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Abstract This work addresses the size effect encountered in nanoindentation experiments. It is generally
referred to as the indentation size effect (ISE). Classical descriptions of the ISE show a decrease in hardness
for increasing indentation depth. Recently new experiments have shown that after the initial decrease, hardness
increases with increasing indentation depth. After this increase, finally the hardness decreases with increasing
indentation. This work reviews the existing theories describing the ISE and presents new formulations that
incorporate the hardening effect into the ISE. Furthermore, indentation experiments have been performed
on several metal samples, to see whether the hardening effect was an anomaly or not. Finally, numerical
simulations are performed using the commercial program ABAQUS.

1 Introduction

In this work, size effects are investigated by studying macro- to nanoindentation of several metal samples.
This is referred to as the indentation size effect (ISE). The existence of the ISE has been widely proven in
the literature [1–3] (see Fig. 1). The ISE manifests itself in nanoindentation experiments, at small indentation
depths h. For these small values of h, the material appears to be harder than at larger indentation depths.
Indenting up to larger depths eventually results in measuring the macrohardness H0, which is acquired by
performing classical macroindentation tests.

The ISE cannot be captured using classical continuum theory; the classical theory is only able to predict the
macrohardness H0. A gradient theory is used to bridge the gap between the macro- and the micro/nano-scale.
Associated with this gradient theory is a material intrinsic length scale l, which is used to characterize the ISE
for different metals.

Using this gradient theory, an expression which describes the hardness as a function of indentation depth
can be derived. Combining this expression with results acquired from nanoindentation experiments, a value
for the material intrinsic length scale l can be determined.

Recently, new experiments have indicated a hardening effect accompanying the ISE [4]. Instead of hard-
ness solely decreasing for increasing indentation depth, one also notes a region, at very small depths, that
experiences increasing hardness for increasing indentation depth. For the smallest indentation depths, it is
observed that the hardness decreases. However, it is also observed that for increasing indentation depths, the
hardness suddenly increases. Further increasing the indentation depth again yields a decreasing hardness, as
shown in Fig. 2.
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Fig. 1 Visualization of the ISE: hardness decreases with increasing indentation depth. This particular plot is a fit of the ISE
gradient model to experimental results versus classical continuum theory [3]

Fig. 2 Visualization of the ISE with the incorporated hardening effect. For h < h1, hardness decreases, for h1 < h < h2, hardness
increases and for h > h2, hardness decreases again

An empirical relation has been developed [4] to incorporate this hardening effect in the ISE.
The aim of this work is to repeat these experiments with smooth surfaces, to see whether the hardening

effect is an anomaly or not. The preparation, execution and results of these experiments will be described in
this work.

Furthermore an attempt is made to derive a physically based expression to describe the ISE with the incorpo-
rated hardening effect. Finally, the experiments will be simulated numerically with the ABAQUS commercial
program. This is to ascertain values for the plastic equivalent strain during the indentation process.

2 The MTS nanoindenter XP

The instrument used to perform the nanoindentation tests is the nanoindenter XP, developed by MTS. It uses
high-tech control electronics and depth sensing techniques. This way it is able to determine the material hard-
ness H and the elasticity modulus E . A diamond Berkovich tip is used to make the indents. During one test
run the user can instruct the machine to make an array of indents, for instance a 4 × 4 array, which will yield
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16 sets of data. An average for these 16 sets will be determined and sets with extremely different results can
be identified and eliminated. To exclude environmental interference like heat generation and vibrations, the
machine corrects for thermal drift and uses air bearings to stabilize its base, respectively.

To ensure the consistency of the tests performed on a certain sample, a test run is made on standard fused
silica before and after the actual sample test. The elastic modulus of standard fused silica is well known
(E = 72 GPa) and the material is ideal to use for this purpose. If the results of one of the test-runs deviate
significantly, the test of the actual sample will probably be corrupted.

The actual working principle of the machine is based on a series of equations, developed by Oliver and
Pharr [5]. The first basic equation is the one that determines the hardness H of the material

H = P

A
. (1)

In this equation, H is the hardness in Pascal, P is the load that the indenter applies on the sample in Newton
and A is the contact surface area between the indenter tip and sample in m2.

During the indentation test the strain rate ε̇ remains constant at 0.05 (1/s). This implies that the load P

changes during the test,

P = B
(

h − h f

)m
. (2)

In this equation, B and m are empirically determined fitting parameters, h f is the final displacement in meters
after complete unloading and h is the indentation depth in meters.

The contact surface A can be written as a function of the contact depth hc:

A = f (hc) . (3)

This function is known for the Berkovich tip which is used in this work. However, hc has to be determined in
order to evaluate the function:

hc = h − εP

S
. (4)

In this equation, ε is a constant dependant on the tip geometry (for Berkovich ε = 0.75). Furthermore S is the
slope of the initial portion of the unloading curve. The slope S is obtained by differentiating the contact load
P with respect to the indentation depth h,

S = dP

dh
= Bm

(

h − h f

)m−1

∣

∣

∣

∣

h=hmax

. (5)

In this equation, hmax is the maximal indentation depth reached during the test. Using these equations the
machine can determine the hardness H of the material as a function of the indentation depth h. The machine is
also able to determine the elastic modulus E of the tested sample. The modulus E follows from the following
expression for the reduced modulus Er (Pa):

1

Er

= (1 − ν2)

E
+

(1 − v2
i )

Ei

. (6)

Here E is the modulus of elasticity of the sample, v is the corresponding Poisson ratio, Ei is the indenter
modulus of elasticity (Ei = 1,141 GPa), vi is the indenter Poisson ratio (vi = 0.07) and Er is the reduced
modulus of elasticity. The expression for Er is given by

Er =
√

π S

2β
√

A
. (7)

Here β is a constant dependant on the indenter geometry. For Berkovich the constant is given as β = 1.034.
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3 Gradient plasticity theory and material intrinsic length scale

As indicated in Sect. 1, the classical continuum plasticity needs to be enhanced using ISE in order to intro-
duce micromechanical plasticity in the constitutive modeling and address multiscale characterization in the
material behavior. The enhanced strain–gradient plasticity theories formulate a constitutive framework on the
continuum level that is used to bridge this gap. To assess the size effects, an intrinsic material length scale
parameter is incorporated into the constitutive equations.

The ISE and size effects in metals may be characterized using statistically stored dislocations (SSDs) and
geometrically necessary dislocations (GNDs) and their interactions. Material hardening is caused by disloca-
tion storage and it is generally believed that size affects arise from an increase in strain gradients inherent in
small localized zones. This in turn leads to the emerging of GNDs that cause additional hardening by acting
as obstacles to the SSDs.

The SSDs are dislocations moving through the material and trapping each other in a random way. The
GNDs are dislocations that are required for compatible deformation within the polycrystal. In other words, they
are required to accommodate the crystal-lattice curvature that arises whenever there is a non-uniform plastic
deformation. In general SSDs are related to equivalent plastic strain and GNDs are related to strain gradients.
In indentation, GNDs arise because of the material being pushed into the underneath substrate material by
the indenter and getting stored as GNDs (see Fig. 3). To generalize this, non-uniform deformation will give
rise to an extra storage of material defects (to be called GNDs) in comparison with uniform deformation at
the same strain level. The GNDs manifest their effects when the characteristic length of deformation becomes
sufficiently small.

In this work, a gradient plasticity theory developed by Voyiadjis and Abu Al-Rub [2] will be used, which
will be outlined below.

Gradient plasticity is introduced through the non-local weak formulation of the conventional effective
plastic strain. In general the non-local form p̂ is written in terms of its local counterpart p and high-order
gradient terms.

p̂ =
[

pγ + (lη)γ
]1/γ

. (8)

Here l is the length scale parameter that is required for dimensional consistency. In Eq. (8), p is the effective
plastic strain and η is the effective plastic strain gradient of any order. The constant γ is a material parameter.

The Taylor flow stress is used to define the critical shear stress that is required to untangle the interactive
dislocations and to introduce a significant plastic deformation:

τ =
[

τ
β

S + τ
β

G

]1/β

, (9)

where τS and τG are given by the Taylor’s hardening laws related to the SSD density (ρS) and GND density
(ρG):

τS = αSGbS
√

ρS, (10)

τG = αG GbG
√

ρG, (11)

where bS and bG are the magnitudes of the Burgers vectors for the SSDs and GNDs respectively, G is the
shear modulus and αS and αG are statistical coefficients which account for the deviation from regular spatial

Fig. 3 a Material is being pushed by the indenter into the underlying substrate material, with an extra storage of defects (GNDs)
as effect. b Detailed view of the deformation on atomic level and the associated GNDs [6]
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arrangements of the SSD and GND populations respectively. Finally, β is a constant material parameter (used
for fitting).

Substituting Eqs. (10) and (11) into Eq. (9) yields a general expression for the overall flow stress in terms
of an equivalent total dislocation density, ρT :

τ = αSGbS
√

ρT , (12)

and

ρT =
[

ρ
β/2
S +

(

α2
Gb2

GρG/α2
Sb2

S

)β/2
]2/β

. (13)

Equation (12) is set at the microscale, however, plasticity is the macroscopic outcome from the combina-
tion of many dislocation properties at the micro- and mesoscopic scales. The flow stress can be written at the
macroscopic level using a power law (σ = k p̂1/m), and combining this with Eq. (8) yields

σ = k
[

pγ + lγ ηγ
]1/mγ

, (14)

where γ, k, and m are material constants.
The non-local effects associated with the presence of local deformation gradients at a given material point

are incorporated into Eq. (13) through the GND density ρG and into Eq. (14) through the strain gradient η.

The gradient in the plastic strain field is accommodated by the GND density ρG so that the effective strain
gradient η introduced in Eq. (8) can be defined as

η = ρGbG

r̄
, (15)

where r̄ is the Nye factor [7,8].
The plastic shear strain γ p can be defined as a function of the SSD density ρS as follows:

γ p = bSL SρS, (16)

where L S is the mean spacing between SSDs which is usually in the submicron order. The plastic strain in the
macroscopic plasticity theory is defined in terms of the plastic shear strain γ p as

ε
p

i j = γ p Mi j , (17)

where Mi j is the symmetric Schmidt’s orientation tensor.
The flow stress σ is the conjugate of the effective plastic strain variable p in macro-plasticity. For propor-

tional, monotonically increasing plasticity, p is defined as

p =
√

2ε
p

i jε
p

i j/3. (18)

Combining Eqs. (16) and (17) and substituting the result into Eq. (18) gives p as a function of SSD density as
follows:

p = bS L SρS M̄, (19)

with

M̄ =
√

2Mi j Mi j/3. (20)

Here M̄ is the Schmidt’s orientation factor, usually taken equal to 1/2.
Rewriting Eqs. (15) and (19) for ρG and ρS , respectively, and substituting them in Eqs. (12) and (13) yields

an expression for τ. Combining this expression with σ =
√

3τ finally yields the flow stress:

σ = αSG

√

3bS/L S M̄
[

pβ/2 +
(

α2
GbG L S M̄r̄/α2

SbS

)β/2
ηβ/2

]1/β

. (21)
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Comparing Eqs. (14) and (21) yields the following expressions:

γ = β

2
, (22)

m = 2, (23)

k = αSG

√

3bS

L S M̄
, (24)

l = (αG/αS)
2 (bG/bS) L S M̄r̄ . (25)

Rewriting Eq. (24) for L S M̄ and substituting the result in Eq. (25), results in the following expression for
the material intrinsic length parameter l:

l = 3α2
GbG r̄

(

G

k

)2

. (26)

Equation (26) implies that the length scale parameter may vary with strain rate and temperature for the

case of k = k̂ ( ṗ, T ) with ṗ =
√

2ε̇
p

i jε
p

i j/3.

4 Identification of the material intrinsic length scale from micro hardness tests

Using the gradient plasticity theory, Voyiadjis and Abu Al-Rub [9] and Abu Al-Rub and Voyiadjis [1] derived a
framework of equations that can be used to identify the material intrinsic length parameter from microhardness
tests. This framework will be treated in this section.

In order to ascertain an expression for the GND density, consider the indentation of a sample by a rigid
cone, as shown schematically in Fig. 4.

Evaluating Fig. 4 an expression for w as a function of r can be derived:

w(r) = r tan θ − h for 0 ≤ r ≤ a, (27)

where h is the indentation depth and θ is the angle between the surface of the conical indenter and the surface
of the specimen. For Berkovich indenters one has θ = 0.358.

In this analysis it is assumed that the GND density is integrated by the geometry of the indenter and that
the indentation is accommodated by circular loops of GNDs with Burgers vectors normal to the plane of the
surface. These deformation loops are visualized schematically in Fig. 5. It is assumed that the deformation
loops are being spaced equally along the indentation surface, separated by the individual slip step distance
LG .

Fig. 4 Specimen being indented by a rigid conical indenter. GNDs created during the indentation process and important
geometrical parameters are shown [9]
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Fig. 5 Deformation loops created during indentation process. LG is the mean spacing between individual slip steps on the
indentation surface [1]

Evaluating Figs. 4 and 5, the following expressions can be obtained:

tan θ = h

a
, (28)

∣

∣

∣

∣

dw

dr

∣

∣

∣

∣

= bG

LG

= tan θ. (29)

Substituting Eq. (28) into Eq. (29) and rearranging for LG yields:

LG = bGa

h
. (30)

If λ is the total length of the injected dislocation loops, then an infinitesimal small distance dλ can be
defined between r and dr :

dλ = 2πr
dr

LG

= 2πr
h

bGa
dr. (31)

Integrating this expression from 0 to a and using Eq. (28) yields the total length of dislocation loops λ as

λ =
a

∫

0

2πr
h

bGa
dr = πah

bG

= π tan θ

bG

a2 = π

bG

h2

tan θ
. (32)

During indentation the injected dislocation loops reside in a hemispherical volume V . This volume scales
with the contact radius a around the indentation profile. Using Eq. (28) the volume can be defined as

V = 2

3
πa3 = 2

3
π

h3

tan3 θ
. (33)

Finally, using Eqs. (32) and (33), an expression for the GND density can be derived as follows:

ρG = λ

V
= 3

2

tan2 θ

bGh
. (34)

The mapping from the hardness–indentation depth curve (H–h curve) to the tensile stress–plastic strain
curve (σ–p curve) is described by Tabor [10]:

H = κσ, (35)

p = c
h

a
= c tan θ, (36)

where κ is Tabor’s factor with a value of κ = 2.8 [10] and c a material constant in the order of c = 1 [11].
Substituting Eqs. (25) and (36) into Eq. (19) and rewriting the result for ρS yields the following expression

for the SSD density:

ρS =
cr̄α2

GbG tan θ

lb2
Sα

2
S

. (37)
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Furthermore, substituting Eqs. (12) and (13) into Eq. (35) through the use of σ =
√

3τ yields the following
expression for the hardness:

H =
√

3καSGbS

[

ρ
β/2
S + (αGbG/αSbS)

β ρ
β/2
G

]1/β

. (38)

It is also possible to define the macro-hardness H0. This is the hardness experienced at greater indentation
depths, where there are no size effects. That is in the absence of strain gradients (and thus GNDs), there is
solely interaction between SSDs:

H0 =
√

3κτS =
√

3καSGbS
√

ρS . (39)

In order to determine the material intrinsic length scale from microindentation experiments the ratio
(H/H0)

β is defined. Substituting Eqs. (38) and (39) in this ratio and simplifying the result under the assumption
that αS = αG and bS = bG yields:

(

H

H0

)β

= 1 +
(

ρG

ρS

)β/2

. (40)

Finally, substituting Eqs. (34) and (37) in Eq. (40) and simplifying under the assumption that αS = αG

and bS = bG, the following expression is obtained:

(

H

H0

)β

= 1 +
(

h∗

h

)β/2

, (41)

with h∗ = ζ l, (42)

and ζ = 3 tan θ

2cr̄
. (43)

Here h∗ is a material specific parameter that characterizes the depth dependence of the hardness and
depends on the indenter geometry as well as on the plastic flow.

Furthermore, substituting Eqs. (26) and (37) into Eq. (39) yields a simpler expression for the macro-hardness
H0, which is more convenient to use in determining the material intrinsic length scale:

H0 = κk
√

c tan θ, (44)

where k can be obtained from Eq. (24). Equation (42) shows that h∗ a linear function of l. Therefore, in order
to determine the material intrinsic length scale l, it is important to determine a value for h∗. Now the usage
of the indentation experiments comes into play. The experiments yield a data pool of hardness values as a
function of indentation depth. Plotting the data as (H/H0)

β versus h−β/2 and fitting a linear function on the
data, yields a straight line with slope h∗β/2. Combining this slope with Eqs. (42) and (43), a constant value for
the material intrinsic length scale can be determined.

5 Inclusion of the hardening effect into the standard gradient plasticity formulation

The hardening effect described in Sect. 1 and visualized in Fig. 2 was addressed by Almasri and Voyiadjis [4].
They performed nanoindentation tests on several metal samples with high surface roughness and though the
presence of the effect significantly differed for the different samples, the effect was encountered in all of them.

They established a framework of empirical expressions for the hardness H as a function of indentation
depth h, that can be used to fit on the results of the nanoindentation experiments [4]:

H =

⎧

⎨

⎩

H1 + l1h−n1, h < h1,

H2

(

l2 − e−n2h
)

, h1 < h < h2,

H3 + l3h−n3, h > h2.

(45)

In these equations the subscripts 1, 2 and 3 indicate the initial decrease in hardness zone, the increase
in hardness zone and the final decrease in hardness zone, respectively. Furthermore, li and ni are material
parameters acquired from the fitting process.
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Fig. 6 The expansion of the plastic zone V is obstructed by the grain boundary. Due to ongoing indentation the GND density
increases, resulting in an increase in hardness

This empirical framework yields nice fits for the experimental results, however, it does not provide a
physical background for the justification of these relations and the underlying physics of the problem.

In the proposed work presented here an attempt is made to address the physical justification of the relations
that described such a behavior. A new expression for H as a function of h is derived, based on a solid physical
background.

Other researchers have also encountered the hardening/softening effect in nanoindentation experiments
[12]. It is believed that the hardening effect arises due to the interaction between GNDs and grain bound-
aries. As described in Sect. 2, during indentation the GNDs will accumulate in an expanding plastic zone, the
hemispherical volume V . At a certain point, the boundary of this plastic zone will reach a grain boundary.
Upon reaching the grain boundary the plastic zone will stop expanding because it is obstructed by this grain
boundary. However, due to the ongoing indentation new GNDs are still being created inside the plastic zone,
causing the GND density to increase. As a result of this increase in GND density there will be more interaction
between the GNDs amongst themselves and between the GNDs and the grain boundary. This ultimately leads
to an increase in the local hardness of the material. This is visualized in Fig. 6.

The key to defining a new expression for the hardness is to define a new relation for the GND density ρG ,

using the events described above as a sound physical background.
Recalling the definition of the GND density from Eq. (34) it can be seen that ρG depends on the total

length of dislocation loops λ and the volume of the plastic zone V . For this case the expression for λ remains
unchanged. However, the expression for the volume V needs to be updated.

The volume V of the plastic zone, upon reaching the grain boundary, is defined by

V = π

12
d3, (46)

with d the grain size. In addition, it can be seen in Fig. 6 that a certain portion of the plastic zone volume is
taken up by the indenter. This volume Vindent is given by:

Vindent = ϕh3, (47)

where ϕ is a geometrical constant.
The shape of Vindent is pyramidal. The volume of a pyramid is given by:

Vpyramid = 1

3
Abaseh, (48)

with h the height of the pyramid, which in this case is the depth of indentation. Abase can be deduced from the
area function of an ideal Berkovich indenter:

Abase = 24.56h2, (49)
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with h the indentation depth. Substituting this relation in Eq. (48) yields:

Vindent = 8.19h3. (50)

Comparing this with Eq. (47) it follows that ϕ = 8.19.

Using these results the volume of the plastic zone can be defined as follows:

Vplastic = V − Vindent = π

12
d3 − 8.19h3. (51)

With this new definition for the volume of the plastic zone, it is possible to define a new expression for the
GND density ρG using Eqs. (32), (51) and (12):

ρG = λ

Vplastic
=

π
bG

h2

tan θ

π
12

d3 − 8.19h3
= h2

bG tan θ
(

1
12

d3 − 8.19h3
) . (52)

Making use of this result for ρG it is possible to redefine the ratio (H/H0)
β using Eq. (40):

(

H

H0

)β

= 1 +
(

lh2

(

1
12

d3 − 8.19h3
)

cr̄ tan2θ

)β/2

. (53)

In this equation, the material length scale is a constant. However, Voyiadjis and Abu Al-Rub [13] have
introduced a variable material length scale:

l = M̄r̄

(

Dd

D + dp1/m

)

, (54)

with D the size of the sample, d the grain size and p the plastic equivalent strain. The plastic equivalent strain
depends on the indentation depth, thus making l variable.

Substituting this expression in Eq. (53) yields:

(

H

H0

)β

= 1 +
[

M̄h2

(

1
12

d3 − 8.19h3
)

c tan2 θ

(

Dd

D + dp1/m

)

]β/2

. (55)

6 Sample preparation

Five different samples are being tested in this work. They are all metal slug samples.
The indentations are performed on the top, flat surface of each sample. These surfaces are not smooth in

their standard form. In order to require reliable results from the tests, it is necessary to polish the indentation
surface of each of these samples. During one test 16 indentations are performed in a 4 × 4 array. In order to
ensure consistency amongst the 16 indentations it is of the utmost importance that the surface is as smooth as
possible. It is easy to realize that the result for each indentation will differ significantly from other indentations
for a high surface roughness. This is due to a completely different surface topography for each indentation.

The samples are polished in several steps using grindstones with different grid grades. First the samples
are encapsulated in epoxy. This increases the surface that is being pressed on to the grindstone and minimizes
wobbling of the sample to ensure a flat sample. First a rough grindstone is used to expose the sample surface
by removing the epoxy layer above it. Following that, two glass plates are sprinkled with a mixture of 800
and 1,000 grid respectively. The sample is grinded on both plates until a relatively smooth, shiny surface is
reached. The final step is to fine-polish the sample using a grindstone with a 1,200 grid mixture sprinkled
on it.

To check the difference in surface roughness, scanning electron microscope (SEM) images of the surface
were made before (Fig. 7) and after polishing (Fig. 8). It can be clearly seen that the roughness has decreased
significantly and just some small surface defects are remaining.
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Fig. 7 SEM image of Copper 1 surface before polishing

Fig. 8 SEM image of Copper 1 surface after polishing

7 Experimental results

The main goal of the experimental part is to reproduce the experiments performed by Almasri and Voyiadjis
[4] and obtain a physical model to describe this behavior. It is vital to investigate particularly the behavior
of the increase in hardness with increasing indentation depth (for small depths) that was encountered in the
experiments of Almasri and Voyiadjis [4]. However, it should be noted that those samples were not polished.
A typical result of these experiments can be seen in Fig. 9 [4]. The tested samples and properties are indicated
in Table 1.

The results encountered in the experiments performed for this work using polished samples show the same
trend. The results for copper 1 (99.9960% purity) can be seen in Fig. 10.

The results for copper 2 (99.9999% purity) can be seen in Fig. 11.
The results for aluminum 1 (99.9900% purity) can be seen in Fig. 12.
The results for aluminum 2 (99.9999% purity) can be seen in Fig. 13.
The results for nickel (99.9995% purity) can be seen in Fig. 14.
It can be seen from these figures that especially the two copper samples exhibit this hardening behavior

very strongly.
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Fig. 9 Indentation depth versus hardness for Copper 2 (99.9999% purity) [4]

Fig. 10 Results for copper 1 (99.9966% purity)

The aluminum 1 sample has a very short hardening segment, whereas the aluminum 2 sample does not
seem to have any hardening segment. This curve is a typical example of the classical ISE.

Finally, the nickel sample shows a hardening segment. However, following that the hardness remains more
or less the same, without going down to lower values, as can be seen for both of the copper samples.

Apparently there are some differences in the way the dislocations interact with the grain boundaries for
each of the metals.

Another trend that can be observed from the figures is that when the purity grade of a metal increases, the
macro-hardness of this metal decreases. This can be explained by looking at the dislocation density. The less
pure a metal is, the more dislocations there will be and thus the dislocation density will be higher. This implies
that there are more interactions between the dislocations, thus increasing the hardness of the metal.

To see if the polishing of the surfaces had a positive effect on the experiments, the current experiments are
compared to the experiments performed by Almasri and Voyiadjis [4]. In [4], the experiments were performed
on samples that were not polished. Tables 2 and 3 list the mean, the standard deviation and the coefficient of var-
iation (COV) for the elasticity modulus and the hardness, respectively, as calculated by the MTS Nano-indenter
XP for the arrays of tests. It is important to mention that the experiments for the polished and unpolished state
were performed on the same kind of metal slug samples.
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Fig. 11 Results for copper 2 (99.9999% purity)

Fig. 12 Results for aluminum 1 (99.9900% purity)

These tables clearly indicate that the consistency of the current experiments is better than it is for the
experiments performed by Almasri and Voyiadjis [4].

Figures 15, 16, 17, 18 and 19 provide a graphical representation of the differences between the current
experiments and the experiments performed by Almasri and Voyiadjis [4].

It is observed that the unpolished samples exhibit lower modulus of elasticity as shown in Table 2. Table 3
shows that most of the polished samples exhibit higher hardness values. Furthermore, the unpolished samples
exhibit considerably higher percentages in COV. In Fig. 15, one notes that the hardness is considerably lower
in the unpolished case for copper 1. In Fig. 16, one notes that in the case of copper 2 lower hardness is exhib-
ited at smaller indentation depths (less than 200 nm), however, at higher depths the hardness keeps increasing
contrary to real expectations of the material behavior. It eventually levels off and maintains a constant value
for the hardness. The same observations as above are exhibited in Figs. 18 and 19 for Aluminum 2 and Nickel,
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Fig. 13 Results for aluminum 2 (99.9999% purity)

Fig. 14 Results for nickel (99.9995% purity)

Table 1 Tested samples and their properties

Sample Sample type Purity (%) Dimensions (diameter × height)

Copper 1 Slug 99.9960 6.35 mm × 12.7 mm
Copper 2 Slug 99.9999 6.35 mm × 12.7 mm
Aluminum 1 Slug 99.9900 6.35 mm × 12.7 mm
Aluminum 2 Slug 99.9999 6.35 mm × 12.7 mm
Nickel Slug 99.9950 6.35 mm × 12.7 mm

respectively. In the case of Aluminum 1 as shown in Fig. 17 there seems to be no significant difference in
variation of hardness between the polished and unpolished samples, except at extremely low indentations of
the order of 20 nm.
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Table 2 Qualitative comparison of the elasticity modulus for the current experiments and the experiments performed by Almasri
and Voyiadjis [4]

Sample Current Almasri and Current Almasri Current Almasri
mean E Voyiadjis standard Voyiadjis COV and Voyiadjis
(GPa) mean E deviation E standard deviation (%) E COV (%) E

(GPA) (GPa) E (GPa)

Copper 1 138.19 108.075 3.426 46.986 2.48 43.48
Copper 2 135.265 105.646 2.692 16.385 1.99 15.51
Aluminum 1 70.656 58.114 2.256 6.602 3.19 11.36
Aluminum 2 66.247 55.06 4.125 24.685 6.23 44.83
Nickel 236.573 148.843 3.628 69.285 1.53 46.55

Table 3 Qualitative comparison of the hardness for the current experiments and the experiments performed by Almasri and
Voyiadjis [4]

Sample Current Almasri and Current Almasri and Current Almasri and
mean H Voyiadjis standard Voyiadjis COV (%) Voyiadjis
(GPa) Mean H deviation standard H COV (%)

(GPA) H (GPa) deviation H (GPa) H

Copper 1 1.928 1.779 0.091 0.849 4.700 47.69
Copper 2 1.468 1.467 0.078 0.343 5.330 23.39
Aluminum 1 0.489 0.702 0.051 0.233 10.46 33.20
Aluminum 2 0.410 0.280 0.044 0.153 10.77 54.70
Nickel 3.834 2.636 0.081 2.225 2.120 84.39

Fig. 15 Experiments compared for copper 1 (99.996% purity)

8 Comparison of the experimental results with the developed models

In this section the experimental results presented from the previous section are compared with the model
proposed by Voyiadjis and Abu Al-Rub [9] and the model developed in Sect. 4 (Eq. 55). Rewriting Eq. (55)
for H yields

H = H0

⎡

⎣1 +
[

M̄h2

(

1
12

d3 − 8.19h3
)

c tan2 θ

(

Dd

D + dp1/m

)

]β/2
⎤

⎦

1/β

. (56)
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Fig. 16 Experiments compared for copper 2 (99.999% purity)

Fig. 17 Experiments compared for aluminum 1 (99.99% purity)

To be able to fit this expression to the experimental results, four material parameters are introduced:
α1, α2, α3 and h1. This modifies Eq. (56) into the following expression:

H = α1 H0

⎡

⎣1 +
[

α2 M̄(h − h1)
2

(

α3
12

d3 + 8.19(h − h1)3
)

c tan2 θ

(

Dd

D + dp1/m

)

]β/2
⎤

⎦

1/β

. (57)

Furthermore, the minus sign in the denominator is changed into a plus sign to mirror the graph along the
y-axis. All the variables in Eq. (57) are known, except for the plastic equivalent strain p, which is a function
of the indentation depth: p = p(h).

The plastic equivalent strain is determined by performing numerical analysis with ABAQUS as will be
described in Sect. 8.

Furthermore, it is necessary to introduce an expression which can be used to bend the graph up or down for
bigger indentation depths. This is done by using an expression developed by Voyiadjis and Abu Al-Rub [14],
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Fig. 18 Experiments compared for aluminum 2 (99.9999% purity)

Fig. 19 Experiments compared for nickel (99.9995% purity)

which is based on the work by Armstrong and Frederick [15], Phillips et al. [16] and Chaboche and Rousselier
[17]:

X i j =
M

∑

k=1

C (k) X
(k)
i j . (58)

Combining this with Eq. (57) and summing over M = 2 terms yields

H = H + C(h)H (59)

with

C(h) = C(h, α4) =
√

h

α4
. (60)
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Fig. 20 Influence of the material parameters from Table 2 on the shape of the graph

Table 4 The material parameters used to fit Eq. (59) to the experimental results

Sample H0 (GPa) h1 (nm) α1[−] α2[−] α3[−] α4[−] Sign C(h, α4)

Copper 1 1.8911 40 1.079 0.0030 4.8 × 10−4 300,000 −
Copper 2 1.3639 42.5 1.408 0.0050 6.0 × 10−4 20,000 −
Aluminum 1 0.4460 80 1.861 0.0008 3.6 × 10−4 6,000 −
Aluminum 2 0.3519 80 2.074 0.0008 3.0 × 10−4 5,000 −
Nickel 3.7555 40 0.895 0.0080 0.0102 100,000 +

By taking the sign of C(h) to be positive or negative and by varying α4, the bending of the graph can be
influenced to fit the experimental results.

Figure 20 demonstrates how α1, α2, α3, α4, h1 and C(h) can be used to fit Eq. (59) to the experimental
results.

Table 4 gives the values of the parameters used in the fitting process.
Using these parameters, the models fitted to the experimental results are shown in Figs. 21, 22, 23, 24 and

25. Furthermore the following values are used: M̄ = 0.5, d = 1,000 nm, c = 1, θ = 0.358, D = 50 µm
(same as in the ABAQUS simulation), m = 0.474 [18] and β = 2. The functions used for p will be outlined
in Sect. 8.

In Figs. 21, 22, 23, 24 and 25, Voyiadjis and Peters (2009) indicate the present formulation for hardness
adopted by the authors and proposed in this paper.

It can be concluded from these figures that the newly developed model provides a good description of the
ISE when a strong hardening effect is present. This can be seen in Figs. 21 and 22 for copper 1 and copper 2.

However, if the hardening effect is weak, the model developed by Voyiadjis and Abu Al-Rub [2] is better
suited to describe the ISE. This can be seen in Figs. 23 and 24 for aluminum 1 and aluminum 2. These figures
display the results that are more like the classical ISE.

The results for nickel in Fig. 25 also show a strong hardening effect. However, after the increase in hardness,
there is no subsequent decrease in hardness, but instead hardness more or less remains constant. The newly
developed model is suited to describe the hardening region, but the description of both softening regions is
less accurate.

9 Numerical simulation using ABAQUS

As mentioned in the previous sections, it is necessary to simulate the indentation problem using a Finite
Element Package. The goal is to determine the plastic equivalent strain as a function of the indentation depth.
The commercial Finite Element Package used here is ABAQUS.
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Fig. 21 Models fitted to the experimental results of the copper 1 sample in indentation

Fig. 22 Models fitted to the experimental results of the copper 2 sample in indentation

A cube with dimensions of D = 50 µm is modeled to represent a small piece of the sample. The Berko-
vich indenter is modeled on top of the cube and is modeled as a blunt pyramid. The tip of the indenter is an
equilateral triangle with sides that measure 20 nm. ABAQUS’ interaction module is used to model the contact
between the indenter and the sample (Fig. 26).

A vertical line of symmetry with respect to the indenter is assumed and the corresponding boundary con-
ditions are developed based on this line of symmetry. A rate-dependent finite element formulation is used to
alleviate mesh dependence. However, in future work the authors will also incorporate a gradient finite element
formulation (developed in previous work by the first author) to ensure a more robust solution. Assigning a
certain velocity (see Table 5) to the indenter causes it to penetrate the sample to a depth of around 2,000 nm, just
as in the experiments. After that plastic deformation takes place an indent can be seen at the sample surface.

Figure 27 shows the deformation of the sample surface after indentation. Clearly visible are the pile-up
regions at the sides of the indent. This is some of the material that originally occupies the indent space. It has
been pushed outwards by the indenter. This is due to high indentation occurring in a small vicinity that allows
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Fig. 23 Models fitted to the experimental results of the aluminum 1 sample in indentation

Fig. 24 Models fitted to the experimental results of the aluminum 2 sample in indentation

the material to pile-up at the periphery of the indenter. The pile-up effect can also be seen in Fig. 28, which
shows the sample surface after indentation as viewed through the microscope in the MTS Nanoindenter XP.

ABAQUS can be used to calculate the plastic equivalent strain as a function of the indentation depth, which
is needed to plot Eq. (59).

ABAQUS’ output shows the plastic equivalent strain as a linear function of the indentation depth. The
results for the different samples can be seen in Table 5.

Observing from Sects. 2 and 3 and substituting Eqs. (15) and (19) in Eq. (40), an alternative expression
can be derived for the hardness ratio:

(

H

H0

)β

= 1 +
(

ηr̄bS L S M̄

pbG

)β/2

= 1 +
(

C
η

p

)β/2

, (61)



Size effects in nanoindentation 151

Fig. 25 Models fitted to the experimental results of the nickel sample in indentation

Fig. 26 Indenter and sample modeled and meshed in ABAQUS

Table 5 ABAQUS simulation properties and results

Sample Vertical speed of indenter (m/s) p (h) Final p after indentation (%)

Copper 1 −2 4.137 × 10−4 90.60

Copper 2 −2 4.1708 × 10−4 90.34

Aluminum 1 −2 3.417 × 10−4 66.96

Aluminum 2 −2 3.4956 × 10−4 67.44

Nickel −1.7 3.1203 × 10−4 60.20
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Fig. 27 Vertical displacement in a contour plot cut after indentation. The grey areas are pile-up regions. Values in the legend are
in µm

Fig. 28 Copper 2 sample surface after indentation. Pile-up regions can be seen at the edges of the indents

with

C = r̄bS L S M̄

bG

. (62)

Besides providing the plastic equivalent strain p, ABAQUS can be used to acquire the gradient of the
plastic equivalent strain η. The parameter C then describes the microstructure of the material. However, to
obtain the gradient it is necessary to incorporate a material model within ABAQUS that simulates the material
behavior as described in Sect. 4. This is beyond the scope of this work, but is recommended for further studies
regarding this subject.

10 Conclusion

Indentation size effects encountered in nanoindentation experiments are addressed in this work. The classical
descriptions of the ISE show a decrease in hardness for increasing indentation depth. However, recently new
experiments have shown that after the initial decrease, hardness increases with increasing indentation depth.
After this increase, finally the hardness decreases with increasing indentation.
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The work presented here reviews existing theories describing the ISE and presents new formulations that
incorporate the hardening effect into the ISE. Furthermore, indentation experiments have been performed on
several metal samples, to see whether the hardening effect was an anomaly or not.

The goal of this work is to ascertain the three regions in hardness during nanoindentation as obtained
experimentally [4]. The data presented in this work describes a similar trend, being the hardening effect. Fur-
thermore, the data in this work is proven to be much more consistent and reliable. This can be acknowledged
to the fact that the samples used in this work have been thoroughly polished before indenting them.

A new expression for the GND density ρG (Eq. 52) is proposed in this work in order to account the changes
in the hardening/softening region that appears at the beginning of the indentation process. Making use of this
result for ρG it is possible to redefine more accurately and physically based the ratio (H/H0)

β (see Eq. (55))
by making use of a variable length scale.

The new model presented in this work can be used to accurately describe the hardening section during
indentation especially at small depths. An extensive fitting procedure has been presented to match the model
to the data from nanoindentation experiments.

Numerical analysis, using the commercial finite element package ABAQUS, is used to acquire data for the
plastic equivalent strain during indentation. Incorporating a material model into ABAQUS that describes the
hardening during indentation can provide a more thorough simulation of the problem. This is recommended
for further simulation studies regarding nanoindentation.
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