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ABSTRACT Protein structures are rou- 
tinely compared by their root-mean-square de- 
viation (RMSD) in atomic coordinates after op- 
timal rigid body superposition. What  is not so 
clear is the significance of different RMSD val- 
ues, particularly above the customary arbitrary 
cutoff for obvious similarity of 2-3 A. Our ear- 
lier work argued for an intrinsic cutoff for pro- 
tein similarity that varied with the number of 
residues in the polypeptide chains being com- 
pared. Here we introduce a new measure, p, of 
structural similarity based on RMSD that is in- 
dependent of the sizes of the molecules in- 
volved, or of any other special properties of 
molecules. When p is less than 0.44.5, protein 
structures are visually recognized to be obvi- 
ously similar, but the mathematically pleasing 
intrinsic cutoff of p< 1.0 corresponds to overall 
similarity in folding motif at a level not usually 
recognized until smoothing of the polypeptide 
chain path makes it striking. When the struc- 
tures are scaled to unit radius of gyration and 
equal principle moments of inertia, the compar- 
isons are even more universal, since they are no 
longer obscured by differences in overall size 
and ellipticity. With increasing chain length, 
the distribution of p for pairs of random struc- 
tures is skewed to higher values, but the value 
for the best 1% of the comparisons rises only 
slowly with the number of residues. This level is 
close to an intrinsic cutoff between similar and 
dissimilar comparisons, namely the maximal 
scaled p possible for the two structures to be 
more similar to each other than one is to the 
other's mirror image. The intrinsic cutoff is in- 
dependent of the number of residues or points 
being compared. For proteins having fewer 
than 100 residues, the 1% p falls below the in- 
trinsic cutoff, so that for very small proteins, 
geometrically significant similarity can often 
occur by chance. We believe these ideas will be 
helpful in judging success in NMR structure de- 
termination and protein folding modeling. 
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INTRODUCTION 
Whenever the question of conformational similar- 

ity arises, particularly for globular proteins, the 
standard measure is the root-mean-square deviation 
(RMSD) in atomic coordinates after the two struc- 
tures have been optimally superimposed by rigid 
body translation and rotation. Several clever algo- 
rithms have been devised to help decide which at- 
oms of the one molecule are to be superimposed on 
which atoms of the other, but in all that follows we 
will concentrate on the simple case of comparing the 
C" atoms of two n-residue polypeptide chains in the 
obvious way. While the superposition calculation it- 
self is perfectly routine, the significance of the re- 
sulting number is not so clear. Most workers in the 
field simply adopt an arbitrary cutoff of 2-3 A as the 
boundary between similar and dissimilar three-di- 
mensional structures. Others have examined the 
distribution of RMSD in certain ensembles of com- 
parisons and have thus attached statistical signifi- 
cance to the values.2-4~12,14~16,17 

We, on the other hand, have sought an intrinsic 
measure of significance that is at least applicable to 
comparisons of globular proteins." In that work we 
discovered two cutoffs: D, is the smallest RMSD such 
that a lower RMSD may sometimes be achieved by 
first mirror inverting one of the structures; and Do is 
the smallest RMSD that is observed between two 
segments of polypeptide chain coming from clearly 
unrelated proteins. Both of these cutoffs were found 
to  be linear functions of n1l3, apparently due to the 
constant density of amino acid residues packed into 
roughly spherical globules, implying that the pro- 
tein's diameter is proportional to n1/3. This high- 
lights the often neglected fact that RMSD is affected 
by both the conformational similarity and the overall 
sizes of the proteins being compared. As we will show 
below, judging similarity by a single, fixed cutoff is 
not valid for pairs of proteins spanning a reasonable 
range in numbers of residues. Even our Do and D, 
cutoff functions of n lack generality in that they have 
been devised for globular proteins, and not general 
molecules or arbitrary configurations of points. In 
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this paper we introduce a new measure of conforma- 
tional similarity that automatically compensates for 
size effects and is applicable to  the comparison of 
arbitrary sets of points. 

METHODS 
Conformational Similarity 

Consider two arbitrary configurations, A and B, 
each consisting of n points in three-dimensional 
space. Assume we have numbered the points so that 
the given correspondence matches point i in A with 
point i in B for z = 1, . . . , n. Denote the Cartesian 
coordinates of the points by a, and b,. Our concern 
here is the optimal superposition of these matching 
pairs of points by rigid body translation and rotation 
of A and B. It is well known that such a superposi- 
tion requires that the centroids of A and B must 
c o i n ~ i d e , ~ . ~ ~  so we will assume in all that follows 
that the centroids of both have already been trans- 
lated to the origin, i.e., &a, = Z,b, = 0. Then there 
are many algorithms (see references in Maiorov and 
Crippen”) for finding the proper rotation matrix, R ,  
where det (R) = 1, that minimizes 

D2(A, B )  = n - l C ( R a ,  - bJ2 ( 1 )  

so that D is the desired RMSD between the two con- 
figurations. Now the value of D reflects not only the 
similarity in relative placement of the points, but 
also the sizes of A and B and the disparity in their 
sizes. Let us take as our measure of size the radius of 
gyration, which can be calculated from the magni- 
tudes of the center-of-mass coordinate vectors r, 

1 

~2 = n - l C < .  ( 2 )  
1 

Suppose we start with center of mass coordinates of 
A and B where A has already been optimally rotated 
onto B so that in Eq. (1) the optimal rotation matrix 
is R = I, the identity matrix. Then Eq. (1) simplifies 
to 

D2(A,B) = nP1C(a l  - bS2 (3) 

which can be expanded and simplified by Eq. (2)  to  

1 

2 
D2(A, B )  = R2(A) + R2(B) - - x a i .  bi. (4) 

n i  

Depending on how similar A and B are, one can 
show the full range of D is1’,14 

0 5 D2(A, B )  c= R2(A) + R2(B). (5) 

Suppose we multiply all the coordinates of the points 
of both A and B by some scalar, f. Clearly from Eq. 
( 2 ) ,  R(fA) = @ ( A )  and similarly for B .  D is also 
proportional to  f. In order to  see this, note that op- 
timal superposition implies13 

Ca, x b, = 0. (6) 

Scaling one or both of the structures by f preserves 
this optimality condition, so no rotational readjust- 
ment is necessary. Thus 

i 

D2(fA, f B )  = n-lC(fai  - fbJ2 = f2D2(A, B) . (7)  

The behavior of D under scaling one of the struc- 
tures is a little more complicated. The equivalent to  
Eq. (4) becomes 

i 

2f D2(A, f B )  = R2(A) + f 2  R2(B) - - x a i .  bi (8) 
n i  

so that eliminating the summation between these 
equations gives 

D2(A, fB)  = R2(A) + f2R2(B) (9) 
- f [ R 2 ( A )  + R2(B) - D2(A,B)1 

a quadratic in f having its minimal value when 

R ~ ( A )  + R2(B> - D2(A, B)  
2R2(B) 

(10) f =  

In the special case of A = B, we have D2( fA, A )  = 
( 1  - f)’R2(A) which has the pleasing property that 
D2( fA, A )  is minimal when f = 1, that is, when the 
two structures have equal radii of gyration. How- 
ever, this is not true in general for arbitrary A and 
B. 

It would be preferable to have some measure of 
dissimilarity that compensated for these simple size 
effects. I t  is helpful to  introduce two artificial con- 
figurations: the “sum” or mean structure 

si = (ai + b J / 2 ,  i = 1 , .  . . , n (11) 

and the “difference” structure 

di = (ai - b J / 2 ,  i = 1 , .  . . , n. (12) 
Since a, = s, + d, and bi = si - di, we can express 
a, . bi = sp - d:, which simplifies Eq. (4) to 

D2(A, B )  = R2(A) + R2(B) - 2R2(s) + 2R2(d) (13) 

where R(s)  and R(d)  are the respective radii of gy- 
ration of the sum and difference configurations. 
Since Eq. (3) expresses D in terms of the difference 
structure, Eq. (12), the definition of the radius of 
gyration, Eq. (2) ,  results in 

R2(d) = D2(A, B )  / 4  (14) 

so that Eq. (13) can be rearranged to  give 

2R2(s) = R2(A) + R2(B) - D2(A, B ) / 2 .  (15) 
As shown in Figures 1 and 2, as one progresses from 
similar to dissimilar configurations, the sum struc- 
ture shrinks while the difference structure expands, 
and the radius of gyration of the difference structure 
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Fig. 1. Spatial similarity, sum, and difference structures. The left column shows examples of optimally 
superimposed polypeptide chains (heavy vs. light lines) which have increasing dissimilarity going from case 
A to F. The center column shows the corresponding sum structure vectors, si and a circle proportional to its 
radius of gyration, R,. The right column shows the corresponding difference structure vectors and its radius 
of gyration. The radii are nearly equal in case D, corresponding to p = 1. 
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R M S D D (Angsboms) 

Fig. 2. A plot of 2Rd, Rs, and p as a function of D for constant RA = RB = 9.94 A 

Fig. 3. An example of two antisimilar structures that are very 
similar. They both lie almost entirely in the shadowed plane except 
for the last segment in the background running up out of the plane 
in one and down in the other. 

is just proportional to  D(A, B). As a measure of dis- 
similarity, we propose a ratio of the radii of gyration 
of the difference and sum structures, namely 

Remembering the range of D from Eq. (51, we see 
that 0 5 p 5 2, independent of R ,  and R,  (Fig. 2). 
Since D and R are both proportional to  a common 
scaling factor, p is independent of scaling in the sense 
that p( fA, f B )  = p(A, B).  If only one of the structures 
is caled, p has the nice property of being minimal 

when the two radii of gyration are equal, in general 
for any A and B. This can be shown by calculating 
p2(fA, B )  from Eq. (9) and then solving dp2(fA, B)ldf 
= 0 for which leads eventually to the conclusion 
that f = R(B)/R(A). As a matter of mathematical 
esthetics, we suggest p < 1 for a size-independent 
criterion of similarity. Intuitively speaking, this is 
when the structural commonality dominates over the 
differences. 

Spherically Scaled Conformational Similarity 
While p = 1 is the point where the sum and dif- 

ference structures have equal radii of gyration, one 
would like to choose a cutoff in the p scale having 
greater intrinsic mathematical significance. When A 
and B are very similar arrangements of points 
in general position, then 0 = D(A, B )  < D(A, B) ,  
where D(A, B)  is the anticomparison RMSD calcu- 
lated by first mirror inverting one of the structures 
and then optimally superimposing it on the other as 
usual. At the other extreme, if B = A, the mirror 
image ofA, then 0 = D(A, B )  < D(A, B ) .  We will call 
arbitrary A and B an “antisimilar” pair of structures 
whenever the anticomparison RMSD is less than the 
ordinary RMSD. In between, there must be some 
minimal value of D(A, B )  or p(A, B )  below which an- 
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tisimilarity is impossible, and this value would be an 
intrinsic criterion for significant similarity. 

First observe that 0 = D(A, B) = D(A, B) when A 
and B are very similar and nearly planar, as in Fig- 
ure 3. In order to establish a nontrivial minimal D for 
antisimilarity, we must treat only spherically scaled 
structures, defined as follows. Assume that the n > 
3 points of-A span three dimensions. If not, then 
D(A, B )  = D(A, B) always, and this value can be 0 by 
choosingB = A .  Next, translateA so that its centroid 
is a t  the origin, and rotate it to  match its principle 
axes of inertia with the coordinate axes. Scale each 
axis independently so that each axis contributes 
equally to the radius of gyration, and R(A) = 1. Of 
course in general, B is transformed likewise but with 
different translation, rotation, and scaling. We de- 
rive in the appendix that the threshold value of the 
scaled D;&A, B) = 213 which corresponds to a scaled 
value of p,,(A, B )  = = 0.894. These thresholds 
are independent of the sizes, overall shapes, and 
numbers of points in the structures, as long as they 
span three dimensions. 

It is worth mentioning one more landmark on the 
range of scaled comparisons in three dimensions, 
namely D,,(A,A) = D,,(A,A),  the similarity of A 
and its mirror image. Referring to Eq. (30) for scaled 
comparisons, we can show that A, = A, = A, = 113 
and S = 1 for D,,(A, A )  = 0 because U = 113, where 
Z is the identity matrix. On the other hand, we noted 
earlier" that in general 

DZJA, A) = D$(A, A )  + 4SA3 (17) 
implying that D;&A, A) = 413. This converts to 

p,,(A,A) = .\/z (18) 

for any three-dimensional structure A .  

RESULTS 
p and Visual Comparison 

Traditionally, D < 2 to 3 A has been used as a 
criterion for spatial similarity of proteins. It turns 
out to  be a substantial error to  use such a fixed cutoff 
in D over the range of protein sizes commonly stud- 
ied, particularly for small proteins. Earlier we em- 
pirically observed" that the most compact globular 
proteins have radii of gyration 

Rmin(nr) = - 1.26 + 2 .79~~: '~  (19) 

in A, and a typical compact protein structure exceeds 
this by 10 to 15%. Consider for a moment only those 
compact globular protein structures satisfying R = 
1.10Rmi,. Then Table I shows that if we compare two 
such compact 25-residue structures and find D = 3 A, 
this corresponds to p=0.40 according to Eq. (16). 
However, this same 3 A cutoff in D when applied to 
longer chains lengths amounts to requiring as strin- 
gent a similarity as p = 0.19 for long ones. To put it 
the other way around, adopting p < 0.40 as a criterion 

TABLE I. Comparison of Compact Globular 
Proteins Having n, Residues, Giving p for Fixed 

D = 3 A, D for fixed p = 0.40, and pse,al 

nr R (A)* P+ D (&* P d % =  
25 7.59 0.40 2.98 0.50 
50 9.92 0.31 3.89 0.68 

100 12.87 0.23 5.04 0.87 
200 16.56 0.19 6.50 1.07 
*Typical radius of gyration = l .lRm,n from Eq. (19). 
'If the two protein structures differ by D = 3 A, then this is the 
corresponding p. 
*If the two protein structures differ by p = 0.40, then this is the 
corresponding D. 
ZCalculated according to Eq. (20) with a = 0.054 and b = 

0.581, the values for protein comparisons. 

for obvious spatial similarity implies D < 2.98 A 
for short chains but only D < 6.50 A for long ones. 
Figure 4 gives one a visual feeling for this effect. (A) 
shows two 25-residue fragments having D = 3.34 A 
and p = 0.463. There is an obvious but modest simi- 
larity. The 200-residue comparison in (B) has the 
same p and a comparable appearance of conforma- 
tional similarity, but now D = 7.19 A. In order to 
return to a D comparable to  that in (A) while 
staying with 200 residues, the visual resemblance 
must be much greater, as in (C) where D = 3.77 A 
and p=0.217. 

If p < 0.3 to 0.5 corresponds to the subjective con- 
sensus in the field for clear conformational similarity 
of globular proteins, then our proposed p < 1 test 
must imply only the most general level of similarity. 
Consider for example n, = 30 and residues 1-30 of 
metallothionine [Brookhaven Protein Data Bank 
(PDB)l entry 2mhul compared to residues 51-80 of 
Trp repressor (lwrp, chain " R ) .  These segments 
have very similar radii of gyration (8.18 and 7.86 A, 
respectively), and the optimal superposition gives 
p = 0.54 (D = 4.20 A, psc = 0.521, but the superposition 
matches a-helical segments with coil segments (see 
Fig. 5 ) .  The similarity between the two becomes ob- 
vious, however, when the C" coordinates are aver- 
aged over a 7-residue window sliding up each chain, 
because this a t  least straightens out the helical seg- 
ments. 

As a more striking example, residues 1-75 of bo- 
vine calcium-binding protein (3icb) form a helical 
bundle, while residues 9-83 of the FAB immuno- 
globulin KOL (2fb4, light chain) are P-sheet strands 
(Fig. 6). Their respective radii of gyration happen to 
be similar (11.15 and 12.68 A), and p = 0.76 (D = 
8.45 A, psc = 0.71). Figure 7 shows how their 
smoothed chain traces are obviously similar to the 
eye. We have found dozens of similar examples in 
PDB with such long chain segments, great differ- 
ences in secondary structure, and yet p < 1. Our 
experience has been that visual similarity is detect- 
able as long as psc is less than about 0.8, which is 
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Fig. 4. Stereo pairs of the C" traces for the optimal superposition of protein fragments having different 
lengths: (A) 25 residues from trypsin inhibitor I1 (PDB code 2eti) residues 1-25 and protein inhibitor lcti 
residues 3-27; D = 3.34 A p =  0.463; (B) 200 residues from papain 9pap residues 5-204 and actinidin 2act 
residues 6-205; D = 7.19 A, p =0.463; (C) 200 residues from the same crystal structure of acetyltransferase 
2cla: residues 1-200 and 2-201; D = 3.77 A,  p=0.217. 
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Bicb 

2fb4 

Fig. 5. Comparison of 2rnhu residues 1-30 with 1 wrp R chain 
residues 54-83. Above are the two structures represented as 
MOLSCRIPT drawings' in relative orientations corresponding to 
their optimal superposition. Below is the same view of the optimal 
superposition with chain paths smoothed by averaging the C" 
coordinates over a 7-residue sliding window. 

surprisingly close to  the absolute dissimilarity 
threshold of psc = 0.894. Clearly helical bundles and 
sheets are different folding motifs in the usually ac- 
cepted sense, but from the broader perspective of p < 
1, there may be a very limited number of different 
ways to pack a polypeptide chain up into an approx- 
imately spherical globule. Whether this is just a geo- 
metric restriction on curved lines in three-dimen- 
sional space or whether this says something special 
about protein folding, remains to be seen. 

Statistical and Absolute Significance of psc 

While absolute cutoffs are valuable to  decide sim- 
ilarity vs. dissimilarity between structures, it is also 
helpful to compare to  simple statistical models for a 
quantitative assessment of the degree of similarity. 
Consider as a model structure the N3 points of an N 
x N x N cubic lattice, where the points are labeled 
at  random with some permutation of 1, . . . , N3. Such 
structures have a cubical shape, a constant radius of 
gyration, and are self-avoiding in that all points are 
at  least one step apart, but they are not Hamiltonian 
walks on the lattice as in polymer models. Figure 8 
shows the distributions of psc for 100,000 compari- 
sons between such pairs of random structures for N 
= 3 , 4 , 5 ,  6, and 7, corresponding to n = 27,64,125, 
216, and 343 points each. Notice how the distribu- 
tions become narrower and skewed to higher psc as n 
increases. We examined the left tails of these distri- 

Fig. 6. Comparison of Bicb residues 1-75 with 2fb4 light chain 
residues 9-83 in their optimal superposition orientations, ren- 
dered by MOLSCRIPT. 

butions by determining the cutoff for the first per- 
centile of each, psc,o/al, as shown in the upper curve of 
Figure 9 (n  = 343 is off scale). These points fit very 
well to  the empirical function 

2 
Psc,l% = 2 - (20) 

1 + a(n - 2)* 

which was chosen so that psc,lo/o +. 2 as n +. 00 and 
trivially all psc = 0 when n = 2. Nonlinear curve fit- 
ting gives a = 0.246 and b = 0.593. 

Of course, other populations of structures can be 
expected to have different psc distributions. For ex- 
ample, comparisons of n-residue segments (counting 
C" atoms only) taken from the same list of dissimi- 
lar protein crystal structures we used earlier" have 
distributions where the psc,sl fits the same empiri- 
cal equation, but now with a = 0.054 and b = 0.581 
(Fig. 9, lower curve). Note how the protein compar- 
isons give much the same slope and curvature, but 
the whole curve is shifted down below that for 
scrambled cubic structures. Thus for fewer than 
about 100 residues, psc,%l is below the absolute dis- 
similarity cutoff of pac = 0.894, meaning that abso- 
lute geometric resemblance becomes statistically 
more likely for smaller protein structures. 



280 

"1 

V.N. MAIOROV AND G.M. CRIPPEN 

Bicb 

2f4b 

Fig. 7. Comparison of Bicb and 2fb4 in the same orientation as in Figure 6, but rendered as C" paths smoothed over a 7-residue sliding 
window. 

I 
I I I I I 

1 .o 1.2 1.4 1.6 1.0 2.0 
PSC 

Fig. 8. Distributions of psc as a function of number of points in scrambled cubic lattice structure comparisons. 
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Fig. 9. psc voJ as a function of number of points, n, for scrambled cubic lattice structures (triangles, upper 
curve) and dissimilar protein segments (squares, lower curve). Horizontal line is the absolute anticomparison 
cutoff psc = 0.894. 

CONCLUSIONS 
We propose psc as a measure of similarity derived 

from the conventional RMSD, but being invariant 
under more kinds of scaling operations than RMSD. 
Table I1 summarizes the significant values of pSc we 
have derived. This should be useful in protein con- 
formational studies to resolve three main kinds of 
questions: (1) how well is a protein's tertiary struc- 
ture determined by NMR, judging from the similar- 
ity of a set of structures derived from the experimen- 
tal data15; (2) how good are protein structure 
predictions compared to the experimental conforma- 
tions; and (3) are low-level conformational similari- 
ties between unrelated proteins in the Protein Data 
Bank significant?" 

Although psc has some geometrically significant 
cutoff levels that are invariant under changes in ra- 
dius of gyration, ellipticity, and numbers of points 
(or amino acid residues), the statistical significance 
is a function of n. Thus for small structures of less 
than about 40 residues, Figure 9 shows there may be 
a substantial probability of randomly choosing two 

TABLE 11. Important Values of psc 
and Their Interpretation 

0"- Meaning 
0 Identical structures 
< 0.3 to 0.5 
<(4/5)lr2 = 0.894 Antisimilarity impossible 
<1 Structural commonality 

21'2 = 1.414 Similarity of a structure 

2 Maximally dissimilar 

Visually recognizable similarity 

exceeds difference 

to its own mirror image 

conformations having geometrically significant sim- 
ilarity, whereas for more than 180 residues, it is 
very unlikely that geometrically significant similar- 
ity can be achieved by chance. This can also be seen 
in Table I, where even two 50-residue conformations 
chosen at random from contiguous segments of un- 
related proteins have a 1% chance of having their 
mutual psc < 0.68. We believe this will be a useful 
test to apply when judging the quality of conforma- 
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tions determined for small proteins by NMR and 
theoretical methods. 
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APPENDIX 
THE ANTICOMPARISON THRESHOLD 

We want to find the maximal vqlue of D,, over all 
pairs of structures such that D,, 5 Ds,. It helps to look 
a t  the two-dimensional case first, where the deriva- 
tion is algebraically messy but straightforward to 

follow. It is convenient to think of the spherically 
scaled x and y coordinates of A and B and n-dimen- 
sional vectors, a,, ay, b,, and by. The correlation 
matrix U between A and B has elements 

for i ,  j = x ,  y. u. .  = n -‘ai. bj (21) B 

In two dimensions the rotation matrix 

cos 0 sin 8 
-sin e cos e R = (  (22) 

involves only the single variable 0. Substituting this 
into Eq. (l), expanding, and solving dD2/d0 = 0, 
gives the optimal superposition value of 

0” = arctan (23) 

which results in an optimal value of 

2 1/2 Dic(A,B) = 2 - 2 [ ( ~ =  + u ~ ~ ) ~  + (uYx - uXr) 1 . (24) 

Now mirror inversion of A can be done by setting a, 
= -a,,, which changes the sign of uyy and uyx, so that 

@JA,B)  = 2 - 2 [ ( ~ =  - u ~ ~ ) ~  + (uY. + ~ ~ ~ ) ~ 1 ~ / ~ .  (25) 

Setting DL = Dzc results in 

0 = urzuyy - uxyuy, = det(U). (26) 

Minimizing DZc subject to det (v) = 0 by Lagrange 
multipliers yields four solutions all giving the same 
extremal value of D& = 4 ~ 2 , .  In addition, the coor- 
dinates of A and B must be embeddable (viewed as 
four vectors in n-dimensional space, for n > 4), im- 
plying that the eigenvalues of the metric matrix 

a,. a, a,. ay a,. b, a,. by 

a, . b, ay . b, b, . b, b, . by 
a, . by ay . by b, . by by . by 

) (27) 
ax ,ay  a y ‘ a y  ar.  b, a y .  by 

1 / 2  0 urz Uxy  

must be n~nnegat ive .~  (The diagonal blocks of ele- 
ments arise from the principal axes and unit radius 
of gyration conditions on the coordinates.) Combin- 
ing this condition with each of the four solutions to 
the optimization, always results in the constraint 
that  IuJ < K1”, so that the maximal antisimilar 
D& = 112. 

Now in three dimensions, the spherical scaling of 
A in terms of its n-dimensional coordinate vectors, 
a,, ay, and a,, implies 

a , . l  = a Y . 1  = a , . l  = 0 

a:= a,” = a,” = 113 
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a, . ay = a, . a, = a, . a, = 0 (28) 

where 1 = (1, 1, . . . ). In other words, the inertial 
tensor of A is just 113 the unit matrix. The correlation 
matrix U between A and B is now 3 x 3, having el- 
ements uij = n-l ai .  bj for i, j = x, y, z. Following the 
presentation by McLachlan,', the symmetric matrix 

(29) 

built out of the unsymmetric U has six eigenvalues 
in 2 pairs, namely A,, A,, A,, -A3, -A2, and -Al, 
labeled in terms of the three nonnegative eigenval- 
ues, A, 2 A, 2 A, 2 0. It can be shown6*11,12 that 

D2(A, B )  = R2(A) + R?B) - 2(Al + A2 + SA3) (30) 

where S = 1 is the sign of det (U). S = 1 whenever 
D(A, B )  > D(A, B) ,  and S = - 1 whenever D(A, B )  < 
D(A, B) ,  so the condition D(A, B )  = D(A, B )  implies 
A, = 0. Furthermore, spherical scaling implies R(A) 
= R(B) = 1. Expressing any eigenvector of W as the 

concatenation of two three-dimensional vectors, 
[ef, we see that 

so that he = Uf and A f  = UTe. From this is follows 
that any eigenvector of W is also an eigenvector of 
the 6 x 6 metric matrix 

except that the eigenvalue is now A + 113. Because 
the metric matrix must have nonnegative eigenval- 
ues, we have A 2 -113. When [e, f ]  is the eigenvec- 
tor corresponding to X = -Al or A = -A,, a t  most A, 
= A, = 113. Then Eq. (30) reduces to the threshold 
value of the scaled Dzc(A, B )  = 213. By the definition 
of p in Eq. (16), this corresponds to a scaled value of 
p,,(A, B )  = V% = 0.894. 


