
SIZE EFFECT ON FAILURE OF BOND SPLICES OF STEEL BARS

IN CONCRETE BEAMS
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ABSTRACT: The results of reduced-scale failure tests of simply supported four-point-bend beams of different
sizes, containing lapped bond splices of smooth (undeformed) longitudinal reinforcing bars, are reported. The
tests consist of two groups, with splices located either in the midspan region with a uniform bending moment,
or in one of the end regions with a uniform shear force. The specimens were made of microconcrete with a
maximum aggregate size 4.76 mm. Beams of three different heights (50, 100, and 200 mm) were tested. The
beams were geometrically similar in three dimensions, and even the bar diameters and cover thicknesses were
scaled in proportion. The reinforcement ratio was 0.31%. The results reveal the existence of a significant size
effect, which can be approximately described by the size effect law previously proposed by Baz̆ant. The size
effect is found to be stronger for splices without any spiral than for splices confined by a spiral, and stronger
for splices in the maximum shear force region of a beam than for splices in the maximum bending moment
region. Generalization of the existing formula of Orangun et al. is proposed and recommended for design.
Although the formula provides a safer alternative to the existing approach, further testing is needed for better
calibration. The size effect on the nominal bond strength implied by the development length provisions of the
current and previous American Concrete Institute code is discussed and shown to be inadequate.
INTRODUCTION

Previous studies, reviewed in Baz̆ant and Planas (1998),
ACI 446 (‘‘Fracture’’ 1992), and Baz̆ant et al. (1994), reveal
that brittle failures of reinforced concrete structures generally
exhibit a significant size effect, which cannot be described by
plastic limit analysis formulas based on the concept of
strength. This is at variance with the formulas underlying the
specifications in the current American Concrete Institute (ACI)
building code ACI 318-95 (‘‘Building’’ 1995), which are con-
ceptually based on plastic limit analysis.

Plastic limit analysis requires that, at the moment of failure,
the structure reaches a limit state in which it behaves as a
mechanism with a single degree of freedom, fails simultane-
ously at all points of the failure surface, and mobilizes the
material strength simultaneously at all of these points. In brittle
failures, however, no such limit state exists. The material
strength is reached at different points of the failure surface at
different times, and the failure propagates along the failure
surface. At the maximum load, only a part of the failure sur-
face reaches the strength limit, while other parts have not yet
reached the strength limit or are already softening in the post-
peak range, or have already completely lost their stress car-
rying capacity, i.e., they developed a crack (Fig. 1.2.4, Baz̆ant
and Planas 1998).

The size effect generally stems from the fact that the larger
the structure, the more localized is the zone at which the
strength limit is reached (relative to the cross-sectional dimen-
sion). This localization is a phenomenon governed by stability
and energy release considerations, and is properly handled
within the framework of fracture mechanics.

In contrast to plastic limit analysis, fracture mechanics al-
ways exhibits a size effect [provided the failure occurs only
after a large stable crack growth, as is typical of reinforced
concrete (Baz̆ant and Planas 1998)]. The strongest possible
size effect is obtained for linear elastic fracture mechanics
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(LEFM), in which the material failure is considered to happen
at any given time only at one point, the crack tip, which prop-
agates across the cross section. In concrete, which is a quasi-
brittle material, the material failure occurs in a fracture process
zone of a finite size, which is approximately independent of
the structure size.

In a larger structure, the fracture process zone occupies a
smaller portion of the cross section; i.e., it is more localized.
Therefore, the response is closer to that predicted by LEFM,
for which the fracture process zone is assumed shrunken to a
point. In a small structure—for example, in a laboratory spec-
imen—the fracture process zone occupies a large portion of
the cross section, and thus the failure behavior is closer to
plastic limit analysis, which means that the strength limit is
reached simultaneously in most of the failure surface. Thus, it
is clear that the size effect, defined as the dependence of the
nominal strength on the structure size for geometrically similar
structures, represents a transition from plastic limit analysis at
very small sizes to LEFM at very large sizes.

The size effect typical of quasi-brittle failure behavior has
been experimentally demonstrated and theoretically justified
for the diagonal shear failure of reinforced concrete beams
(both without and with stirrups, and both non-prestressed and
prestressed), the torsional failure of reinforced concrete beams,
the punching shear failure of reinforced slabs, the pullout fail-
ure of reinforcing bars embedded in concrete (Baz̆ant and Şe-
ner 1988; Baz̆ant et al. 1995); the pullout failure of anchors
with studs; the compression punch failure of concrete cylin-
ders; the beam and ring failures of unreinforced pipes; and,
for a size range not over 1:10, the Brazilian split-cylinder test
(see the extensive literature reviews in ‘‘Fracture’’ 1992; Ba-
z̆ant et al. 1994; Baz̆ant and Planas 1998). It has been observed
that, in all of these failures, the size effect is consistent with
the approximate formula for the size effect law proposed in
Baz̆ant (1984), which is explained by energy release due to
fracture. Other formulas, e.g., those based on the Weibull the-
ory or fractal concepts (Baz̆ant 1995; Baz̆ant and Planas 1998),
also have been suggested for describing the size effect in brit-
tle failures of reinforced concrete; however, they lack a con-
sistent theoretical basis.

The failure of lapped splices of reinforcing bars embedded
in concrete is known to be also a quasi-brittle failure. Hence,
a size effect must be expected. The existence of a significant
size effect on lap splices, albeit weaker than the LEFM size
effect, was revealed in previous tests of limited scope reported
by Şener (1992, 1993) and Şener and Timur (1993).
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FIG. 1. Splice Locations, Loading, and Distributions of Shear
Force V and Bending Moment M

The purpose of the present study is to report on a broader,
more systematic study of the failure of bond splices in rein-
forced concrete beams subjected to bending and shear. As will
be seen, the size effect in this type of failure is significant.
Furthermore, the current and previous specifications of the
ACI building code will be critically examined with respect to
the size effect.

In contrast to Şener’s (1993) previous studies, the splice
failures are studied here on beams in flexure rather than bars
in tension. Beam tests are easier to carry out and are more
directly relevant to practical situations. However, a precise in-
terpretation in terms of fracture mechanics becomes more dif-
ficult and has to be relegated to further study.

CURRENT CODE SPECIFICATIONS AND AVAILABLE
FORMULAS

The size effect is understood as the dependence of the nom-
inal strength of a structure on its size. The nominal bond
strength in a splice may be defined as

T
m = (1)

pd Lb d

where T = tensile force in the bar, transmitted by the splice
(in MN) calculated from the applied load according to the
equilibrium equation

P au
T = (2)

1
2 d 2 (0.85c)F G2

Here, db = nominal diameter of the reinforcing bars (in mm);
Ld = length of the bond splice (in mm); d = depth to the
centroid of reinforcement (in mm) (Fig. 1); c = distance (in
mm) from the compression face to the neutral axis, obtained
by the standard equilibrium analysis of the cross section sub-
jected to the bending moment; Pu = maximum (ultimate) load
(in MN) that the beam can carry (Fig. 1); and a = shear span
= moment arm of applied load (in mm) (Fig. 1).

The adequate strength of a lap splice is, in the ACI code,
ensured by a provision that specifies the minimum length Ld

of the lap of deformed bars to be proportional to the devel-
opment length ld of the bars (more precisely, Ld = ld if less
than one-half of all the bars are spliced in the same cross
section, and Ld = 1.3ld otherwise; see article 12.15.1 in stan-
dard ACI 318-95). The development length, in turn, is speci-
fied in the ACI building code as proportional to the bar di-
ameter, db

l = d /k (3)d b d

but always ld $ 305 mm (1 ft). Article 12.2.3 of the standard
ACI 318-95 (‘‘Building’’ 1995) gives for ld a formula equiv-
alent to the expressions
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k = ; k = # ; K = (4)d tr

g(d )a b l f 1.5 d 3 1,500snb l c l y b

Here, = standard compression strength of concrete; and fy =f9c
yield strength of steel. Both are given in psi; ld is in inches.
The factor al accounts for the bar location, bc for coating, and
li for concrete type (lightweight or not). Factor g, depending
on the reinforcement size (bar diameter), introduces a sort of
discontinuous size effect; g(db) = 0.8 for db # 19.1 mm (0.75
in., bar number 6), g(db) = 1 for number 7 and larger bars.
Furthermore, t = smallest of three values—cover on the side,
cover over the bar, and one-half of the center-to-center bar
spacing (in inches). Atr = cross-sectional area of transverse
steel (sq. in.); s = spacing of transverse reinforcement (in
inches); and n = number of transverse bars or wires traversing
a potential splitting plane.

The standard ACI 318-95 also gives an alternative simpler
expression (article 12.2.2)

20 f 9Ï c
k = (5)d

a b l fl c l y

which is valid when the bar spacing and the cover thickness
are not less than db (otherwise, factor 20 is replaced with 40/
3). Both (4) and (5) are equivalent when k = g(db). For cover
thickness t = 19.05 mm (0.75 in.) and Ktr = 0 (no confinement),
this equivalence occurs when db = 15.88 mm (0.625 in.), i.e.,
for bars number 6.

The development length is defined as the length of the bar
needed to transmit the yield force of the bar, i.e., T = pdbldm
= to the concrete. Solving for m, we obtain the ex-2f pd /4,y b

pression for the nominal bond strength in the splice according
to ACI 318-95

m = ( f /4)(d /l ) = ( f /4)k (6)y b d y d

Later we will comment on the sudden major change made
in the ACI specifications in 1995. The previous standard ACI
318-89 (‘‘Building’’ 1992) or ACI 318R-89, the 1992 revised
standard (‘‘Building’’ 1992), (as well as the 1977 standard
ACI 318-77 and the 1983 standard ACI 318-83) specified the
formula ld = Cmodlbd, where Cmod is a modification factor de-
pending on parameters (such as the cover thickness and bar
spacing) other than the size (see sections 12.2.3–12.2.5 of ACI
318R-89, ‘‘Building’’ 1992), and lbd = is the basicd(d ) f / f9Ïb y c

development length. In ACI 318R-89, d(db) = 0.04Ab for a
number 11 bar (or smaller), d(db) = 0.085 for a number 14
bar, and d(db) = 0.125 for a number 18 bar with Ab = 2pd /4b

= cross-sectional area of the bar (see section 12.2.2 of ACI
318R-89). Using again m = ( fy /4)(db /ld), we see that the
development length specification of the previous code ACI
318R-89 implied the nominal bond strength to be

f 9 dÏ c b
m = (7)

4 C d(d )mod b

Applying statistical regression to the results of a large num-
ber of previously performed splice tests, Orangun et al. (1977)
developed the following approximate empirical formula:

t d A fb tr yt
m = 0.1 1 0.265 1 4.344 1 0.0025 f 9 (8)Ï1 cS Dd L sdb d b

exhibiting no size effect. Here m1 = nominal bond strength at
age 28 d (in MPa); = standard cylindrical compressionf9c
strength of concrete (in MPa); t = minimum thickness of con-
crete cover of the reinforcing bars (in mm); Atr = combined
cross-sectional area (in mm2) of all reinforcements transverse
to the splitting plane of the splice (i.e., crossing this plane
perpendicularly); and fyt, s = yield strength and spacing of the
traversing reinforcement (in MPa and mm). For geometrically



similar structures, the ratios t/db, db /Ld, and Atr /sdb are constant,
and so Orangun et al.’s formula exhibits no size effect.

Another useful formula is that of Zsutty (1985), also exhib-
iting no size effect

1/2 1/2
d t Ab tr1/3m = 26.7 f 1 2r ; r = 100 (9)1 c S D S DL d sdd b b

Here, r = steel ratio of the bars traversing the failure cross
section. Since both formulas are approximate and give similar
results, we will consider for size effect generalization only
Orangun et al.’s formula. However, the type of generalization
that follows could also be applied to Zsutty’s formula.

APPLICATION OF SIZE EFFECT LAW

For generalization to the size effect, Orangun et al.’s for-
mula is selected because, unlike the formula of ACI 318-95,
whose plot will be shown later, it is smooth, with no discon-
tinuities and, except for the size effect, has been better justified
experimentally. It has served as the basis for the ACI 318
equations for the last several editions. The size effect correc-
tion can be approximately introduced into this formula ac-
cording to the approximate size effect law of Baz̆ant (1984).
Since the test data to be studied suggest the existence of a
nonzero residual nominal bond strength mr = arm1 associated
with a frictional-plastic mechanism, the extended form of the
size effect law proposed by Baz̆ant (1987) will be used. Ac-
cording to this law, the formula of Orangun et al. should be
modified by a size-dependent multiplier as follows:

a1
m = m 1 a (10)1 rS D1 1 bÏ

in which

d d1
b = ; b = ; a = (1 2 a ) (1 1 b ) (11)Ï1 1 r 1

d d0 0

In this formula, which is suggested as a possible form of a
design formula, m1 = nominal bond strength of the splice given
by (8) for a certain reference size d = d1 to be determined
empirically; m = size-corrected nominal bond strength of the
splice; b = relative size of the beam; d = characteristic size
(dimension) of geometrically similar beams, which is taken
here as the depth to the centroid of reinforcement (Fig. 1); and
ar = residual strength fraction = ratio of the residual nominal
bond strength arm1 (for d → `) to the nominal bond strength
m for reference size d = d1. Eq. (10) gives the same result as
(8) (m = m1) for d = d1, but not for other sizes of d.

The size effect is, in (10), characterized by three constants,
d0, d1, and ar, which can be determined from tests by regres-
sion. A theoretical determination of these constants may be
possible, too, but it would require a difficult fracture mechan-
ics analysis or nonlocal damage analysis.

TEST SPECIMENS AND EXPERIMENTAL METHOD

To study the size effect, geometrically similar beams of dif-
ferent sizes, containing lap splices of reinforcing bars, were
tested at Gazi University, Ankara, Turkey (Fig. 1). The beams
were similar in three dimensions, which means that the beam
width b, cover thickness t, bar diameter db, and depth to re-
inforcement d were all proportional to the beam span L. The
cross sections of all of the beams were square.

The bond splices were placed at two locations: (1) in the
middle of a long midspan region with a uniform bending mo-
ment, which was achieved by applying two symmetric con-
centrated loads farther from midspan [Fig. 1(a)]; and (2) in a
long end region of the beam with a uniform shear force (and
a variable bending moment), which was achieved by applying
two symmetric concentrated loads closer to midspan [Fig.
1(b)]. In all of the specimens, the splices for the case of a
uniform bending moment were centered at midspan. For the
case of a uniform shear force, the splices were located at dis-
tance 0.1h from the concentrated loads. Each beam contained
two longitudinal bars, which were both spliced in the same
cross section. Although undesirable for design, this has been
done in order to simplify the evaluation of the tests.

Three specimen sizes, characterized by beam heights of h
= 50, 100, and 200 mm, were used. For all of the beams, the
ratio of the span to the depth to reinforcement was l/d = 6
(Fig. 2), and the length-to-height ratio was L /h = 5. Three
identical specimens were cast for each size and each type of
splice. The test specimens with a uniform bending moment in
the splice region (Fig. 2) as well as those with a uniform shear
force (and a variable bending moment) in the splice region
(Fig. 3) were geometrically similar in three dimensions. For
the beams with splices in the end region, the shear span of all
of the beams was a = 2.3d. For the beams with splices at
midspan, the shear span of all of the beams was a = 1.3d.

The concrete mix proportions of water:cement:aggregate
were 0.7:1:4 (by weight). All of the specimens, of all the sizes
and types, were cast from the same batch of concrete in order
to minimize statistical scatter of the results. Normal portland
cement (NPC35, according to Turkish standard 19), similar to
ASTM type I, and Kizilirmak River aggregate were used. The
maximum aggregate size for all of the beams was da = 4.76
mm, which means that the concrete was a microconcrete. The
use of a reduced aggregate size was necessary to obtain spec-
imen dimensions that could be handled with the laboratory
equipment available.

The specimens were subjected to moist curing for 21 d at
room temperature. After that, they were exposed to a drying
environment of relative humidity 50% and room temperature.
They were tested at 28 d in a closed-loop testing machine (of
stiffness constant 1.6 MN/mm), under a constant stroke rate.
The stroke rate was selected so as to achieve the maximum
load for each specimen within about 2 min.

Smooth (undeformed) reinforcing bars of yield strength 220
MPa, with diameters f = 2, 4, and 8 mm scaled in proportion
to the beam size, were used (Fig. 2). To maintain geometric
similarity, the cover thicknesses t were also scaled, and were
10, 20, and 40 mm. The reinforcement ratio was 0.31%. The
lengths Ld of the bond splices of the steel bars were scaled,
too. They were 27.5, 55, and 110 mm for the case of a uniform
bending moment, and 30, 60, and 120 for the case of a uniform
shear force. These lengths were selected to be less than the
development length ld required by ACI 318R-89, in order to
prevent the steel bars from yielding before reaching the load
that causes pullout failure of the splice.

Using a length of lap shorter than the development length
of the bars is necessary for the splice to fail before the overall
failure of the beams, i.e., to ensure that the maximum load
will be controlled by splice failure and not by a bending or
shear failure of the beam as a whole. The development length
in actual design is larger because it must provide adequate
safety against bond failure in the splice. But the adequacy of
the safety margin cannot be ascertained without measuring the
failure strength of the splice. This consideration justifies re-
ducing the lapped length.

A reduced lap length of the splice might be thought to favor
pullout of a bar from a smooth hole in concrete, which might
be thought to be a phenomenon of plastic slip free of size
effect. In reality, however, there is no plastic slip at the inter-
face. The final breakage of bond on a smooth bar occurs by
means of propagation of an interface cohesive crack between
steel and concrete. The length of cohesive zone of this crack
(which, doubtless, involves microcracking around the bar) is
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FIG. 2. Test Beams with Splices in: (a) Maximum Bending Moment Region (All Three Sizes Are Shown); (b) Maximum Shear Force
Region (Only Largest Size is Shown)
more localized in larger bars relative to lap length, and thus
to bar size. This causes a pronounced size effect even if there
is no cracking around the bar (Baz̆ant and Desmorat 1994;
Baz̆ant et al. 1995). In the present tests, however, cracking
was always observed around the splice. Separation of the ef-
fects of the two phenomena, i.e., the crack propagation with
distributed cracking around the bar and the interface crack
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propagation, is impossible because they both cause a size ef-
fect.

Normally the lapped splices embedded in concrete are
wrapped with wire, as used in previous tests by Şener (1993,
1994). To achieve a stronger confinement of concrete in the
splice zone, precisely shaped wire spirals were installed
around the lapped bars in one-half of the beams, and the other



FIG. 3. Photo of: (a) Reinforcements for Beams with Splices at Midspan; (b) Beams before Testing; (c) Test Setup for Beam with
Splice near Support; (d) Typical Failure of Beam with Splice at Midspan
half of the beams had no wire spiral. The diameters and
lengths of the wire spirals were scaled in proportion to the bar
sizes; the diameters were fs = 0.5, 1, and 2 mm, and the
lengths were 37.7, 75.4, and 150.8 mm. The spirals had three
pitches. The height of the pitches for the small, medium, and
large bars was 12.5, 25, and 50 mm, respectively. For each
size and splice location, three beams with spirals and three
without spirals were tested. This made a total of 3 3 3 3 2
= 18 beams with spirals, and 18 without spirals.

The typical mode of failure of a beam with a splice in the
midspan region is seen in Fig. 3(d).

TEST RESULTS AND THEIR ANALYSIS

The splices failed in two different modes. One mode was a
splitting of concrete along the bars (labeled SP in Table 1),
and the other was pullout (PO) of the bar with a transverse
crack initiating at the end of the steel bar. For beams with
splices at midspan, one large vertical crack developed, as seen
in Fig. 3(d). For beams with splices near the support, cracks
started vertically and one of them propagated in an inclined
direction toward the load. The postpeak load-deflection dia-
grams for larger beams were steeper than those for smaller
beams, confirming an increase of brittleness of response with
increasing size. This is similar to the behavior observed pre-
viously at Northwestern University in tests of punching shear,
torsion, and pullout (‘‘Fracture’’ 1992; Baz̆ant et al. 1994).

Both splices in the beam appeared to fail simultaneously.
This would not be expected, for stability reasons, if the failure
zone in the splice were extremely localized. However, since
the cracking and fractures around the splice were spread over
a large zone, a simultaneous failure of both nearby splices is
a reasonable assumption for the evaluation of test results.
For the purpose of statistical regression of test data, (10) is
better rewritten as

1
m = m 1 a (12)0 RS D1 1 bÏwhere

m = m a ; a = a /a (13)0 1 1 R r 1

The reference size has been chosen as the depth to reinforce-
ment d1 = 83.3 mm (which corresponds to beam height h =
100 mm). The unknown constants m0, d0, and aR in (12) can
be determined by iterating linear statistical regressions of the
measured maximum loads Pu, which are listed in Table 1. A
linear regression can be achieved by rearranging (12) as fol-
lows:

Y = AX 1 C (14)

in which
22X = d; Y = (m 2 a m ) (15)R 0

22A = C/d ; C = m (16)0 0

First, one must select a series of many values of aR (between
0 and 1, e.g., aR = 0, 0.001, 0.002, 0.003, . . . 0.999, 1). Then,
for each of them, one runs a computer fitting of the test data
by linear regression in the plot of Y versus X, and calculates
the correlation coefficient r of the regression. Finally, one se-
lects the regression for which the value of r is the highest. For
each aR value, the procedure is analogous to that described in
the Reunion Internationale des Laboratoires d’Essais et de Re-
cherches sur les Matériaux et les Constructions (RILEM) rec-
ommendation (Baz̆ant 1990). For the values of A and C thus
obtained, (16) can be solved to provide d0 = C/A and m0 =

Then, according to (11)1/ C.Ï
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TABLE 1. Measured Maximum Loads Pu

Beam
number

(1)

t
(mm)
(2)

db

(mm)
(3)

Ld

(mm)
(4)

f 9c
(MPa)

(5)

Pu

(N)
(6)

T
(N)
(7)

m
(MPa)

(8)

Failure
mode

(9)

A1 40 8 110 24.5 36,500 24,064 8.70 SP
A2 40 8 110 24.5 42,000 27,691 10.02 SP
A3 40 8 110 24.5 40,000 26,372 9.54 SP
A4 20 4 55 24.5 9,800 6,461 9.35 PO
A5 20 4 55 24.5 11,000 7,252 10.49 PO
A6 20 4 55 24.5 10,100 6,659 9.63 PO
A7 10 2 27.5 24.5 3,000 1,978 11.45 PO
A8 10 2 27.5 24.5 3,000 1,978 11.45 PO
A9 10 2 27.5 24.5 3,150 2,077 12.02 PO
B1 40 8 110 25 40,000 26,364 9.54 SP
B2 40 8 110 25 43,000 28,342 10.25 SP
B3 40 8 110 25 46,000 30,319 10.97 SP
B4 20 4 55 25 11,000 7,250 10.49 PO
B5 20 4 55 25 11,500 7,580 10.97 PO
B6 20 4 55 25 10,500 6,921 10.01 PO
B7 10 2 27.5 25 3,300 2,175 12.59 PO
B8 10 2 27.5 25 3,200 2,109 12.21 PO
B9 10 2 27.5 25 3,250 2,142 12.40 PO
C1 40 8 120 26.6 26,000 30,294 10.04 SP
C2 40 8 120 26.6 29,000 33,789 11.20 SP
C3 40 8 120 26.6 26,300 30,643 10.16 SP
C4 20 4 60 26.6 8,150 9,496 12.59 PO
C5 20 4 60 26.6 7,850 9,146 12.13 PO
C6 20 4 60 26.6 7,250 8,447 11.20 PO
C7 10 2 30 26.6 3,450 4,020 21.33 PO
C8 10 2 30 26.6 3,000 3,495 18.54 PO
C9 10 2 30 26.6 2,850 3,321 17.62 PO
D1 40 8 120 26.4 26,450 30,821 10.22 SP
D2 40 8 120 26.4 30,950 36,065 11.96 SP
D3 40 8 120 26.4 32,000 37,288 12.36 SP
D4 20 4 60 26.4 7,250 8,448 11.20 PO
D5 20 4 60 26.4 7,000 8,157 10.82 PO
D6 20 4 60 26.4 7,500 8,739 11.59 PO
D7 10 2 30 26.4 2,850 3,321 17.62 PO
D8 10 2 30 26.4 2,700 3,146 16.69 PO
D9 10 2 30 26.4 2,500 2,913 15.45 PO

a 1 1 b mÏR 1 0
a = ; m = (17)r 11 1 a 1 1 b (1 2 a ) 1 1 bR 1 r 1Ï Ï

where d1 = chosen reference size.
Another way to identify m1, d0, and ar is to apply the stan-

dard library subroutine for the Marquardt-Levenberg nonlinear
optimization algorithm. The optimization uses (12), and de-
termines ar and m1 from the following relations:

1
m = m 1 a (18)1 0 RS D1 1 b1Ï

and

a 1 1 bÏR 1
a = (19)r 1 1 a 1 1 bR 1Ï

This second method was selected in the present analysis. The
calculated values of m0, d0, m1, and aR are indicated in Table
2.

Note that parameter d0, representing the transitional size be-
tween nonbrittle and brittle behaviors, has the geometrical
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meaning of the intersection of the horizontal asymptote (cor-
responding to the strength theory) and the inclined asymptote
(corresponding to LEFM). In all tests, d0 is rather small in
comparison to the maximum aggregate size da. Indeed, d0 is
of the order of 1 mm for the bending tests, and 1.80 mm for
the shear tests. These values are about 20% and 40% of the
maximum aggregate size (da = 4.76 mm), respectively. On
average, d0 is about 30% of the maximum aggregate size.
However, further tests are needed to improve this estimate be-
cause the value of d0 seems to depend strongly on the type of
test performed. For the same reason, the brittleness of splice
failure seems to depend as well on the type of test performed.

In the case of bending tests, the positive curvature of the
trend of the data points in the doubly logarithmic size effect
plots suggests a finite residual strength in extrapolation to in-
finite size. Indeed, the optimal value of aR is found to be 0.25,
which corresponds to a residual strength mr = 0.2mmax (where
mr = arm1). The curves have similar shapes in both cases (with-
out and with spirals), and the data points are located in the
part of the plot with positive curvature. Also, the maximum
and residual bond strength values are of the same order of
magnitude, with slightly higher values in the bending test with
spirals. Therefore, the spirals do not significantly increase the
bond strength of the bending specimen. The slope of the curve
was computed at x = 80 mm in both cases. In Figs. 4 and 5,
this slope is seen to be much smaller than the LEFM slope;
the r values of the slope are about 215% (as reported in Table
2). Therefore, the failure of the splices in bending tests is less
brittle compared to the linear elastic theory, and the spirals do
not play a significant role in reducing the brittleness of the
failure in this type of test.

In the case of the shear tests, the maximum strengths are
significantly higher than those for the bending tests (Table 2).
On the other hand, the residual strengths are smaller or even
negligible. Indeed, in the case of the shear test without spirals,
there is no residual strength (i.e., aR = 0, which corresponds
to infinite size). When spirals are added, the residual strength
represents only 10% of m0. Again, the slopes were computed
at x = 80 mm. For the shear test with spirals, the slope is twice
as high as that for the bending tests, as shown in Table 2. As
can be seen in Fig. 6, the behavior of the specimen in shear
tests without spirals is close to that predicted by LEFM.

Therefore, one can conclude that the bond fracture of the
specimen depends on the type of test performed, and that it is
more brittle in a shear test than in a bending test. However,
in the case of shear, the spirals reduce significantly the brittle-
ness of fracture under shear, as seen upon comparing the
slopes of the curves in Figs. 6 and 7. This may have been
expected because the splice failure is not just a failure of the
splice (which includes propagation of frictional interface shear
cracks between steel and concrete and microcracking around
the splice), but also a failure of the cross section as a whole.
For the splices at midspan, there is a major vertical crack [Fig.
3(d)] and the overall failure is of flexure type, whereas for the
splices near the support, there is a major inclined crack and
the failure mode is akin to diagonal shear, which is known to
be much more brittle than bending. These failure modes also
significantly differ from the splice failures in tensioned bars
[which were tested by Şener (1994)].
TABLE 2. Parameters’ Calculated Values

Test
(1)

aR

(2)
m0

(3)
d0

(4)

b1

(mm)
(5)

m1

(6)
ar

(7)
mmax

(8)
mr

(9)

Slope at
x = 80 mm

(10)

Bending 0.25 27.64 1.13 73.72 10.11 0.68 34.55 6.91 20.158
Bending with spirals 0.25 31.03 0.84 98.88 10.86 0.71 38.78 7.76 20.14
Shear 0 58.81 1.9 43.85 8.78 0 58.81 0 20.455
Shear with spirals 0.1 52.36 1.72 48.48 12.68 0.41 57.6 5.24 20.29



FIG. 4. Measured Nominal Bond Strengths in Splices of
Beams without Spirals in Maximum Moment Region (Based on
Table 1, A1–A9), and Fit by Size Effect Formula

FIG. 5. Measured Nominal Bond Strengths in Splices of
Beams with Splices Confined by Spirals in Maximum Moment
Region (Based on Table 1, B1–B9), and Fit by Size Effect For-
mula

The scope of the present tests unfortunately appears insuf-
ficient for proposing a good formula to predict d0, d1, and ar

from the characteristics of concrete. That will have to await
more extensive testing with different types of concrete.

It is nevertheless apparent that d0 for splices near the support
is larger than that for splices at midspan, and that for splices
without spirals it is somewhat larger than that for splices with
spirals.

Because of these differences in the mode of failure for
splices at different locations, it appears difficult to devise, at
this time, a simple general formula for predicting the values
of the transitional size d0 in (10). Obviously, the splice failure
is a rather complex type of brittle failure, with a size effect
that is strongly correlated to the overall failure mode of the
beam. Development of a practical formula for d0 will neces-
sitate further theoretical as well as experimental studies.

The reason why smooth bars had to be used was that de-
formed bars of sufficiently small diameters for these tests were
unavailable. For deformed bars, the size effect might be ex-
pected to be less pronounced, but probably not much less be-
cause, even for smooth bars, the pullout and splice failures are
caused mainly by fracturing of the concrete around the splice
and not simply by slip along the interface.

Finally, it must be admitted that the present and preceding
FIG. 6. Measured Nominal Bond Strengths in Splices in
Beams with Wire-Wrapped Splices in Maximum Shear Force Re-
gion (Based on Table 1, C1–C9), and Fit by Size Effect Formula

FIG. 7. Measured Nominal Bond Strengths in Splices of
Beams with Splices without Spirals in Maximum Shear Force
Region (Based on Table 1, D1–D9), and Fit by Size Effect For-
mula

test results are still of a limited scope. Further tests should
cover a broader range of sizes andother conditions. Especially
needed are size effect tests for concretes with normal aggregate
sizes.

COMMENTS ON ACI CODE SPECIFICATIONS

The curves of the size effect implied by the development
length provisions of ACI 318-95 (for k = 2/3) and ACI 318R-
89 are plotted in logarithmic scales in Fig. 8. Because the size
effect is defined only for geometrically similar structures, the
plots are made under the assumption that k is constant. If the
value of k is changed, the stepped curve of ACI 318-95 is
merely shifted up or down as a rigid body. Although the plots
in the figure extend up to bars number 18, note that the code
prohibits bars larger than number 11 to be spliced by laps.

For ACI 318-95, the size effect is seen in Fig. 8 to exist
only in the sudden jump between bars number 6 and 7. The
jump is a simple way to handle the size effect. Such discon-
tinuity is also undesirable from the viewpoint of optimization
of design because it would spoil convergence of optimization
subroutines if applied to design. It unreasonably penalizes bars
number 7 compared to number 6. Comparing the change in m
between the left and right ends of the plot of ACI 318-95
provision in Fig. 8 to the LEFM slope 21/2, we see that the
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FIG. 8. Size Effect on Nominal Bond Strength Implied by De-
velopment Length Provisions of ACI Code

size effect in ACI 318-95 is far too weak. A revision is in
order because, for the present test results, the overall slope is
much closer to the LEFM slope (Figs. 4–7).

It is striking that the size effect implied by the development
length provisions of the previous standard ACI 318-89 (also
ACI 318-77 and ACI 318-83), i.e., m } 1/db, is so much
stronger (it give the slope 21/1 in Fig. 8). The size effect is,
in fact, twice as strong as that in LEFM, in which m } dbÏ
(compared to the slope 21/2 for the LEFM size effect shown
in Fig. 8). This is, however, caused by the fact that the pre-
vious code specification, resulting in (17), has been taken here
beyond its intended purpose. It was not intended to be used
for any cover thickness t other than the standard thickness,
which is a constant. To judge the size effect, the cover thick-
ness must be considered to be proportional to the bar diameter
(i.e., db /t is constant for the curve in Fig. 8). But that goes
beyond the original intention of the ACI code provision.

The sudden change from the unreasonably strong size effect
that was implied, albeit indirectly, by the previous ACI spec-
ifications to the unreasonably weak size effect that is implied
by the current specifications gives, nevertheless, the impres-
sion of a vacillation. The fact that such a sudden U-turn in the
ACI specifications, evidenced in Fig. 8, was made in 1995
despite the absence of any revolutionary new findings invites
doubt.

When, however, both the cover thickness t and the value of
Ktr in the current ACI 318-95 are considered constant, the ef-
fect of bar size db on the nominal bond strength according to
(4) is also of the type m } 1/db, and thus similar to ACI 318R-
89. So, in that case, there is agreement.

Chapter 12 of ACI 318 does not allow smooth bars to be
spliced, and all of its provisions refer specifically to deformed
bars. However, to assume, on this basis, that the present con-
clusions about size effect based on tests of smooth bars do not
apply at least approximately would be unreasonable.

CONCLUSIONS

1. Similar to previous investigations of other brittle failures
of reinforced concrete structures, the present test results
for the failure of beam splices of smooth bars clearly
confirm the existence of a significant size effect on the
nominal bond strength in the splice, accompanied by an
increase of failure brittleness with the bar size. The size
effect should therefore be introduced as a correction to
the existing code specification.
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2. Using a spiral surrounding the splice greatly reduces the
size effect and diminishes the brittleness in bond failure.

3. The splice failure in the maximum shear force region of
a beam exhibits a much stronger size effect and a much
higher brittleness than the splice failure in the maximum
moment region of a beam.

4. The development length provisions of the current stan-
dard ACI 318-95 imply a certain size effect on the nom-
inal bond strength. However, the implied size effect, rep-
resenting a discontinuous jump, is unreasonable,
computationally undesirable, and much too weak.

5. On the other hand, the development length provisions of
the previous standards ACI 318R-89, ACI 318-89, ACI
318-83, and ACI 318-77 implied an excessive size effect,
twice as strong as the size effect in LEFM.

6. A simple improvement of an existing design formula by
including a size effect multiplier is proposed. It should
be used in design as a safer alternative appropriate for
large structures. However, further testing is needed to
obtain a solid experimental basis for further improve-
ment of this formula.
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