations and assumptions made in its derivation.
These will be discussed later.

Many quasi-brittle structures are known to fail at crack initiation, although the process zone
is well developed. For such structures the nominal failure stress was found to approach the
LEFM limit for W → ∞ from the above,

(σN)u = [A3 + (B3/W)]1/2 , (3)

Here,A3 andB3 are positive constants which are determined by regression analyses of tests
on geometrically similar unnotched beams. This formula was obtained by Carpinteri and his
co-workers using multifractal scaling concepts (Carpinteri 1994; Carpinteri & Ferro 1994).
Baz̆ant (1997) also obtained a size effect formula for initially-unnotched structures using the
same concepts as for the notched structures. His formula, however, differs from (3) in that
the exponent is approximately 0.7.

The objectives of this paper are two-fold. First, it compares the size effect formulae, (1)
and (2), for tests on high strength concrete (HSC, nominal compressive strength 110 MPa)
with a view to identifying their ranges of applicability. Beams (span to depths ratio of 4) with
depths varying between 50 and 400 mm with a central edge notch were tested in three point
bending (Karihaloo & Abdalla 2001). The notches ranged in depth from the very shallow
(notch to depth ratio 0.05) to the deep (notch to depth ratio 0.3). Comparison is also made of
the size effect formulae for unnotched HSC beams ranging in depth between 50 and 400 mm.

The paper also attempts to eliminate most of the assumptions made in the derivation of (2)
with a view to obtaining better understanding of the stress redistribution in the FPZ and of its
role in the size effect of concrete structures.

2. Notched HSC beams

Tests were conducted by Karihaloo & Abdalla (2001) on notched HSC beams (span to depth
ratio = 4, width B = 100 mm) in three point bending. The mean values (and coefficients
of variation) of the measured mechanical properties are: compressive strength 108.8 MPa
(3.2 %), split cylinder strength 7.40 MPa (4.9 %), modulus of elasticity 40.45 GPa (3.9 %),
and specific fracture energy 44.7 J/m2 (8.7 %).

Three beams were tested for each of the three notch to depth ratios(α = 0.05,0.10, 0.30).
For the smallest notch to depth ratio only two beam depths were tested. The mean values of
the nominal failure strength are given in table 1. The nominal failure strengths are plotted in
figures 1-3 for the three notch depths and compared according to (1) and (2).

From the analysis presented in figures 1-3, the following conclusions can be drawn.

• For notched HSC beams with notch to depth ratios of 0.05 and 0.10, the predictions of
both (1) and (2) deviate somewhat from the measured nominal strengths. The deviation of
(2) for small sizes is particularly evident. The possible reasons for this will be discussed
below.

• For notched HSC beams with notch to depth ratio of 0.3 or more, the predictions of
both formulae are in good agreement with measured values for large sizes. However,
somewhat surprisingly, (2) alone appears to predict the correct trend for small sizes.
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Table 1. Failure loads for HSC beams.

W
α

Mean Mean
(mm) Pu (kN) (σN)u (MPa)

200 0.05 22.79 1.14
400 36.06 0.90

100 10.88 1.09
200 0.10 17.67 0.88
400 27.70 0.69

75 4.75 0.63
150 0.30 8.17 0.54
300 12.66 0.42

3. Improvement of (2)

In the derivation of (2) (Karihaloo 1999), it was recognised that quasi-brittle materials develop
a diffuse FPZ before the formation of a traction-free crack whose size can be commensurate
with that of a small test specimen. Within this zone the stresses are redistributed so that it is
necessary to consider not only the singular term in the asymptotic crack tip field but also higher
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Figure 1. Size effect plot for HSC speci-
mens withα = 0.05 according to (1)(a)
and (2)(b).
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Figure 2. Size effect plot for HSC spec-
imens withα = 0.10 according to (1)(a)
and (2)(b).

order, nonsingular terms. In the derivation proper, Karihaloo (1999) used approximations for
the higher order terms, as well as the weight (Green’s) functions for a semi-infinite crack in
an infinite plane instead of a finite size crack in a finite TPB specimen. These approximations
were made in order to arrive at the close form expression for nominal strength (2). They
are pointed out below when the exact formulation is introduced. The approximations have
been recently eliminated by taking into account accurate higher order terms of the crack tip
asymptotic field, as well as by using the weight functions for a finite crack in a finite TPB
specimen.

In common with the earlier derivation (Karihaloo 1999), the traction-free crack with a FPZ
of length`p at its tip is decomposed into a traction-free crack (figure 4) with the following
stress field at its tip

σy(r) ≡ σo(r) = a1√
r

+ 3a3
√

r + 5a5r
3/2, (4)

and the FPZ with the stress
[
σ(s) − σo(`p − s)

]
and the displacementw(s) across its faces.

In (4), a1 is related to the mode I stress intensity factor (SIF)KI via a1 = KI/
√

2π . The
coefficientsa1, a3 anda5 depend on the crack length, applied loadσr and size and geometry
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Figure 3. Size effect plot for HSC
specimens withα = 0.30 according
to (1) (a) and (2)(b).

of the body. Solutions for TPB beam and a typical wedge-splitting geometry have been
recently obtained by Karihaloo & Xiao (2001). In the previous approximate formulation
(Karihaloo 1999), only the coefficientsa1 anda3 were retained. Moreover,a3 was obtained
in an approximate manner.

For a TPB beam with a span to depth ratio of 4, the coefficientsa1, a3, anda5 are (with
α = notch to depth ratio),

a1 = σr

√
Wk4(α),

a3 = (σr/
√

W)g3
4(α),

a5 = (σr/W 3/2)g5
4(α)

where

k4(α) = √
αp4(α)/

[√
2π (1 − α)3/2 (1 + 3α)

]
,

p4(α) = 1.9+ 0.41α+ 0.51α2 − 0.17α3,

g3
4(α) = 0.6534− 9.2406α+ 49.515α2 − 153.97α3 + 233.48α4 − 148.73α5,

g5
4(α) = 2.1491− 52.998α+ 468.48α2 − 2084.4α3 + 4919.3α4

− 5869.4α5 + 2765.2α6.
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Figure 4. Decomposition of a traction free crack with a fracture process zone of lengthlp (a) into the
traction free crack with stressσ0(r) ahead of crack tip(b) and the FPZ with stress [σ(s)− σ0(lp − s)]
and displacementw(s) (c). As the faces close smoothly the stress intensity factor at 0 will vanish.k(s) is
the stress intensity factor due to unit concentrated loads ats, g(s, t) is the corresponding displacement
at locationt (d). (From Karihaloo 1995.)

The displacement of the cohesive crack facesw(s) (representing the FPZ) can be expressed
as the following singular integral equation,∫ `p

0
g(s, t)

[
σ(s) − σ0

(
`p − s

)]
ds = −w(t). (5)

The finite tensile strength of concrete requires that SIF vanish at the FPZ tip. This in turn
requires that the faces of FPZ close smoothly, i.e.∫ `p

0
k(s)

[
σ(s) − σ0(`p − s)

]
ds = 0 (6)

The weight functionsg(s, t) andk(s) are the respective crack face opening displacement
(COD) at the locationt and the SIF at the crack tip of a single edge cracked specimen of finite
size due to a pair of unit normal forces ats on the crack faces (figure 4). These have been
derived by Xiao & Karihaloo (2002)

g(s, t) = − 4

πE′ ln

∣∣∣∣
√

s − √
t√

s + √
t

∣∣∣∣ + 8

E′
[
A1

√
t − A3t

3/2 + A5t
5/2,

]
(7)

k(s) = (2/πs)1/2 + A1

√
2π, (8)
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whereE′ = E for plane stress andE′ = E/(1 − ν2) for plane strain, withE the Young
modulus andν the Poisson ratio. Accurate interpolation formulae forA1, A3 andA5 have
been given by Xiao & Karihaloo (2002) which depend on the size and geometry of the body,

Ai(α, γ )/W−(i/2)+1 =
4∑

j=0

fij (α)γ j , i = 1, 3, 5, (9)

whereα = a/W, γ = s/a anda is the crack length.
The functionsfij (α) are

f14(α) =
{

(34.606α3 − 41.019α2 + 20.223α− 3.7408)/(1− 2α)3,

0,

}
,

f13(α) =
{

(−13.817α3 + 27.952α2 − 21.109α− 4.8557)/(1− 2α)3,

0,

}
,

f12(α) =
{

(20.791α3 − 13.601α2 + 11.745α− 3.9004)/(1 − 2α)2,

−3.2167α3 + 3.22α2 − 0.7748α− 1.2004,

}
,

f11(α) =
{

(16.38α3 − 14.453α2 + 0.0025α+ 1.378)/(1− 2α)2,

127.17α3 − 157.39α2 + 73.588α− 9.5209,

}
,

f10(α) =
{

11.067α3 − 5.29α2 + 0.9753α+ 0.0354,

(−6.3283α3 + 11.659α2 − 6.1031α+ 1.0268)/α2,

}
,

f34(α) =
{

(2.4861α3 − 1.6212α2 − 0.0339α+ 0.1139)/(1− 2.45α)3α3/2,

0,

}
,

f33(α) =
{

(1.9089α3 − 3.0813α2 + 1.8375α− 0.3641)/(1− 2.45α)3α3/2,

0,

}
,

f32(α) =
{

(−13.866α3 + 10.633α2 − 3.0231α+ 0.3968)/(1− 2α)3α3/2,

7.2667α3 − 10.215α2 + 6.8468α− 0.8862,

}
,

f31(α) =
{

(251.04α3 − 234.57α2 + 75.35α− 8.7819)/(1− 2α)2,

−607.25α3 + 811.68α2 − 376.24α + 56.809,

}
,

f30(α) =
{

(3.2033α3 − 4.212α2 + 1.6762α − 0.25)/(1− 2α),

(14.152α3 − 26.064α2 + 13.866α− 2.3786)/α,

}
,

f54(α) =
{

(0.0213α3 − 0.119α2 + 0.0904α − 0.0185)/(1− 2.45α)4α3,

0,

}
,
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f53(α) =
{

(−0.3963α3 + 0.5465α2 − 0.2519α+ 0.0388)/(1− 2.01α)6α3,

0,

}
,

f52(α) =
{

(19.996α3 − 17.901α2 + 5.595α− 0.6524)/(1 − 2α)3α2,

129.03α3 − 204.66α2 + 108.13α− 17.662,

}
,

f51(α) =
{

(−143.59α3 + 142.36α2 − 47.318α+ 5.3329)/(1− 2α)3α2,

(−187.17α3 + 264.43α2 − 130.17α+ 21.167)/(1− α),

}
,

f50(α) =
{

1.1667α3 + 4.045α2 − 3.0112α + 0.3928,

−1.0667α3 − 5.335α2 + 4.4722α − 0.9568,

}
.

In each of the above expressions exceptf53(α), the first entry is forα < 0.4 and the second for
α ≥ 0.4. In the expression off53(α) the first entry is forα < 0.5 and the second forα ≥ 0.5.

In the earlier formulation (Karihaloo 1999), the following crucial approximations were
made: (i) Only the first terms in the weight functions (7) and (8) were used. These terms
correspond to a semi-infinite crack in an infinite body and not the finite TPB beam considered;
(ii) With this approximation, the two singular integral equations (5) and (6) were solved
analytically in an indirect manner. The CODw(s) in the FPZ 0≤ s ≤ `p was approximated
by a polynomial ins, andσ(s) andlp were solved analytically from (5) and (6) for prescribed
σr (i.e. KI ). The distances was then eliminated from the assumedw(s) and the calculated
σ(s) to establish the tension softening relationshipσ(w).

As a result of the above approximations, theσ(w) relationship so obtained became depen-
dent on the geometry of the structure and external loading (i.e. onσr anda3), and no longer
reflected a true material property, as it should. Additionally, the nominal strength formula (2)
predicted an arbitrary lower limit on the structural sizeW > B2 in order for the formula to
have a physical meaning.

The above exact formulation has overcome these drawbacks. However, it is now necessary
to prescribe the actualσ(w) diagram for the concrete used for making the TPB beams and to
solve the singular integral equations (5) and (6) numerically.

For the HSC reported above, the following tension softening diagram (figure 5) seems most
appropriate

w/wc = [
(σ/ft )

−1/3 − 1
]
/
[
(s01/ft )

−1/3 − 1
]
, (10)

wherewc is the critical crack opening, ands01 is the residual cohesive stress at the original
crack tip when it begins to propagate. This is required to ensure convergence of the numerical
integration scheme.

From the definition of the specific fracture energyGF according to the fictitious crack
model,

GF =
∫ s01

ft

w(σ )dσ, (11)

it follows that

GF

wcft

= −1.5(s01/ft )
2/3 + s01/ft

(s01/ft )−1/3 − 1
(12)
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Figure 5. Tension softening diagram.

If we assumes01 = 0.025ft , thenwc can be calculated from (12) knowingGF = 44.5 J/m2

andft = 7.40 MPa for the HSC used by Karihaloo & Abdalla (2001)

GF /wcft = 0.164⇒ wc = 0.03683 mm. (13)

The results are shown in figure 6.

4. Unnotched HSC beams

A limited number of unnotched HSC beams were also tested in three-point bending. The
depth of these beams covered a wide range, from 50 to 400 mm. All beams were 100 mm
wide. The mean failure loads and nominal strength values are given in table 2.

The mean nominal strength is plotted against the beam depth in figure 7, together with the
line of best fit. The odd values for depths 75 and 300 mm are presumably due to just one
specimen being available for testing. The trend is, however, very clear - the strength reaches
the asymptotic value for large sizes from above.
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with variousα andS/W = 4 on a log-log plot.
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Table 2. Failure loads for unnotched
HSC beams.

W Mean Mean
(mm) Pu (kN) (σN)u (MPa)

50 9.40 1.88
75 11.90 1.59
100 16.40 1.64
150 24.45 1.63
200 30.40 1.52
300 41.53 1.38
400 56.50 1.41

The measured values are compared in figure 8 with the predictions of the multifractal scaling
(MFSL) formula (3) due to Carpinteri. The constantsA3 andB3 in this formula are calculated
by a standard regression approach. Formula (3) but with the exponent 1/2 replaced by 1 also
gives the nominal strength at crack initiation as obtained by Baz̆ant (1997). The constants
A3 andB3 are also determined by linear regression. The constantA3 represents the nominal
strength for an infinitely large beam, whereas the constantB3 is related to the thickness of
the so-called “boundary layer” of cracking. The Baz̆ant modification of (3), denoted SEL, is
also shown on figure 8.

For unnotched HSC beams, Carpinteri’s formula (3) consistently gives better predictions
than does Băzant’s formula, although the difference in the predictions of the two is rather small.

5. Concluding remarks

In conclusion, it must be pointed out that the above work did not contribute to a resolution
of the controversy raging in the literature. In particular, it did not shed any light on why
the strength of notched beams approaches the asymptotic limit for large sizes from below,
whereas that of unnotched beams approaches it from above. However, preliminary results
from the new theoretical work briefly described in § 3 above show that there is a change in
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Figure 7. Variation in nominal failure strength
with beam depth for unnotched HSC beams.

Figure 8. Size effect plots for unnotched TPB
beams.
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the curvature of the size effect plot (i.e. log(σN)u vs logW) as the notch to depth ratio goes
towards zero. These results are most encouraging and, if confirmed by a detailed analysis,
will be reported in future communications.
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