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ABSTRACT The reconstructed image of the size-invariant visual cryptography (VC) is inevitably accom-

panied by the loss of secret image information and the degradation of perceptual quality. Here, the halftone

technique comes to the forefront since it can realistically simulate the grayscale image from a discrete binary

image. Thus, by combining VC sharing with grayscale image halftone technique, this paper proposes a

size-invariant VC scheme for grayscale image underpinned by the efficient direct binary search (EDBS)

algorithm, in which the multi-pixel encryption VC sharing is adopted into the EDBS halftone process.

Through local optimizations and global iterations, the optimal reconstructed image is obtained. To further

enhance the contrast of the reconstructed image with limited computational power, the image information

is probabilistically extracted according to the inverse mapping in the codebook. It is theoretically proved

that the proposed scheme is as secure as the traditional VC, while its effectiveness is validated through

experiments and comparative analyses.

INDEX TERMS Efficient direct binary search, grayscale image, multi-pixel encryption, perceptual quality,

size-invariant, visual cryptography, visual secret sharing.

I. INTRODUCTION

In 1994, Naor and Shamir [1] introduced the idea of secret

sharing into digital images and thus initialized the research on

visual cryptography (VC). This approach was different from

the traditional cryptography consuming considerable com-

puting resources during decryption. The key characteristics

of VC are absolute security and simplicity in reconstructing

image. For specific sets of participants, no computational

resources but human visual system (HVS) are required to

decode the secret image, whereas for the remaining ones,

no information regarding the secret image can be leaked.

The design of a VC scheme mainly focuses on three aspects,

namely reducing pixel expansion, improving perceptual qual-

ity, and ensuring security. These aspects are mutually restric-

tive. In general, security is a hard constraint in the design of

a VC scheme.

There exist two approaches for parameter optimiza-

tion on the premise of ensuring strict security. One is to

reduce the pixel expansion toward the pixel-expanded VC
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schemes [1]–[6], which are collectively referred to as deter-

ministic VC. The deterministic VC schemes can optimize

the pixel expansion to some extent but cannot achieve the

goal of pixel invariant. With the increasing number of par-

ticipants, the expansion dilates exponentially, which brings

substantial burden for share storage, transmission, and com-

putation; hence, it cannot meet application needs. The other

is to improve the perceptual quality of the reconstructed

image toward size-invariant VC schemes. The idea of such

schemes is to balance the inherent contradiction between the

perceptual quality and the size of the reconstructed image

by combining the size-invariant VC sharing with the digital

image processing method to optimize the perceptual quality

of the reconstructed image. This has become the research

hotspot of VC, and is also the research objective of this paper.

The main implementation methods of size-invariant

VC include the random grid (RG), the probabilistic method

and the multi-pixel encryption method. Based on the func-

tion operation, Kafri et al. [7] proposed a RG scheme

and realized the secret image sharing via three functions:

randomization, equality, and inversion. The secret image

can be revealed by the superposition of sharing images.
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On this basis, Chen et al. [8] extended the RG to the threshold

structure. Concerning to perceptual quality, Wu et al. [9] con-

structed a contrast-enhanced RG scheme and post-processing

to obtain an even reconstructed image. Hu et al. [10]

improved the contrast of (k, n) RG by carefully arranging

pixel positions. Wu et al. [11] defined the XOR operation for

color pixels to generate the color shares.

Ito et al. [12] stochastically selected one column from

the basis matrices of the deterministic VC to realize a size-

invariant scheme. Yang et al. [13] formally defined the prob-

abilistic VC, in which the secret pixels are recovered with a

certain probability by statistical principles. Hou et al. [14]

proposed a progressive VC using the elementary matrices

to construct the sharing matrices. The quality of shares was

promoted, except the reconstructed image. Wu et al. [15]

utilized colors to generate size-invariant shares, which was

inapplicable to grayscale image. The effect of the recon-

structed images using the RG is visually similar to that of

the probabilistic method. Yang et al. [16] proved the equiv-

alence of RG and probabilistic method in theory. Although

the perceptual effect of the RG and the probabilistic method

was gradually improved, their results could still not achieve a

satisfying effect due to independently processing each pixel

and disregarding the correlation of pixel distribution in the

neighborhood.

As the name suggests, the multi-pixel encryption VC

(MEVC) uses multiple pixels as the basic block and maps

a secret block into a block containing the same number of

pixels in the sharing images, to realize the size-invariant VC.

Hou et al. [17] proposed an MEVC scheme, in which the

basis matrices of the deterministic VC scheme were used as

the sharing matrices for the concurrent encryption of m con-

secutive pixels, while the corresponding sharing matrix was

selected by the proportion of black pixels in the secret block.

The selection of the basis matrix in [17] was not stochastic

when encrypting a block with i black pixels (i ∈ [0,m]).

The former i blocks are encoded by B1, and the remaining

m-i blocks are encoded by B0, which may result in periodic

stripes in the reconstructed image. Liu et al. [19] optimized

the matrix selection approach such that any secret block with

i black pixels has a probability of i/m to select matrix B1
and that of (m− i)/m to select matrix B0. The improvement

eliminated periodic texture in [17]. Regarding to variable-size

secret pixel block, Zhang et al. [20] put forward a multi-pixel

encryption scheme incorporating deterministic VC and prob-

abilistic VC. However, the selection of sharing methods

depending on secret image content may render the shares to

leak the contour information, which cannot comply with the

security requirement.

Chen et al. [21] proposed a scheme to build the multi-level

grayscale basis matrices and the block with high average gray

value in the halftone image is mapped to the block with high

gray value in the reconstructed image. Thus, the reconstructed

image obtained stronger representation by profiting from

more than two-level grayscale levels. Lee et al. [22] selected

different mapping combinations leveraging the histogram

feature of the grayscale secret image, which inexplicitly real-

ized the histogram equalization and thus improved the visual

quality of the reconstructed image.

Halftone VC encodes the secret image into meaningful

halftone shares. Zhou et al. [23] combined the halftone

methods with extended VC sharing to generate good quality

halftone shares. In similar, Wang et al. [24], Yan et al. [25]

and Hodeish et al. [26] all focused on improving the quality

of sharing images. By contrast, Yan et al. [27] creatively

proposed the AbS framework integrating the error diffusion

method and the size-invariant VC to spread the error between

the reconstructed and the secret images to a high-frequency

band, and generated the reconstructed image with blue noise

characteristics.

The problem with the above-given schemes lies in two

main aspects. First, most efforts focusing on the grayscale

images perform the halftone before VC sharing. The halftone

process decreases the information payload and VC shar-

ing reduces the contrast of the reconstructed image. These

processes exert a direct influence on the final perceptual

effect and separating the halftone from VC sharing is not

conducive to realistically simulate the feature information of

the secret image. Second, the reconstructed image has low

contrast. VC sharing is secure due to randomization, which

inherently reduces the contrast and thus greatly affects the

visual effect. Besides, the upper limit of the VC contrast

optimization is constrained by the basis matrices. Thus,

the contrast of the existing solutions has not been effectively

improved.

In consideration of these problems, this paper proposes

a novel scheme integrating the VC sharing process and the

halftone of a grayscale image. Specifically, we combine the

MEVC sharing with the efficient direct binary search (EDBS)

algorithm to directly optimize the reconstructed image, and

achieve realistic simulation of the grayscale secret image. The

recovery algorithm follows the traditional VC decryption,

i.e., the image reconstruction relies on the superposition of

sharing images. For the environment with limited comput-

ing power, this paper also designs an information extrac-

tion process to obtain a more visually pleasing observation

effect. The reconstructed image is probabilistically optimized

according to the inverse mapping of the pre-shared codebook;

hence, the image contrast is significantly enhanced. In theory,

the proposed scheme is as secure as the deterministic VC. The

experimental results and the comparative analyses validate

the effectiveness of the proposed scheme.

The contributions of this paper can be summarized as

follows:

• We propose a structural model combining the MEVC

with the EDBS for grayscale image which significantly

improves visual quality of the reconstructed image. This

model compensates the deficiency of the perceptual

effect of the reconstructed image, which not only ensures

the unconditional security and simplicity in reconstruct-

ing image, but also is effective to improve the perceptual

effect.
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• We design an information extraction process in which

the secret information is probabilistically recovered and

the contrast of the reconstructed image is considerably

enhanced with limited computational power.

The remainder of this paper is organized as follows:

Section II presents the definition of the size-invariant

VC for grayscale images and the basic principles of EDBS.

In Section III, we propose the structural model and pro-

vide the pseudo code. The results of the experiments and

comparative analysis are elaborated in Section IV. Finally,

we summarize and conclude our work in Section V.

II. BASIC CONCEPTS

The traditional deterministic VC scheme developed for black-

and-white secret image cannot cover the case for grayscale

images. Hence, this section first defines the size-invariant

VC for grayscale images and then introduces the optimization

strategy of EDBS, as well as several image quality evaluation

metrics.

A. DEFINITION OF THE SIZE-INVARIANT VC FOR

GRAYSCALE IMAGES

A VC scheme for grayscale image is utilized to encrypt a

grayscale secret image and generate n sharing images Si ∈

Z
M×N
2 , i ∈ [1, n] which are then distributed to n participants.

Only the specific combinations of participants, i.e., autho-

rized subsets, can decode the information directly by the HVS

through overlapping sharing images, whereas the remaining

ones, i.e. forbidden subsets, cannot obtain any information

about the secret image. For a (k, n) threshold scheme, the

authorized subset is a set of all possible combinations with

at least k participants. The definition of (k, n) size-invariant

VC for grayscale image, (k, n)− SIGVC, is given below.

Definition 1 (k, n)SIGVC: let B0 ∈ Z
n×m
2 and B1 ∈ Z

n×m
2

be the basis matrices of (k, n) deterministic VC. Blocks ϕ and

ε represent arbitrary two non-overlapping regions with the

same number of secret pixels of the grayscale secret image.

Without loss of generality, suppose w (ϕ) > w(ε), where

w(·) represents the average grayscale level of the block. Let

v
ϕ
i and vǫi (i ∈ [1, n]) be the vector in n sharing images

of the corresponding areas ϕ and ε. Let P = {i1 . . . i} denote

the participant set. Vectors ϕ′ and ε′ represent the result of

the stacking vector v
ϕ
id

and vǫid (id ∈ P). If the following

two conditions are met, the secret sharing algorithm can be

regarded as a valid (k, n)− SIGVC.

1) Contrast condition. For λ ≥ k,

ϕ′ = V
iλ
i=i1

v
ϕ
i , ε′ = V

iλ
i=i1

vǫi (1)

satisfies w(ϕ′) ≥ w(ε′). The symbol
∨

represents element-

wise OR operation.

2) Security condition. For λ < k ,

fℓ =
[

vℓi1 , . . . , v
ℓ
iλ

]T
, ℓ = ϕ, ε, (2)

satisfies fϕ ∼ fε, i.e., they have the same statistical charac-

teristics. That is, given the vector fl , one cannot derive any

additional information about the secret image.

The first condition guarantees that the secret image can be

correctly recovered when there are k participants. It should be

noted that w(ϕ′) ≥ w(ε′), not w(ϕ′) > w(ε′). The second

condition implies that the result of stacking less than k sharing

images would not disclose any information about the secret

image.

B. THE OPTIMIZATION STRATEGY OF THE EDBS

The direct binary search (DBS) [28], a heuristic optimization

technology, aims to minimize the visual error between the

halftone and the original images by realistically simulating

the characteristics of the original image. The global opti-

mization of the DBS algorithm is built upon local optimiza-

tions which are realized by the central pixel inversion and

eight-neighborhood exchange, as shown in Fig.1, and the

transformation result minimizing the local square error is

retained. Through the local optimizations and global itera-

tions, the halftone image with a minimum square error is

finally obtained.

FIGURE 1. The local optimization strategy.

The specified order of eight-neighborhood scan is as

follows:

Seq =

[

−1 −1 −1 0 0 1 1 1

−1 0 1 −1 1 −1 0 1

]

= [u1, . . . . . . .u8] . (3)

The HVS is a complex low-pass filter, which can automat-

ically filter out the high-frequency noise components in an

image. To maximize the approximation of the original image,

the optimization strategy simulates the perception ability of

the HVS with vision system model which is mathematically

represented by the point spread function (PSF). The original

and halftone images are respectively represented as G and Ĝ,

and the two-dimensional PSF is denoted as G, and ⊗ stands

for the convolution. Therefore, we can obtain the following

optimization problem:

E = min

∥

∥

∥
G ⊗

(

G− Ĝ
)∥

∥

∥

2
. (4)

One of the shortcomings of the DBS algorithm is its

high computational complexity occurring due to square error

calculation in every inversion/exchange. As the number of

iteration increases, the halftone image gradually approxi-

mates to the original image, and the number of effective

inversion/exchanges of each iteration gradually decreases.
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However, the consumption of computing resources does not

lessen. Analoui and Allebach [28] introduced the autocorre-

lation and cross-correlation coefficients into the DBS, which

is denoted as the EDBS, to determine the effectiveness of

each inversion/exchange by measuring the extent of sensory

changes in a specific area. Hence, the calculation of the

change quantity is converted into a linear operation. The

variation of the local square error,1E , can be formulated as:

1E =
(

1 + a21

)

cp̃p̃ [0]

−2
(

a0cp̃ẽ
[

uj
]

+ a1cp̃ẽ [ui] − cp̃p̃
[

ui − uj
])

, (5)

where i, j ∈[0,8]&i 6= j, u0 is the central pixel. The cp̃p̃ is

the autocorrelation coefficient, a constant associated with the

PSF, and the cp̃ẽ is the cross-correlation coefficient updated

every time the local optimal value determined. More details

can be found in [31].

C. EVALUATION METRICS

The traditional perceptual evaluation index of the VC is based

on relative difference [1], which only works with binary

secret image. With the same basis matrices, the global rel-

ative difference of the MEVC is the same as that of the

probabilistic one. Benefiting from more evenly distributed

minority pixels, the former achieves a better perceptual effect.

To describe such distinction, Hou et al. [18] introduced vari-

ance to reflect the smoothness of the local area as well as

the relative difference to evaluate the reconstructed image.

The variance-based metric is also applicable to binary secret

image.

There are three types of objective evaluation methods

in digital image processing [32]: non-reference, reduced-

reference and full-reference. The non-referencemeasurement

characterizes the features of the image, such as pixel dis-

tribution uniformity, dark and light tone. The full-reference

measurement describes the similarity between the target

and original images, i.e., fidelity. To objectively reflect the

visual quality of the reconstructed image, this scheme uti-

lizes radially average power spectral density (RAPSD) as a

non-reference evaluation index, while mean structural simi-

larity (MSSIM), and peak signal-to-noise ratio (PSNR) are

used as full-reference evaluation indexes.

1) Spectral characterization. The visual rendering quality

of a halftone image is closely associated with its frequency

domain characteristics, and the distribution of minority pixels

in the image can be revealed in the frequency domain. Since

the HVS is more sensitive to the low-frequency noise, and

the visually-friendly noise model usually has the charac-

teristics of sparse low-frequency energy and concentrated

high-frequency energy. In computer graphics, the noise con-

forming to these characteristics is named as the blue noise.

For example, the image generated by the error diffusion

halftone technique, whose pixels are evenly distributed,

accommodates the typical blue noise characteristics, and thus

presents a satisfying visual effect.

The power spectrum density is estimated by the average

periodogram, and the halftone process is divided into K

overlapping periodograms with a length of each cycle graph

being N . Hence, the power spectral density can be obtained

by:

P (f ) =
1

K

∑K

i=1

|F {∅i}|
2

N
, (6)

where ∅i(i ∈ [1,K ]) represents K sample vectors, and F

refers to a two-dimensional Fourier transform. By decom-

posing the spectral domain and splitting the two-dimensional

frequency domain into a series of rings, two easily observ-

able one-dimensional representations: RAPSD Pp(fp) and

anisotropy Ap(fp) can be obtained. The basic characteristics

of a ring are described by the width of the ring1f , the radial

frequency fp on the center radius, and the frequency sample

Np(fp). The RAPSD can be expressed as:

Pp
(

fp
)

=
1

Np(fp)

∑Np(fp)

i=1
P (f ) . (7)

2) Fidelity. For the full-reference evaluation index, the

tone and structure similarity of target and original images are

measured. The MSSIM [29], an acknowledged measurement

standard, considers the combination of local luminance com-

parison, the local contrast comparison, and the local corre-

lation of two images as one metric. The tonal similarity is

often measured by the PSNR. To simulate the intrinsic low-

pass filtering characteristics of the HVS [30] and make the

calculation results more in line with the perceptual observa-

tion, the input signal is processed by the Gaussian low-pass

filter with a standard deviation of σ , and the corresponding

indicators are calculated afterward.

III. CONCEPTUAL DESIGN

In this section, we introduce the design of the EDBS-based

size-invariant VC scheme for grayscale image, provide its

pseudo-code, and theoretically prove its effectiveness.

A. STRUCTURAL MODEL

The proposed scheme combines the MEVC sharing with the

EDBS to make up for the deficiency of the perceptual effect

of the reconstructed image. The access structure is an (n, n)

threshold and the algebraic structure is the ‘‘OR’’ operation.

Besides, since the color convention of VC is not suitable for

combing halftone algorithm and VC, this paper adopts light

transmittance to represent the pixel color.

As shown in Fig.2, the model consists of three main parts:

the left part implementing the parameter initialization, the

right-upper part performingMEVC sharing and the simulated

superposition operation, and the right-lower part executing

the EDBS algorithm. The operational process of the proposed

scheme can be summarized as follows:

• First, generate a stochastic seed image in the initializa-

tion part, then partition the seed image with a block of

size b × b = m, and then encode the blocks using

MEVC and generate n sharing images after quantization.
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FIGURE 2. The structural model of the proposed scheme.

Hence, the reconstructed image R0 which is denoted as

R afterward and serves as the optimization objective of

the EDBS algorithm, is obtained by superimposing the

sharing images.

• Each optimal value is obtained through the block-based

EDBS. Then, the MEVC algorithm encodes the optimal

value according to Coordinate and State Tag, the coordi-

nate and the color of optimal value, and synchronously

updates the sharing images and R. It should be noted that

we use the reconstructed block rather than the optimal

value as the result of each local optimization. With local

optimizations and global iterations, the target image R is

ultimately determined until there’s no changeable value.

Ultimately the reconstructed image R and n sharing

images are outputted.

• The initial correlation coefficients are produced with R0

at the very beginning of the loop. The cross coefficient

updated after each local EDBS optimization acts as the

key part to determine whether the current exchange

values are valid. The Gaussian model is used as the PSF.

It is assumed that the images can be completely segmented.

The goal of this scheme aims to minimize the difference

between the reconstructed image R and the secret image G,

which can be boiled down to the following optimization

problem:

E = min ‖G ⊗ (G-R)‖2. (8)

1) Quantization Qc. The input of the quantization is a

binary vector block of size b×b = m, thus the grayscale set is

ζ = {0, 1, 2 . . . .b2 with element number of |ζ | = b2 + 1. Let

the set in the reconstructed image be ψ . In general, the sets

ζ and ψ have the following inclusion relation ψ ⊂ ζ , and

the mapping ζ → ψ is a surjection and non-injection. Thus,

more than one element in ζ are mapped into an element in ψ ,

and the codebook c is utilized to characterize the mapping

relationship. It is noted that such a mapping relationship

results in the loss of secret information in a size-invariant

VC scheme.

2) Gamut mapping. Gamut mapping is to uniform the color

space of multiple images performing the linear operation.

Since the color space of R is ψ , the dynamic range of the

grayscale secret imageG should be adjusted to match withψ .

There are two common methods to realize such conversion,

namely linear mapping and non-linear mapping. The former

can completely maintain the relative contrast between the

grayscale levels of the original image. The latter diffuses or

compresses the certain parts of the grayscale level to empha-

size or weaken the intensity of some colors. This scheme

adopts the linear mapping method to completely simulate the

features of the secret image.

3) Block-based EDBS. In this scheme, we take a pixel

block of size b× b as the operation unit. Therefore, the local

optimization range is among a 3 × 3 pixel-block. The secret

pixel block should first be quantified and then the local

optimization is performed according to the optimization

strategy.

FIGURE 3. Block-based local EDBS optimization.

Fig.3 describes the block-based local optimization strat-

egy by taking a 2 × 2 block as an example. The block

inversion/exchange is used to find the possible optimal solu-

tion. Let us assume that the grayscale value of the central

block is M0, and each local optimization operation performs

the central block inversion and the eight-neighborhood block

exchange. The object of central block inversion is the element

β ∈ ψ{M0}, i.e., all elements in setψ exceptM0. Hence, each

local optimization needs to calculate the local square error

|ψ | + 8 times at most, and retain the result of decreasing the

local square error most. If there is no such result, the central

block is kept unchanged.

4) Information extraction. The information extraction aims

to further improve the contrast of the reconstructed image

in an environment with limited computational power. For

the grayscale set ζ =
{

0, 1, 2 . . . .b2
}

of the secret image,
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Algorithm 1 EDBS-Based (n, n) SIGVC

Input: (1) grayscale secret image G of size M × N

(2) basis matrices Ci ∈ Z
n×m
2 , i ∈ [0, 1] of (n, n) VC

(3) Gaussian filter G∈RL×L

(4) codebook c

Output: sharing images Si ∈ ZM×N
2 , i ∈ [1,n] ,R ∈ ZM×N

2 ,

R̃ ∈ ZM×N
2

Step 1. initialize parameters

Step 2. encode I ’ using the MEVC and simulated stacking

to obtain R0

Step 3. generate the cross-correlation:

e = R0 − G′, (e, c
G̃G̃

)
yields
−→ cG̃ẽ

Step 4. for every block of size b× b in R

Step 5. apply the EDBS to search for local optimal

value and update cp̃ẽ
Step 6. encode the changed block using MEVC, update Si

and R

Step 7. if count =0, turn to Step8; else, turn to Step 4

Step 8. loop termination, output Si and R

Step 9. calculate the mean grayscale value T of the pixel

block of size b× b

Step 10. for every block B in image R of size b× b

Step 12. ifw (B) > T , replace it with a = (a ∈ ζ 1&p(a)p1)

Step 13. else, replace it with a = (a ∈ ζ 2&p(a)p2)

Step 14. output the optimized image R̃

the block is mapped into a grayscale level set ψ according

to the codebook. The information extraction is the inverse

process.

The mapping from ψ to ζ is also a surjection and non-

injection, where an element in ψ may correspond to multiple

elements in ζ . Assuming that ψ = {g1, · · ·gt }, the map-

ping relationship between ψ and ζ is shown in Fig.4 where

the element in ζ i is recovered with the probability of

1/ |ζi| , (i ∈ [1, t]).

FIGURE 4. Mapping relationship.

Our scheme adopts the two-level grayscale, i.e., |ψ | = 2.

Now, suppose that ψ = {g1, g2}, and the elements in

subset ζ 1 = {0, 1, 2 . . . β} are mapped into g1, and the

elements in subset ζ 2 = {β + 1, . . . .b2} are mapped into

g2. Hence, the element in ζ 1 is revealed with the prob-

ability of p1 = 1/ |ζ1| at the grayscale level g1, and thus

p2 = 1/ |ζ2| for g2. The corresponding pseudo-code is given

in Algorithm.

FIGURE 5. The abstracted diagram of the structural model.

B. PROOF OF VALIDITY

To facilitate an understanding and expression, the structural

model is abstracted as in Fig.5, where S represents the EDBS

algorithm, and Ĝ denotes the halftone image corresponding

to the reconstructed image R, i.e., Ĝ = S(G). Let a vector z

in G denote as ẑ in Ĝ, z̃ in G̃, and z
′ in R.

Lemma 1 [19]: For a (k, n) MEVC scheme for a binary

secret image, two secret blocks, x and y of the same size

are denoted as x ′ and y′ in the reconstructed image. For

the number of participants λ ≥ k , if w(x) > w(y), then

w(x ′) > w(y′).

Theorem 1: The proposed EDBS-based (n, n) SIGVC

scheme meets the contrast requirement.

Proof: The average grayscale of a block in G → Ĝ→G̃

possesses a chain reaction. Suppose that ϕ and ε are two un-

overlapped blocks with the same size in the secret image G.

If w(ϕ) > w(ε), then w(ϕ̂) ≥w

(

ε̂
)

and w(ϕ̃) ≥w(ε̃).

According to Lemma 1, w(ϕ′) ≥w(ε′) holds.

Theorem 2: The proposed EDBS-based (n, n) SIGVC

scheme meets the security requirement.

Proof: For λ <n, suppose that PB1 and PB0 stand for the

collection of all possible column permutation by restricting λ

rows of matrices B1 and B0. Each block in G̃ are encoded

by the matrices in PB1 and PB0. According to the security

condition in [1], PB1 and PB0 have the same sample space

and the probability distribution. In other terms, these two

collections are the same; thus, fϕ ∼ fε, and = w

(

ϕ′
)

w(ε′)

holds.

It can be observed that the effectiveness of the proposed

scheme is equivalent to that of the Naor-Shamir VC [1].

IV. EXPERIMENTS AND RESULT ANALYSIS

In this section, first the effectiveness of the proposed scheme

is validated through experiments. Then, we analyze the per-

ceptual quality and fidelity of the reconstructed image and

compare it with typical size-invariant VC schemes. Finally,

the computational complexity is analyzed.

To ensure the persuasiveness of comparisons, the following

conditions have to be met: i) reference algorithms strictly

abide the security condition of VC; ii) the encryption object

is a grayscale image; iii) the algebraic structure is an ‘‘OR’’

operation; iv) the content of comparison is the perceptual

quality of the reconstructed image. Based on the above condi-

tions, we pick Yang et al. (2004) [13], Liu et al.’s (2011) [19]

Construction III and Yan et al. (2019) [27] as comparative

references. Among them, [19] is the improved version of

Hou et al. (2004) [17], hence we do not compare with [17]

anymore. Construction IV of [19] is based on weak secu-

rity condition, thus no comparison is made either. Besides,
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multi-level VC is applied in [27], so we no longer consider

Chen et al. (2007) [21] and Lee et al. (2014) [22].

A. VALIDATION

We use the grayscale image Lena of size 512× 512 from the

standard image dataset to validate the effectiveness. The pixel

block is of size 2 × 2, and the basis matrices are as follows:

B0 =

[

1 0

1 0

1 0

1 0

]

, B1 =

[

1 0

0 1

1 0

0 1

]

. (9)

Fig.6a is the grayscale secret image, while Fig.6b and Fig.6c

are the two sharing images generated out of it. Any sharing

image is a noise-like image with evenly distributed black

and white pixels. The shares do not reveal any information

about the secret image, which satisfies the security condition.

Fig.6d is the reconstructed image obtained by superposing

the two shares together, which satisfies the contrast condition.

The structure is realistically revealed in Fig.6d, and the tex-

tures are also clearly displayed. In terms of hue, the contrast

of the reconstructed image is evident between the light and

dark areas. Apart from maintaining the structure of Fig.6d,

the optimized image in Fig.6e, greatly enhances the contrast.

Since the inverse mapping extracts information with a certain

probability, the similar bright areas are recovered with the

elements in the same subset, which leads to the unevenly dis-

tributed minority pixels. These results verify the effectiveness

and feasibility of the proposed scheme.

FIGURE 6. The experimental results obtained with Lena.

B. IMAGE QUALITY ANALYSIS

For the quality analysis of the constant images, we select four

representative grayscale values and perform perceptual obser-

vation, RAPSD spectrum analysis and average grayscale

comparison to assess the pros and cons of each scheme. The

sample set of the constant grayscale images of size 512×512

is J = {51, 119, 153, 221}.

Table 1 shows the reconstructed images of different con-

stant images. To ensure fairness, the optimized image of

this scheme is beyond the scope of comparison. Besides,

to avoid image distortion caused by scaling, the results shown

TABLE 1. The Reconstructed Images of the Constant Images.

in Table 1 are the originals intercepted by 70 pixels vertically

and horizontally. The halftone images with the error diffusion

method are utilized as the encoded object in both Yang et al.’s

and Hou et al.’s algorithms. The overall pixel distribution of

the former is more uniform than the latter for low grayscale

levels. With the increase of the grayscale value, more black

pixels turn into white, and the minority pixels are enriched

locally, which deteriorates the perceptual quality. Yan et al.’s

algorithm diffuses the error between the reconstructed and the

secret images to its neighborhood blocks. Hence, the deterio-

ration in perceptual quality caused by the aggregation of the

minority pixels is effectively alleviated. In doing so, the visual

quality is significantly improved compared to Hou et al.’s

algorithm.

In this scheme, when the grayscale level is low, there

occurs the phenomenon of local concentration and global

even distribution of minority pixels due to block-by-block

sharing. The first image shows a grid-like pattern, which can

lead to a high energy density at certain frequencies. With the

increase of the grayscale level, the number of white pixels

also increases, which weakens the impact of the block-based

sharing. The perceptual quality of the reconstructed image

does not deteriorate with the increase of the grayscale value.

The results of the proposed scheme are visually friendly

and consistent with the characteristics of the blue noise.

In terms of hue, the brightness of each grayscale level is

perceptually higher than that of Yan et al’s scheme. This

phenomenon can be interpreted by the different principles of

the EDBS and the error diffusion. The central block performs

flipping during local optimization, which makes an adaptive
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adjustment with the tone of the secret image. This mechanism

can realistically simulate the original image and improve the

contrast of the reconstructed image.

FIGURE 7. Comparison of the RAPSD.

From the visual point of view, we make a qualitative anal-

ysis on the constant image. Subsequently, from the frequency

domain point of view, the performance of the reconstructed

images is exhibited more intuitively. Fig.7 is the PAPSD

diagram of Table 1 for the four grayscale values. Compared

to other schemes, Liu et al. produce the most concentrated

low-frequency energy at low grayscale values, which is in line

with the poor perceptual observation effect in Table 1. The

low-frequency energy gradually declines with the increasing

grayscale values. Yang et al.’s scheme is with flat but high

energy on the low-frequency band for all grayscale values.

The oscillogram of the proposed scheme is similar to that

of Yan et al.’s in the wave trend, which shows obvious blue

noise characteristics and good graphic property. When the

grayscale value is 51, there is a steep pulse signal in the

frequency map, which indicates that the energy density is

mostly concentrated in these frequencies. It is easy to asso-

ciate such phenomenon with the grid-like graphic features in

the reconstructed image. Similar local areas produce similar

spectral powers and lead to power focus at certain frequen-

cies. Regarding the above analysis, the visual observation

in Table 1 and the RAPSD oscillogram in Fig.7 validate each

other, and demonstrate the good performance of the proposed

scheme.

The brightness of the image reconstructed by the proposed

scheme is visually higher than that of the reference schemes.

We verify the conjecture by comparing the average grayscale

values. As shown in Fig.8, the diamond-shaped dashed line is

the grayscale value, J = {g|g = 17 × i, i ∈ [0, 15]}, of the

constant image. For the (2, 2) threshold, the contrast of the

reconstructed image normally declines by half, i.e., the aver-

age grayscale value of the reconstructed image is half of the

constant image. As seen, the average grayscale values of the

FIGURE 8. Comparison of the average grayscale values.

three reference schemes are concurring, exactly equal to the

half of the constant values.

The local optimization strategy of the EDBS can largely

simulate the tone of the original image. It can be found that the

average grayscale value of the proposed scheme is higher than

that of the reference schemes, and is also closer to the original

image for each grayscale level. Therefore, the difference in

brightness is verified both qualitatively and quantitatively.

C. FIDELITY ANALYSIS

Two representative evaluation metrics, PSNR and MSSIM,

are selected as the measurement indexes to analyze the

fidelity of natural images in terms of image tone and image

structure.

FIGURE 9. Comparison of the reconstruction effect.

Fig.9a shows the secret image, while Fig.9b, c, d, and e cor-

respond to the superimposed results of the schemes proposed

byYang et al., Liu et al., Yan et al., and this paper. Fig.9f is the

image optimized by the information extracted from Fig.9e.

The low-frequency band energy of Liu et al.’s. gradually

declines with the increase of the grayscale value, while the

probabilistic method is not improved. For the brighter area of

Fig.9a, the distribution of minority pixels in Fig.9c is more

uniform than that of Fig.9b. Therefore, the overall perception

of Fig.9c is superior to Fig.9b. Based on theMEVC,Yan et al.

employ the error diffusion technique to push the noise to
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the high-frequency band. Apart from the contrast reduction

and color distortion caused by VC sharing, the presentation

of Fig.9d possesses fair perceptual quality with evenly dis-

tributed minority pixels and fine structural features.

The display of this scheme is close to Yan et al.’s structure

and detail presentation. Compared to Fig.9d, the brightness

is higher in Fig.9e for the areas with higher local grayscale

values, such as the front part of the hat. Thus, the overall con-

trast of the proposed scheme is higher than that of Yan et al.’s,

which is also in line with the results in Fig.8. Therefore,

the proposed scheme achieves good performance on tone

and structure features and obtains a realistic presentation.

Furthermore, the Fig.9f has enhanced contrast thanks to the

information extraction, and is more approximate to the secret

image in tone.

FIGURE 10. The test atlas with a size of 512 × 512, indexed in a raster
scanning order.

FIGURE 11. Quantitative comparison on the test atlas.

Based on the qualitative analysis above, we use the PSNR

and MSSIM to quantify the comparison results in terms

of tone and structural similarities. The test atlas shown

in Fig.10 consists of 20 commonly used standard grayscale

images indexed by the raster scanning order in the field

of digital image processing. Fig.11a reveals that the struc-

tural similarity of Yan et al.’s and our proposed scheme are

approximately similar, and the information extraction has no

obvious impact on the structure improvement. By contrast,

the performance of Yang et al. and Liu et al. is generally poor.

Fig.11b shows that the PSNR values of Yang et al.,

Liu et al., and Yan et al. are almost equal without an obvious

difference, which is consistent with the results of the aver-

age grayscale value. The performance of the PSNR value

of our scheme outperforms the reference schemes, i.e., the

reconstructed image approximates to the secret image more.

Furthermore, the optimized image is significantly improved

in terms of contrast, and is closer to the grayscale secret image

in tone. To sum up, the proposed scheme is superior to the

reference schemes with regards to both tone and structure

performance. Additionally, Fig.11 reveals that MSSIM is

more effective than the PSNR in representing the perceptual

effect of the reconstructed image. For the sameMSSIMvalue,

the higher the PSNR value is, the better the perceptual effect

will be.

D. COMPUTATIONAL COMPLEXITY

The time complexity of the proposed and the reference

schemes are linear functions of the secret image size, i.e.,

O(MN ) with M and N denoting the row and column width

of the grayscale secret image, which can be estimated by

the number of basic operations or steps performed during

algorithm execution.

Let the operation time of one addition/subtraction be Tadd ,

one multiplication/division be Tmul, and one random number

generation be Trnd . The time complexity of Yan et al.’s

scheme varies with different block size and the result is

determined according to the current settings. Let the kernel

size of PSF be K and the total iterations of this scheme be c.

TABLE 2. Comparison of Computational Complexion.

The total time complexity of [13] and [19] is 5MNT add +

4MNT mul+MNT rnd both. It is 7MNT add+9.25MNT mul+

MNT rnd in [27] and (75c+ 2)MNT mul + (c+ 1)

MNT rnd + (20c+ 2K + 1)MNT add) in this scheme. Table 2

discloses that the time complexity of our scheme is the highest
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among the reference schemes. For Lena image, the actual

running time of [27] and this paper is respectively 1.87s and

8.13s on a laptop with Intel i7 CPU and 16GB memory.

V. CONCLUSION

This paper proposes a structural model combining theMEVC

sharing with the EDBS halftone technique for grayscale

images to improve the perceptual quality of the reconstructed

image, which nests the VC sharing into the EDBS optimiza-

tion loop to guarantee the contrast and security conditions by

the MEVC sharing and promote the perceptual quality by the

EDBS. We also design an information extraction process to

improve the contrast of the reconstructed image by the inverse

mapping of the mapping relationship in the codebook.

The experiment and result analysis show that the minority

pixels in the reconstructed image are uniformly distributed

with visually-friendly observation, which conforms to the

blue noise feature. The structure of the secret image is well

recovered, the tone of the secret image is genuinely simulated,

and the contrast of the reconstructed image is higher than

the reference schemes. The information extraction process

further enhances the contrast of the reconstructed image and

produces an optimized imagemore similar to the secret image

in terms of tone characteristics. The structural model of the

proposed scheme has strong scalability; thus, it can be com-

bined with other size-invariant methods, such as probabilistic

VC and RG. In our future studies, we consider to integrate the

multiple-level VC into the EDBS to generate a more exquisite

presentation of the reconstructed image.
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