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Size Effects in Metal Foam Cores for Sandwich Structures
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The shear response of aluminum foam, including size effects, is measured and quantified for a closed-cell
aluminum foam. The shear stiffness is shown to depend linearly on density, whereas the strength exhibits a power
law dependence. The linear response is shown to be independent of strain rate up to rates of 0.17/s, whereas the
strength and energy absorption increase with increasing strain rate. The density dependence of the stiffness is
reproduced analytically based on the composite cylinders model. Optical techniques are used to measure the strain
field of the experimental specimens throughout the loading program. By evaluation of concentric subregions of the
sample, a sample size of 18 mean cell diameters is determined to be the dimension below which the uncertainty
in the predicted shear modulus of an aluminum foam sample increases significantly. This length scale threshold is
replicated in a periodic finite element structure with randomly distributed imperfections.

I. Introduction

M ETAL foams represent an attractive alternative for sandwich
structure cores for multiple reasons. First, with metal foam

cores, the adhesive substrate of a sandwich structure may be elim-
inated with in-production integral bonding to metallic face sheets,
stiffening the sandwich and broadening its range of operating envi-
ronments. Second, metal foams exhibit a compressive stress–strain
response that is ideal for energy absorption and impact alleviation
with a long, constant stress, plastic strain plateau.1 Third, an open-
cell metal foam offers an opportunity to eliminate the catastrophic
nature of water or cryogenic gas permeation that has crippled the
long-term use of sandwich constructions with honeycomb cores.2

Fourth, an open-cell construction also allows for active cooling of
the sandwich structure, elevating its range of acceptable operating
temperatures.

For integration into sandwich structures, the shear behavior of
metal foam must be understood. Some disparate results regarding
shear behavior currently exist in the literature. One study found a
linear relationship between shear strength and density,3 whereas a
cubic lattice model subjected to shear loading predicted a nonlinear
power law dependence.4 Another investigation offers only a few data
points for shear stiffness and strength of melt-foamed aluminum.5

Furthermore, these experiments involved thin specimens, with no
account for size effects.

The present paper offers the full shear response curves for a broad
range of density. The density dependence of stiffness and strength
are found experimentally with the former being reproduced ana-
lytically. The strain rate dependence of the shear response is also
considered. The effect of specimen size, relative to the mean cell
size, is analyzed experimentally with a unique approach involving
digital image correlation. The observed behavior is reproduced with
a finite element model. These analyses identify a threshold in the ra-
tio of specimen size to cell size, below which the shear response of a
given sample is associated with a significant amount of uncertainty.
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II. Shear Response: Experiments

The details of the experimental procedure and an extended analy-
sis of the results are presented in Ref. 6 by the present authors; a sum-
mary is presented here. Square samples of SiC stabilized aluminum
foam, produced by Cymat (Ontario, Canada), were subjected to
shear loading in the window frame device shown in Fig. 1. Samples
ranging in density over 4–15% were tested to obtain the density-
dependent relationships for the mechanical properties. Strain rate
effects were studied through the low-rate dynamic regime covering
the range of 3.65E–5–0.17/s.

A representative response curve, up to and beyond the maxi-
mum load, is shown in Fig. 2. The material exhibits a linear region
leading to a peak load and a subsequent dramatic loss of load-
carrying capability due to large, visible fractures. The postlinear
response of aluminum foam in shear is markedly different from
its uniaxial response, which exhibits a long constant stress plateau
after peak load, leading to densification and a further increase in
load-carrying capability.1 The early onset of plastic deformation,
illustrated by the unloading response of Fig. 2 is typical of all metal
foam deformation4 and is generally attributed to the inhomogeneity
of the cellular structure of the foam.

The strain rate dependence of the shear response for static load-
ing and for loading with elevated strain rates is shown in Fig. 3 for
two samples of like density. The linear response is clearly indepen-
dent of strain rate within the range of rates investigated, whereas
the strength and energy absorption show a slight increase. On av-
erage, the samples subjected to elevated strain rates had a specific
strength 24% greater and specific energy absorption 36% greater
than equivalent samples under static loading.

Figures 4 and 5 show the density dependence and strain rate de-
pendence of the modulus and strength, respectively, of aluminum
foam in shear. Eleven samples were tested under static condi-
tions, and five samples were tested under elevated strain rates.
The data points in Figs. 4 and 5 represent the complete popula-
tion of specimens tested in the present study, and the uncertainty
of the material parameters is represented by the scatter of these
data points. The modulus follows a linear dependence on den-
sity and is sufficiently lower than the lower bound of a model
presented in Ref. 4. The static strength follows a power law de-
pendence as predicted in Ref. 4. For a complete understanding
of the shear strain rate dependence of aluminum foam, the meth-
ods employed in the present work must be extended to higher
strain rates via, for example, drop tower and split Hopkinson bar
experiments.

The sensitivity of aluminum foam to compressive and tensile
strain rates have been studied in Refs. 7–11. Static experiments on
the uniaxial behavior of aluminum foams were conducted in Refs. 3
and 12–15. References 3 and 5 measured the static shear proper-
ties of some aluminum foam samples based on American Society
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Fig. 1 Loading frame used in shear testing of aluminum foam.

Fig. 2 Representative shear response curve with unloading behavior;
plastic strain exists at very low load levels and increases throughout the
linear region, stiffening the unloading response.

Fig. 3 Comparison between the static and dynamic response curves
for two samples of equivalent density.

Fig. 4 Shear modulus vs density for static and dynamic loading; no
rate effects observed.

Fig. 5 Shear strength vs density for static and dynamic loading; rate
effects observed.

for Testing and Materials C273 without consideration of cell size
effects.

III. Shear Response: Analysis

A micromechanical model for the density dependence of the shear
modulus of aluminum foam is presented by the present authors in
Ref. 16 and is summarized here. The model considers a transversely
isotropic representative volume element (RVE) oriented in three-
dimensional space. The constitutive properties of the RVE can take
various forms such as a concentric cylinder consisting of a fiber
surrounded by matrix material or a platelet reinforcement set in a
matrix, as shown in Fig. 6. The concentric cylinder may be used
to model an open-cell foam or the network of cell edges (where
cell edges are the intersection of cell walls) of a closed-cell foam,
which have been shown to dominate metal foam deformation.17

The constitutive properties are evaluated to include cell wall imper-
fections such as curvature and corrugation, which couples bending
and stretching deformation in the cell edges, also consistent with
observations.17 The magnitude of these imperfections and the geom-
etry of the RVE are taken from measurements presented in Ref. 18.

The RVE is subjected to both a state of constant shear strain, fol-
lowing the method of Ref. 19, as well as a state of constant shear
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Fig. 6 Transversely isotropic RVE oriented in three-dimensional
space: RVE may be a) concentric cylinder or b) platelet-matrix layering.

Fig. 7 Model produces appropriate bounds for the experimental shear
moduli.

stress. In composite materials, a state of constant strain is an ap-
propriate assumption when the reinforcements are oriented parallel
to the direction of loading, whereas a state of constant stress is ap-
propriate when the reinforcements are oriented perpendicular to the
direction of loading. For a foam, then, with its load bearing mem-
bers oriented randomly in space, an analysis of each of these two
extremes is appropriate. The assumption of constant stress results in
the Reuss bound for the shear moduli and the assumption of constant
strain results in the Voigt bound.

The Voigt bound is

Gfoam =
ρr Es I
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in which ρr is the relative density of the foam, Es is the uniaxial mod-
ulus of the foam’s parent material, I and A are the cross-sectional
properties of the cell edges, ν f is the Poisson ratio of the foam,

and an are the magnitudes of the sinusoidal imperfections in the
foam cell edges, magnitudes that were reported in Ref. 18. A proper
extension of the theory leading to Eqs. (1) and (2) is to extend the
model to include mechanism-based failure such that the entire shear
response may be analyzed.

Within the validity of its assumptions, the model produces an
envelope of theoretically acceptable values for the shear modulus
of the aluminum foam studied in the present work. The envelope
and the experimental data presented are plotted together in Fig. 7.
The model and the experimental data agree well. Also plotted is the
lower bound of a theory presented in Ref. 4, in which a single cell
of a cubic lattice of beam elements is subjected to shear forces, and
the equilibrium of forces leads to the relation

Gfoam = 3
8
(1.0 − 0.1)Es

[

0.5ρ2
r + 0.3ρr

]

(3)

The lower bound of Eq. (3) is an overprediction of the experimental
data.

IV. Size Effects: Experiments

The results presented here and in the related papers are bulk prop-
erty measurements. In each investigation, the aluminum foam has
been treated as a continuous, homogeneous medium, despite obvi-
ous inhomogeneities. Regardless of this, such a treatment is valuable
if aluminum foam is to be integrated into engineered structures, in
which prevailing analysis rests on these very assumptions. When
the foam is treated in this manner, congruent to our analysis of ma-
terials such as metals, woods, and polymers, it is possible to directly
compare the performance of aluminum foam with other competitive
engineering materials.

As metals are inhomogeneous on the microscopic level, com-
prising individual crystals, metal foams are inhomogeneous on the
cellular level. When a sufficient amount of the inhomogeneous sub-
structure is considered, that is, a sufficient number of cells, the ma-
terial acts as a homogeneous continuum. In the present work, ex-
perimental measurements related to the shear response are used to
determine the length scale at which aluminum foam may be treated
as a homogeneous continuum.

The square specimens that were tested in shear, as described
earlier, were painted flat white and sprinkled with black glitter to
form a random black and white pattern. As the specimen was de-
formed experimentally, high-resolution black and white digital im-
ages (2028 × 2044 pixels) were captured incrementally. With sur-
face displacement analysis software from the Instron Corporation,
the images were segmented into subimages of 32 × 32 pixels. The
software invokes digital image correlation based on the fast Fourier
transform to follow the movement of the black and white pattern
in each subimage, outputting an average displacement vector for
each subimage. This provides a discretized displacement field for
the entire surface of the sample.

Shear strains may be evaluated by consideration of square subre-
gions of the sample, concentric with the sample itself, as is shown in
Fig. 8. The values for displacement of each point along the edge of
the subregion provide the deformation of the edge of the subregion.
By interpretation of the change in angle between the edges of the
subregion from picture to picture, shear strains may be quantified
incrementally, consistent with the definition of engineering shear
strain.20 Through the summation of incremental shear strains, the
state of strain in the sample is known at distinct points throughout
the loading program.

Subregions of varying size, all concentric with the sample itself,
are evaluated for shear strain. The size of the subregion is expressed
in mean cell diameters. Measurements of the mean cell diameters for
a range of aluminum foam densities are available in Ref. 18 and are
used here to define the mean cell diameter. The smallest subregion
shown in Fig. 8, for example, has nine mean cell diameters along
each of its edges. The next larger subregion is 12 mean cell diameters
in size, and so on, by threes.

With the strain known, response curves may be plotted for each
subregion, as is shown in Fig. 9, to show the deviation of the local
strain state from the global strain state. The results clearly indicate
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Fig. 8 Black and white patterned specimen with its concentric subre-
gions over which shear strain is calculated. The black lines represent
the boundaries of the subregions.

Fig. 9 Shear response of various subregions within a given sample.

that for subregions with dimensions shorter than 18 mean cell diam-
eters, the local stress–strain response deviates significantly from the
bulk material response. In contrast, for subregions with dimensions
larger than 18 mean cell diameters, the response remains consistent
with the bulk properties.

Figure 9 indicates a decline in material stiffness with decreasing
sample size, but this is not a general result. Some specimens may
even exhibit an increase in stiffness with decreasing sample size.
As the sample size decreases, the mechanical behavior of individ-
ual cells is magnified because it is no longer averaged out by as
many competing neighboring cells. The general result is that the
uncertainty in the material response increases as the sample size
decreases. This is the essence of mechanical behavior in material
samples that are of a size comparable to or smaller than the charac-
teristic dimension.

The experimental result is described further in Fig. 10, in which
the ratio ǫ/Gbulk is plotted as a percentage vs the number of cells
in the subregion. In the ratio, ǫ represents the uncertainty in the
shear modulus for a given subregion. The uncertainty is defined
as the difference between the shear modulus of the subregion and

Fig. 10 Shear modulus of the subregions converges to that of the bulk
sample as the size of the subregion approaches 18 mean cell diameters.

the shear modulus of the bulk material Gbulk. As the number of cells
increases, the ratio reaches a value of less than 5% at a subregion size
of 18 cells and remains small for all subregions of larger dimensions.

The result presented here compares favorably with results
for other macroscopically inhomogeneous materials. In each of
Refs. 21–23, it was found that size effects in reticulated foams dom-
inated the sample response if the critical dimension of the sample
measured fewer than 20 mean cell diameters.1

Optical strain measurement is an ideal method for obtaining size
effects for two reasons. First, a broad range of sample sizes may be
tested simultaneously and, therefore, subjected to identical test con-
ditions. Second, the ratio of surface area to volume remains constant
even though measurements are obtained for samples of varying size.
When the samples are machined for the present study and for other
studies, cells on the sample edge are damaged. The mechanical in-
tegrity of these cells is diminished, yet they still contribute to the
overall volume of the sample. The ratio of the damaged edge cells to
undamaged cells increases as the machined sample size decreases.
In the present method, this ratio remains constant while allowing
for the testing of a range of sample sizes.

V. Size Effects: Analysis

The subject of homogenization of inhomogeneous materials is
a complex topic that requires a rigorous mathematical approach to
obtain a true understanding of its related nuances. Such approaches
are summarized in Refs. 24 and 25. The present approach is an
attempt to illustrate and replicate, with a simple and sensible model,
the size effect behavior observed in the experiments.

In earlier studies, aluminum foam has been modeled as a random
structure and as a periodic structure; its cells have been considered
perfect as well as imperfect. In Ref. 16, as summarized, the foam
is modeled as a random structure with imperfections. In Refs. 1
and 26, among others, it is modeled as a perfect periodic structure.
Even though simple observation reveals that aluminum foam is an
imperfect, semirandom structure, the results of the preceding section
illustrate that the random and imperfect nature of the foam structure
is important in shear only for samples with dimensions fewer than 18
mean cell diameters. For a sample smaller than the threshold value,
the shear response depends highly on the specific imperfections
contained within the subregion. Some imperfections act as stiffening
mechanisms, whereas others promote compliance. As the sample
size decreases, imperfections dominate, and the uncertainty in the
material response increases.

In this section of the present work, a periodic structure of N × N
cells with randomly distributed imperfections is created and an-
alyzed with finite elements. The structure is not meant to model
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Fig. 11 Finite element model of a 10 ×× 10 imperfect periodic struc-
ture. Geometry of each cell is chosen randomly from the four cells in
Fig. 12.

Fig. 12 Four cells that are used to construct a periodic structure with
randomly distributed imperfections.

aluminum foam. It is used as a tool to understand the behavior of
periodic structures in shear as imperfections are introduced. The un-
certainty in shear stiffness of the imperfect structures is of primary
concern. The model will be used to observe the disappearance of
this uncertainty as the sample size grows (as the number of cells N ,
increases).

A 10 × 10 imperfect periodic structure, as an example, is shown
in Fig. 11. The structure is made of four basic unit cells, one perfect
and three imperfect (Fig. 12), randomly distributed, each with an
equal probability of inhabiting any given cellular location. There
are 100 (N 2) cell locations. The structure is sheared through a pre-
scribed displacement along the boundary, and the shear stiffness is
computed. The structure is then given a different random distribution
of cellular imperfections by the use of the same four basic cells, and
the shear stiffness is measured again. This is repeated at least three
times for each value of N chosen from the range 3 ≤ N ≤ 50. For a
given value of N , multiple runs, each with its associated distribu-
tion of cellular imperfections, produce a range of shear stiffnesses.
The magnitude of the range is taken to be the uncertainty ǫ in the

Fig. 13 Uncertainty in the shear stiffness of the imperfect structure in
Fig. 11 approaches a constant value for a structure larger than 18 ×× 18
cells.

Fig. 14 Perfect periodic structure has N ×× N perfect cells.

shear stiffness of the N × N periodic structure. It was found that no
more than three runs for each value of N was necessary to produce
a representative range of shear stiffness values.

The models were created and solved in ABAQUS with B23 cubic
beam elements with solid rectangular cross sections. The dimen-
sions of the structure were scaled such that the perfect structure had
a constant shear stiffness regardless of the value of N .

The ratio ǫ/Gperfect is plotted vs the number of cells N in Fig. 13,
in which Gperfect is the shear stiffness of the perfect periodic structure
shown in Fig. 14. The histogram in Fig. 13 is remarkably similar
to that in Fig. 10. For structures with more than 18 cells in each
dimension, the uncertainty in shear stiffness becomes small and
remains relatively constant for all larger specimen sizes.

A pertinent response to this result is to consider the degree of
imperfection introduced in the preceding model. Perhaps this set of
allowable imperfections is such that the uncertainty in shear stiff-
ness just so happens to drop off for sample dimensions larger than
18 cells. Perhaps a more detrimental set of imperfections, that is,
imperfections that reduce the shear stiffness of a given sample more
drastically than those chosen here, would require even larger sample
sizes before the uncertainty in shear stiffness approaches a constant
value.

To investigate such a possibility, each beam member of the perfect
structure shown in Fig. 14 is given a 50% probability of disappearing
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Fig. 15 Finite element model of an imperfect periodic structure in
which the imperfections are such that any member of any cell has a
50% probability of being nonexistent.

Fig. 16 Uncertainty in the shear stiffness of the imperfect structure in
Fig. 15 approaches a constant value for a structure larger than 18 ×× 18
cells.

from the structure entirely. In the preceding problem, only the cross
bars (the diagonal elements of each cell) were given a 50% proba-
bility of disappearing, whereas the horizontal and vertical cell mem-
bers always remained. An example of the newly degraded structure
is shown in Fig. 15.

The same procedure of the introduction of three sets of imper-
fections into each N × N sample is followed, and the results are
plotted in Fig. 16. Clearly, despite the drastic increase in imperfec-
tion population, the uncertainty in the shear stiffness of the structure
still approaches a constant value when the specimen dimensions are
greater than 18 cells. Such results bolster the claim that the shear re-
sponse of aluminum foams is imperfection-dominated and is, there-
fore, associated with an increased level of uncertainty for sample
sizes of fewer than 18 cells in each direction in the plane of shearing.

Structures of different geometry, that is, honeycombs with cir-
cular, hexagonal, or triangular cells, and varying degrees of im-
perfection would be valuable subjects of study to understand the
dependence, if any, of the results presented here on such parame-

ters. The only size effect studies regarding aluminum foam known
to the authors are found in Refs. 26 and 27. In Ref. 26, the shear
modulus of an analytical regular hexagonal honeycomb structure is
analyzed by equilibrium and is shown to converge to have bulk shear
stiffness when the number of cells is three or greater through the
thickness. Because the model contains perfect cells, the convergence
properties do not represent the averaging out of imperfections, as are
present in metal foams. Rather, the convergence depends solely on
the shape of the cell chosen, in this case, hexagonal honeycomb. In
Ref. 27, aluminum foam specimens of varying thickness are sheared
experimentally. It is found that the strength of these foams does not
depend on specimen thickness for specimens with at least three cells
through the thickness.

VI. Conclusions

The results presented in the present paper are intended to reveal
the characteristics of aluminum foam that are of primary concern
for sandwich structure cores. These are characteristics associated
with the shear response of the material and the effect of its cellular
strucure on such parameters when sample sizes approach cell sizes.
The shear stress–strain response was measured and was shown to
have an initial linear region accompanied by an increasing plastic
strain even at low load levels. After peak load, the load-carrying
capability of the foam dropped off quickly. Up to strain rates of
0.17/s, the linear response was independent of strain rate, whereas
the peak load and energy absorption each increased as the strain rate
increased. A model based on the composite cylinders model simu-
lated the network of imperfect cell edges and offered an envelope
of predicted values for the aluminum foam shear modulus.

Size effects were studied through experiment and simulation. Dig-
ital image correlation provided the full displacement field on the
surface of the foam throughout the experimental loading program.
Shear strain was calculated over concentric subregions of varying
size within the sample. For subregions with dimensions shorter than
18 mean cell diameters, the shear response became uncertain. This
uncertainty increased as the size of the subregion decreased. The
same behavior was observed through a finite element model of
a periodic structure with randomly distributed imperfections. For
structures with dimensions shorter than 18 cells within the plane of
shear, the uncertainty in the shear response increased as the sample
size decreased. This behavior was constant for various degrees of
cellular imperfection.

References
1Gibson, L. J., and Ashby, M. F., Cellular Solids: Structure and Properties,

Cambridge Univ. Press, Cambridge, England, U.K., 1997, pp. 175–231.
2“Final Report of the X-33 Liquid Hydrogen Tank Test Investigation

Team,” NASA George C. Marshall Space Flight Center, May 2000.
3von Hagen, H., and Bleck, W., “Compressive, Tensile, and Shear Test-

ing of Melt-Foamed Aluminum,” Materials Research Society Symposium
Proceedings, Vol. 521, Materials Research Society, Warrendale, PA, 1998,
pp. 59–64.

4Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson,
J. W., and Wadley, H. N. G., Metal Foams: A Design Guide, Butterworth–
Heinemann, Boston, 2000.

5Saenz, E., Baranda, P. S., and Bonhomme, J., “Shear Properties of Alu-
minum Metal Foams Prepared by the Melt Route,” Materials Research So-
ciety Symposium Proceedings, Vol. 521, Materials Research Society, War-
rendale, PA, 1998, pp. 83–89.

6Rakow, J. F., and Waas, A. M., “Size Effects and the Shear Response of
Aluminum Foam,” Mechanics of Materials (to be published).

7Dannemann, K. A., and Lankford, J., Jr., “High Strain Rate Compres-
sion of Closed-Cell Aluminum Foams,” Materials Science and Engineering,
Vol. A293, 2000, pp. 157–164.

8Hall, I. W., Guden, M., and Yu, C.-J., “Crushing of Aluminum Closed
Cell Foams: Density and Strain Rate Effects,” Scripta Materialia, Vol. 43,
2000, pp. 515–521.

9Paul, A., and Ramamurty, U., “Strain Rate Sensitivity of a Closed-Cell
Aluminum Foam,” Materials Science and Engineering, Vol. A281, 2000,
pp. 1–7.

10Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh, T. G., and
Higashi, K., “Experimental Study of Energy Absorption in a Close-Celled
Aluminum Foam Under Dynamic Loading,” Scripta Materialia, Vol. 40,
No. 8, 1999, pp. 921–927.



RAKOW AND WAAS 1337

11Deshpande, V. S., and Fleck, N. A., “High Strain Rate Compressive Be-
haviour of Aluminum Foams,” International Journal of Impact Engineering,
Vol. 24, 2000, pp. 277–298.

12McCullough, K. Y. G., Fleck, N. A., and Ashby, M. F., “Uniaxial Stress–
Strain Behaviour of Aluminum Alloy Foams,” Acta Materialia, Vol. 47,
No. 8, 1999, pp. 2323–2330.

13Andrews, E., Sanders, W., and Gibson, L. J., “Compressive and Ten-
sile Behaviour of Aluminum Foams,” Materials Science and Engineering,
Vol. A270, 1999, pp. 113–124.

14Motz, C., and Pippan, R., “Deformation Behaviour of Closed-Cell Alu-
minum Foams in Tension,” Acta Materialia, Vol. 49, 2001, pp. 2463–2470.

15Bastawros, A.-F., Bart-Smith, H., and Evans, A. G., “Experimental
Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy
Foam,” Journal of the Mechanics and Physics of Solids, Vol. 48, 2000,
pp. 301–322.

16Rakow, J. F., and Waas, A. M., “The Elastic Moduli of Random Fi-
brous Composites, Platelet Composites, and Foamed Solids,” Mechanics of
Advanced Materials and Structures (to be published).

17Bart-Smith, H., Bastawros, A.-F., Mumm, D. R., Evans, A. G., Sypeck,
D. J., and Wadley, H. N. G., “Compressive Deformation and Yielding
Mechanisms in Cellular Al Alloys Determined Using X-Ray Tomogra-
phy and Surface Strain Mapping,” Acta Matrialia, Vol. 46, No. 10, 1998,
pp. 3583–3592.

18Simone, A. E., and Gibson, L. J., “Aluminum Foams Produced
by Liquid-State Processes,” Acta Materialia, Vol. 46, No. 9, 1998,
pp. 3109–3123.

19Christensen, R. M., and Waals, F. M., “Effective Stiffness of Randomly
Oriented Fibre Composites,” Journal of Composite Materials, Vol. 6, 1972,
pp. 518–532.

20Fung, Y. C., Foundations of Solid Mechanics, Prentice–Hall, Englewood
Cliffs, NJ, 1965, p. 95.

21Lakes, R. S., “Size Effects and Micromechanics of a Porous Solid,”
Journal of Materials Science, Vol. 18, 1983, pp. 2572–2580.

22Brezny, R., and Green, D. J., “The Effect of Cell Size on the Mechanical
Behavior of Cellular Materials,” Acta Metallurgica et Materialia, Vol. 38,
No. 12, 1990, pp. 2517–2526.

23Mora, R., and Waas, A. M., “Strength Scaling of Brittle Graphitic
Foam,” Proceedings of the Royal Society of London, Series A: Mathematical
and Physical Sciences, Vol. 458, 2002, pp. 1695–1718.

24Manevich, L. I., Mechanics of Periodically Heterogeneous Structures,
Springer-Verlag, New York, 2002.

25Cioranescu, D., Homogenization of Reticulated Structures, Springer-
Verlag, New York, 1999.

26Onck, P. R., Andrews, E. W., and Gibson, L. J., “Size Effects in Duc-
tile Cellular Solids. Part I: Modeling,” International Journal of Mechanical
Sciences, Vol. 43, 2001, pp. 681–699.

27Andrews, E. W., Gioux, G., Onck, P., and Gibson, L. J., “Size Effects in
Ductile Cellular Solids. Part II: Experimental Results,” International Journal
of Mechanical Sciences, Vol. 43, 2001, pp. 701–713.

A. Palazotto
Associate Editor


