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Abstract In order to find patterns in data, it is often necessary to aggregate or sum-

marise data at a higher level of granularity. Selecting the appropriate granularity is a

challenging task and often no principled solutions exist. This problem is particularly

relevant in analysis of data with sequential structure. We consider this problem for a

specific type of data, namely event sequences. We introduce the problem of finding

the best set of window lengths for analysis of event sequences for algorithms with

real-valued output. We present suitable criteria for choosing one or multiple win-

dow lengths and show that these naturally translate into a computational optimisation

problem. We show that the problem is NP-hard in general, but that it can be approx-

imated efficiently and even analytically in certain cases. We give examples of tasks

that demonstrate the applicability of the problem and present extensive experiments

on both synthetic data and real data from several domains. We find that the method

works well in practice, and that the optimal sets of window lengths themselves can

provide new insight into the data.
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Fig. 1 Analysis of data at different levels of granularity may reveal different patterns in the data. In this

example, visualisation of the relative frequency of an event—using sliding windows of different lengths—

reveals different trends in the data. The generative process for this sequence is described in Section 6.2.

1 Introduction

Event sequences often contain continuous variability at different levels. In other

words, their properties and characteristics change at different rates, concurrently. For

example, the sales of a product may slowly become more frequent over a period of

several weeks, but there may be interesting variation throughout a week at the same

time. To provide an accurate and robust view of such multi-level structural behaviour,

one needs to determine the appropriate levels of granularity for analysing the under-

lying sequence. This is especially relevant when using a sliding window.

Sliding windows are frequently used in several sequence analysis tasks, such as

mining frequent episodes (Mannila et al 1997), finding biological or time series mo-

tifs (Chiu et al 2003; Das and Dai 2007), analysing electroencephalograms (EEGs)

(Sörnmo and Laguna 2005), or in linguistic analysis of documents (Biber 1988).

However, such methods are often parametrised by a user-defined window length and

it can be unclear how to choose the most appropriate window length(s).

This problem can be solved by defining an appropriate objective function and

using an optimisation algorithm to select the best window length. In some cases an

appropriate cost function may be easy to specify, but that is not always so. Besides,

using a single window length may leave out important information. In this paper,

we introduce a framework and a generally applicable objective function that aims at

finding a small set of window lengths that together provide as much information as

possible about the underlying data, with respect to a quantity of interest.

Example. Consider as a statistic the frequency of an event in an event sequence.

Such statistics may involve variation at different levels simultaneously. Figure 1

shows an example of the relative frequency of an event over time computed using

sliding windows of lengths 1562 and 6250 (the generative process for this sequence

is described in Section 6.2). We observe that each window describes a different view

of the data: the longer window suggests a smoothly increasing frequency throughout

the sequence, while the shorter window captures a periodic behaviour of the statistic.
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Summary of Contributions. We introduce a novel framework and a generally ap-

plicable objective function to find the most informative set of window lengths for

analysing event sequences with any algorithm that outputs real numbers. We prove

that optimising the objective function is NP-hard in general, and show that we can

approximate the solution efficiently using an existing algorithm with some modifi-

cations. We also prove that for certain simple statistics and data distributions, the

optimisation problem can be solved exactly analytically. We show that these exact

solutions are useful to compare empirical results with.

Furthermore, we give examples of tasks that demonstrate the applicability of the

problem to different domains, and study optimal window lengths for both synthetic

and real data. We present experiments on data from several application domains: text

books, DNA sequences, and sensor measurements. We find that the optimisation al-

gorithm works sufficiently well, that the optimal window lengths for finding patterns

in various types of data vary significantly, and that the optimal window lengths them-

selves can also provide useful information about the data.

This manuscript is an extended version of Lijffijt et al (2012). the main differences

are the following. The problem setting is more general and we provide more justifica-

tion for why the proposed criteria for selecting window lengths are useful, i.e., that it

enables a user to infer the values of the relevant statistic at all window lengths as well

as possible. We propose a different optimisation algorithm (see above). We prove that

the problem can be solved analytically in certain cases. All experiments have been

redesigned, are more extensive and now include significance testing. We study an

additional type of data: real-valued sensor measurements.

Outline. The remainder of this paper is outlined as follows. The related work is

discussed in Section 2, and the formal problem setting is presented in Section 3. The

framework and the generally applicable objective function are introduced in Section

4, the experiments are reviewed in Section 7, and the paper is concluded in Section 8.

2 Related Work

Sliding windows have been used in many application domains that involve sequences

(discrete or continuous). However, window lengths are chosen either empirically or

they are optimised for the task at hand. To the best of our knowledge, no earlier work

has proposed a principled method for choosing a set of window lengths that optimally

summarise the data for a given statistic and data mining task. To provide a context

for this work, we briefly review the main approaches from several domains.

String and Text Mining. Sliding windows are used frequently in string mining.

Indexing methods for string matching based on n-grams (Li et al 2007a), i.e., sub-

sequences of length n, employ sliding windows of fixed or variable length to create

dictionaries and speed-up approximate search for strings in large collections of texts.

Determining the appropriate window length is a challenge, as small window lengths

result in higher recall but large index structures.

In text mining, looking at different linguistic dimensions of text results in extract-

ing different views of the underlying text structure (Biber 1988). One way to quantify
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these views is by using sliding windows. Recently, an interactive text analysis tool1

has been developed for exploring the effect of window length on three commonly

studied linguistic measures: type-token ratio, proportion of hapax legomena, and av-

erage word length. However, the window length is user-defined.

Bioinformatics. Several sliding window approaches have been proposed for ana-

lysing large genomes and genetic associations. Existing methods can be categorised

into two groups: fixed-length vs. variable-length sliding windows (Bourgain et al

2000; Toivonen et al 2000; Mathias et al 2006; Li et al 2007b; Papapetrou et al 2012).

For the case of fixed-length windows it is hard to determine the optimal window

length per task while variable-length windows provide higher flexibility.

A variable window length framework for genetic association analysis employs

principal component analysis to find the optimum window length (Tang et al 2009).

Sliding windows have also been used for searching large biological sequences for

tandem repeats (Benson 1999), motifs (Das and Dai 2007), and poly-regions (Papa-

petrou et al 2006). In all cases it is assumed that there exists only one optimum length

and the solution is limited to the task of genetic association analysis.

Stream Mining. A typical task in stream mining is to detect and monitor frequent

itemsets in an evolving stream, counted over sliding windows. We present a brief

survey of the use of sliding windows in stream mining, though the overall setting is

very different from the problem studied in this paper and a setup requiring online

learning is not considered here.

In the case of the fixed-length window model the length of the window is set at the

beginning, and the data mining task is to discover recent trends in the data contained

in the window (Demaine et al 2002; Golab et al 2003; Karp et al 2003; Jin et al

2008). In the time-fading model (Lin et al 2005) the full stream is taken into account

in order to compute itemset frequencies but the frequencies are weighted by recency,

i.e., recent transactions have a higher weight as compared to older transactions.

The tilted-time window (Giannella et al 2003) can be seen as a combination of

different scales reflecting the alteration of the time scales of the windows over time. In

the landmark model, particular time periods are fixed while the landmark designates

the start of the system until the current time (Jin and Agrawal 2005; Karp et al 2003).

Calders et al (2008) introduced a frequency measure based on a variable window

length by defining the frequency as the maximal frequency over all windows until the

latest event. Variants of these methods have been proposed for specific objectives.

Time Series. Enumerating frequently occurring patterns is a common problem in

time series. Such patterns are called motifs due to the analogy to their discrete coun-

terparts in computational biology. Efficient motif discovery algorithms have been

proposed, based on sliding windows, for summarising and visualising massive time

series databases (Chiu et al 2003; Mueen et al 2009).

Papadimitriou and Yu (2006) proposed a method for discovering locally optimal

patterns in time series at multiple scales along with a criterion for choosing the best

window lengths. However, this is a local heuristic and applies only to continuous

data. Also related is the problem of scale-space decomposition of time-series (Vespier

1 http://www.uta.fi/sis/tauchi/virg/projects/dammoc/tve.html
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et al 2012), which aims at defining several frequency bands that correspond to the

components of a signal.

Fourier and Wavelet transforms (Sörnmo and Laguna 2005) are used pervasively

to analyse periodicity in time-series. Although it may be possible to apply such meth-

ods for certain statistics, these methods are not generally applicable to the problem

setting considered here. Fourier and Wavelet transforms require numeric input, while

we focus on selecting window lengths for finding local patterns in event sequences

where the event labels are not restricted to numbers.

Finally, several algorithms have been proposed recently for efficient discovery of

motifs of variable length (Li et al 2012; Yingchareonthawornchai et al 2013; Mueen

2013). The key challenge in motif discovery is how to enumerate motifs of variable

length efficiently without performing exhaustive search of all possible lengths. Al-

though granularity selection is a problem in motif discovery, the general problem

studied in this paper deviates from the objective of motif discovery. We do not aim

at finding repeated patterns of variable length in time series, but rather for the most

informative set of window lengths for analysing event sequences.

3 Problem Setting

3.1 Preliminaries

Given a set of event labels L, an event sequence S of length n is defined as S =
(s1, . . . ,sn), where si ∈ L, for all i ∈ {1, . . . ,n}. We denote the subsequence of S start-

ing at position i with length ω as Si,ω = (si, . . . ,si+ω−1). We use the term window

length to refer to the length of the subsequences, ω . Thus, analysis of the data using a

sliding window of length ω and step size 1 means that we look at all subsequences of

S of length ω . We assume that an analyst using our method is interested in analysing

data using an algorithm takes as input a subsequence Si,ω and outputs a real number

f (Si,ω). We refer to this output f (Si,ω) : Lω → R as the statistic (of interest). Exam-

ples of possible statistics f are given in Section 3.3, but in principle f can be any

function or algorithm.

3.2 Problem Definition

Our aim is to find a set θ of k granularity levels (window lengths) that are most

informative with respect to the statistic f and the event sequence S. An intuitive way

to express the informativeness is to measure how well we can predict values of the

statistic f at other granularity levels. Hence, the problem can be translated into finding

a set of k window lengths that allows an analyst to predict f as well as possible for

all window lengths that we are interested in.

To this end, we assume that the end-user is able to specify a set Ω that contains

all potentially interesting window lengths. We argue that a set of window lengths θ is

most informative if it enables an end-user to infer the behaviour of the data (i.e., the

statistic f ) at all window lengths in Ω as well as possible. This expression allows us
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to formulate the problem of finding the most informative set of window lengths as a

regression problem.

Depending on the task at hand, one may consider different regression/objective

functions. In general the objective function depends both on a set θ of k window

lengths and the parameters of a regression function, such that, at each position i in S,

if we are given the value of f at those k window lengths, we can accurately estimate

f for all other window lengths at position i. In this paper, we consider an objective

function that corresponds to solving k-medoids clustering in the output space.

More formally, let Ω = {ω1, . . . ,ωm} be the set of m window lengths that we

consider potentially interesting for analysing the structure of S. We denote the subset

of k window lengths that we select, i.e., the interesting parameters of the optimisation

problem, as θ = {θ1, . . . ,θk} ⊆ Ω . Although the predictive model may contain other

parameters, we are not interested in their values; our aim is that those parameters

should be easy to guess approximately for a user. Thus, we are interested only in the

corresponding window lengths.

Let f̄ (S,θ , i) = { f (Si,θ1
), . . . , f (Si,θk

)} be the set of real numbers that corresponds

to the values of f at position i ∈ {1, . . . ,n∗} for the k window lengths in θ . For sim-

plicity we define n∗ = n+ 1−maxω∈Ω (ω), which ensures that we do not consider

subsequences that are partly unknown. The following definition allows us to state the

optimisation problem more succinctly.

Definition 1 (Reconstruction Function) A reconstruction function g( f̄ (S,θ , i),ω) :

R
k ×1 → R is a function that, given the set of values f̄ (S,θ , i) and a window length

ω , estimates the value of f for window length ω; in other words, g is an estimator for

f (Si,ω).

Figure 2 provides an illustration of the mechanism of a reconstruction function.

The optimisation problem that corresponds to the granularity selection task is then

the following:

Problem 1 (k-Windows Problem) Given an event sequence S, a statistic f , and a

set of window lengths Ω , find a set of k window lengths θ = {θ1, . . . ,θk} ⊆ Ω and a

reconstruction function g that minimise

1

n∗

n∗

∑
i=1

∑
ω∈Ω

(

f (Sω(i))−g( f̄ (S,θ , i),ω)
)2
.

The reconstruction function g can in principle be any regression function. However,

this would lead to a practically impossible optimisation task, as it is infeasible to ex-

plore the space of all possible regression models. Hence, we propose that, depending

on the task at hand, we can restrict the set of possible models to obtain a tractable op-

timisation problem. For example, we can restrict g to the class of nearest neighbour

regressors (see Section 4.1), in which case the optimisation problem is equivalent to

the k-medoids clustering problem.

The idea here is that any additional parameters used by g, i.e., those that are not

in f̄ (S,θ , i), are kept implicit and not shown to the user. Neither is g itself considered

to be interesting. Hence, we should restrict g to regression functions that are easy to

comprehend by end-users. In the remainder of this paper we study only the nearest

neighbour regressor, which is introduced in Section 4.1.
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Fig. 2 Illustration of the reconstruction function g. Each row corresponds to a window length in Ω and

each column to a position in the event sequence S. Function g estimates the value of the statistic f for all

window lengths at position i in S, based on the values of f for a small set window lengths {θ1, . . . ,θk}, in

this case k = 3.

3.3 Examples of statistic f

We give three examples of statistic f , each of which is also used in the experimental

evaluation. The first definition of f is the relative frequency of an event q ∈ A:

f (Si,ω) =
# o f occurrences o f q in Si,ω

ω
. (1)

Note that by definition ω = |Si,ω |. Alternatively, f may be defined as the hapax

legomenon ratio of a sequence, i.e.,

f (Si,ω) =
# o f events occurring exactly once in Si,ω

ω
. (2)

For real valued data the mean can be used as a statistic, in which case f is defined by

f (Si,ω) =
1

ω

i+ω−1

∑
j=i

s j. (3)

The utility of these three definitions in practice is shown in Sections 6 and 7.

4 Solving k-Windows Using k-Medoids

In this section, we introduce our approach to selecting the k most informative window

lengths. To do so, we choose as reconstruction function g a partition-based nearest

neighbour regressor. This restricted problem setting is defined in Section 4.1. In Sec-

tion 4.2 an auxiliary data structure, called the Window-Trace matrix, is introduced,

and the optimisation algorithm is described in Section 4.3.
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4.1 Partition-based Regression

To make the problem setting tractable, we restrict the reconstruction function g to the

following class of regression functions.

Definition 2 (k-Partition NN Regressor) A k-partition nearest neighbour regressor

is a reconstruction function g( f̄ (S,θ , i),ω) : Rk × 1 → R that implicitly contains a

partitioning of the set Ω into k non-overlapping clusters. Each cluster is represented

by a single window length, i.e., g( f̄ (S,θ , i),ω) = f (Si,θ j
), where θ j ∈ θ is the repre-

sentative window length for the cluster where ω belongs.

In the remainder of this paper, we study we restrict to studying the nearest neigh-

bour regressor g. Problem 1 then translates to the problem of partitioning the set of all

window sizes Ω into k clusters and selecting for each cluster one representative win-

dow size, such that the expectation of the squared error is minimised. This problem

is equivalent to the k-medoids clustering problem.

Since the statistic f is unconstrained and the k-medoids clustering problem is

NP-Hard (Aloise et al 2009), this optimisation problem is also NP-Hard, although

this may not be true for all statistics f . Several optimisation algorithms to obtain

good approximations; the algorithm that we propose to be appropriate in this setting

is described in Section 4.3.

4.2 The Window-Trace Matrix

To solve Problem 1 we use an auxiliary matrix, called the Window-Trace (W-T) ma-

trix. This matrix stores the values of statistic f for a set of indices in I and for all

window lengths in Ω . More specifically, let S be the input sequence and f the statis-

tic at hand. Then the W-T matrix T contains all values of f (Si,ω) for all window

lengths ω ∈ Ω and all indices i ∈ I. T is given by

T ji = f (Si,ω j
). (4)

The most accurate representation is obtained by choosing I = {1, . . . ,n∗}. How-

ever, for the reasons of computational efficiency we select the set of indices I by

sampling N indices from {1, . . . ,n∗} uniformly in random and without replacement,

where N is a given parameter. Furthermore, we use T j∗ to denote the row of T cor-

responding to window length ω j.

4.3 Optimization Algorithm

To solve the optimisation problem given in Section 4.1, we use the Clustering

LARge Applications (Clara) algorithm (Kaufman and Rousseeuw 1990), which

is a well-known algorithm to efficiently solve the k-medoids problem. However, we

use a small improvement to increase the quality of the solution, which is described in

the remainder of this section.
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Algorithm 1 Clara++(T , k, r, s)

Θ1 = uniform([1, . . . ,n]) {Pick a number between 1 and n uniformly at random, n is the number of rows

in T }
for i = 2 to k do

Θi = rand([1, . . . ,n]) {Pick a number between 1 and n at random with probability proportional to the

distance to the closest medoid in Θ}
end for

cost∗ = ∞

for i = 1 to r do

S = Θ ∪ uniform({1, . . . ,n} \Θ ,s − k) {Assign S a set that contains Θ , the best set of medoids

currently known, and pick s− k other row indices uniformly at random}

T S =







TS1 ,∗
.
.
.

TSs ,∗






{Select the s rows of T whose index is in S}

Θ = PAM++(T S,k) {Compute PAM++ solution on sample}
cost = computeClusteringCost(T ,Θ) {Compute cost for full matrix}
if cost < cost∗ then

Θ ∗ =Θ
cost∗ = cost

end if

end for

return Θ ∗

The general strategy of Clara is to repeatedly take a small data sample and solve

the clustering problem on the sample using the Partitioning Around Medoids

(PAM) subroutine. The data sample always contains the current best medoids, and

these are updated whenever a solution is found that has lower error on the full data.

Arthur and Vassilvitskii (2007) study the effects of seeding—the process of choosing

the initial representatives for each cluster—for the k-means algorithm, and introduce

a simple method of ‘careful’ seeding that leads to an approximation ratio on the

solution. Their improved algorithm is known as k-means++.

Although there have been studies on the effects of seeding for Clara algorithm,

e.g., by Pakhira (2008), these are different from the change proposed here. Specifi-

cally, the change that we make to the original Clara algorithm is both in the initial

seeding and in the seeding in the PAM subroutine that produces a clustering on a subset

of the data points. The approximation ratio of (Arthur and Vassilvitskii 2007) holds

also for the k-medoids method studied here, since the k-means++ seeding method

gives a proper k-medoids solution, the bound is without further optimisation, and the

cost can only decrease further during the remaining steps of Clara. We expect this

‘careful’ seeding to substantially increase the result quality.

We name the improved variants Clara++ and PAM++, respectively. Pseudocode

for the methods is given in Algorithms 1 and 2. The parameters r and s are related to

a trade-off between quality and time complexity, they are the number of repetitions

and number of samples included in the PAM subroutine, respectively. In the original

Clara algorithm these are not considered to be parameters and have default values

of r = 5 and s = 40+ 2k (Kaufman and Rousseeuw 1990). However, we will study

the effects of increasing the default values in Section 6.
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Algorithm 2 PAM++(T , k)

Θ1 = uniform([1, . . . ,n]) {Pick a number between 1 and n uniformly at random, n is the number of rows

in T }
for i = 2 to k do

Θi = rand([1, . . . ,n]) {Pick a number between 1 and n at random with probability proportional to the

distance to the closest medoid in Θ}
end for

Θold = {}
while Θold 6=Θ do

Θold = Θ
for i = 1 to n do

Li = argmin j∈[1,...,k](‖Ti∗−TΘ j∗‖2) {Label each point with nearest medoid}
end for

for i = 1 to k do

C = {x | Lx = i} {Find the set of points in cluster i}
Θi = argminx∈C ∑y∈C ‖Tx∗−Ty∗‖2 {Pick best medoid for cluster i}

end for

end while

return Θ

A Matlab implementation of the method and scripts for reproducing all experi-

ments can be found on the website of the first author2.

Computational Complexity. Let N be the number of columns of T , i.e., the num-

ber of samples, and let m be the number of rows of T : m= |Ω |. The memory required

to store the Window-Trace matrix T is O(m ·N) and if we assume that the complex-

ity of computing the statistic f (Si,ω) is constant, then the computational complexity

to create the W-T matrix is also O(m ·N).
Clara++ consists of the initial selection of k medoids and then executing the

PAM++ subroutine r times, each on a data sample of size s, plus computing the cost

of the clustering on each iteration. The initialisation of the k medoids has a com-

putational complexity of O(k ·m ·N), because we have to compute the distance to

all other points for each medoid. Let t denote the number of iterations required for

convergence of the PAM++ subroutine. Since computing the full distance matrix takes

O(s2 ·N) steps, the computational complexity of PAM++ is O(s2 ·N + t · k · s+ t · s2)
and since by definition k < s this simplifies to O(s2 · (N + t)). Also, we know that

computing the cost of a clustering has complexity O(k ·m ·N), thus we find that the

total computational cost of Clara++ is O(r ·s2 ·(N+ t)+r ·k ·m ·N). That is, the cost

is linear in the number of window lengths m and the number of data samples N and

the number of repetitions r, but quadratic in s, the number of samples considered in

an iteration of PAM++.

Notice that, given the set of window lengths to consider, Ω , the parameters of

the optimisation algorithm, N, r, and s, determine the computational cost. Hence, one

can choose freely choose an appropriate trade-off between solution quality and speed.

In practice, solutions can be computed quickly, for example, computing one of the

solutions for the largest data set studied in this paper (Section 7.3) takes 80 seconds

using a straightforward Matlab implementation running on a single processor core

(Intel Core i5 2.4 GHz notebook processor).

2 Currently http://users.ics.aalto.fi/lijffijt
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5 Analytical Solutions

For certain statistics and data distributions, it is possible to derive the solution, or at

least the function for the distance between two window lengths, exactly. In this sec-

tion, we present an analytical solution for the case where the statistic is the frequency

of an event and the event sequence comes from a Bernoulli process. From the result

it follows that for a Bernoulli process, the set of window lengths (i.e., the clustering)

is independent of the frequency of an event.

Preliminaries. Let (X1, . . . ,Xn) be a sequence of Bernoulli random variables with

common parameter p, i.e., Xi ∈ {0,1} ,Pr({Xi = 1}) = p, for all i ∈ {1, . . . ,n}. The

random variables could, for example, denote the occurrences of an event. Similar to

the notation for event sequences, we use Xi,ω to denote the subsequence of length ω
starting at position i, (Xi, . . . ,Xi+ω−1). Let the statistic f be the relative frequency of

ones:

f (Xi,ω) =
1

ω

i+ω−1

∑
j=i

X j. (5)

The selection of an optimal set of window lengths is based on the squared error

between predictions made using those window lengths (Problem 1). Under the con-

straint of using a k-partition nearest neighbour regressor, the predictions correspond

to the value of the nearest window length (Section 4.1). Thus, to select the optimal

window lengths, we have to compute the distance (squared error) between all pairs

of window lengths. We find that the distance between window lengths is as follows.

Theorem 1 For the statistic and generative process described above, the expected

distance between two window lengths γ and ω , with γ < ω , is

E [d(ω,γ)] =
ω − γ

ωγ
p(1− p).

Proof See Appendix A.

We observe that there is no interaction between the window lengths γ , ω and

the event probability p, which implies that all distances relative to each other are

independent of p. Thus, for this specific statistic and data distribution, the optimal

window lengths are unaffected by the event frequency, and depend only on the set of

window lengths Ω .

Optimal Window Lengths for a Bernoulli Process. To investigate what optimal

solutions would look like for a Bernoulli process, we have conducted the following

experiment. Using the PAM++ algorithm, we have computed optimal sets of window

lengths for k = |θ |= 3, 4, 5, 6, and window lengths from 1 to m= 1024, 4096, 16384,

65536, using the distance function given above.

The result is visualised in Figure 3. Due to the discreteness of the optimisation

problem, and the fact that we do not solve the optimisation problem exactly, there are

some minor variations, but the overall trend is very clear: the window lengths in each

set follow an exponential pattern.
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Fig. 3 Optimal sets of window lengths for analysis of data arising from a Bernoulli process, for various

number of optimal window lengths k (different figures) and various maximum window lengths (indicated

by color). Each dot represents an optimal window length and the dotted lines connect the window lengths

from each set. We observe that, although there are small deviations, the optimal window lengths in each

set grow exponentially.

6 Evaluation on Synthetic Data

Although we have analytically derived what to expect regarding optimal sets of win-

dow lengths for two basic types of random processes (see Section 5), we do not know

to what extent there is variation in the solution given by the Clara++ algorithm,

which is important in determining the significance of a result. To provide a baseline

for the results in Section 7, we have designed four experiments based on randomly

generated data, where we know precisely what the properties of the data are.

6.1 Bernoulli Process with Fixed Rate

We are interested in the variation of the set of window lengths given by Clara++. We

use Algorithm 3 to generate random data from a Bernoulli process with fixed rate,

given parameters n and p, which are the length of the sequence and the probability of

the event occurring at any position, respectively.

Algorithm 3 Simulate a fixed-rate Bernoulli process SIM1(n, p)

for i = 1 to n do

S(i) = Bernoulli(p)
end for
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Experiment 1. Since Clara++ is non-deterministic, the output may vary, even

with the same input sequence. In the first experiment, we tested the stability of the

solution in terms of the optimal window lengths, using a single sequence generated

by Algorithm 3 with parameters n = 1,999 and p = 0.1.

We investigated how stable the result of the algorithm is, while varying the num-

ber of repetitions from 10 to 80 (doubling the value each time) and the number of

samples from 40 to 320 (also by doubling the value each time). We varied the num-

ber of clusters from 1 to 4 and we used window lengths from 1 to 1,000. As the

statistic we used the relative frequency of the event (Equation 1). We repeated the

experiment for each setting 100 times. For comparison, we also tested the variability

of the PAM++ algorithm.

The results are presented in Figure 4. We observe that the variation with the de-

fault parameter settings is quite large. For example, the results for k = 4 in the top

left figure show that the smallest window length is sometimes larger than the second

largest window length in another run. We see also that the variation is greatly reduced

when increasing the number of repetitions and/or the number of samples.

In the bottom right figure, we find that the set of window lengths is quite stable

when we set the number of repetitions (r) and the number of samples (s) both to

80. As shown in Section 4.3, the computational complexity is linear in the number

of repetitions (and independent of the size of the data because we use sampling),

so typically it will be possible to use more repetitions and samples to improve the

certainty of obtaining a close to optimal result.

Experiment 2. Several data sets, even if they are from the same generative pro-

cess, may give quite different results. Thus, secondly, we tested the stability of the

solutions given by Clara++ for different data sets that have the same properties. We

generated 1 data set with parameters n = 1,999, p = 0.1, and then produced 100

versions by randomly permuting the indices of the sequence. We tested the optimal

window lengths for k = 1−4 on each data set. We used 80 repetitions and 80 samples

as parameters for Clara++, because we found in the previous experiment that these

are good choices, and the other parameters were kept the same as in the previous

experiment.

The results are presented in Figure 5. We observe that there is much more vari-

ation than in the previous experiment, which can be explained by the fact that the

input sequences are slightly different in each repetition. The observed variance can

be used in future experiments to draw conclusions with respect to the significance of

differences in sets of window lengths obtained for various events or data sets.

6.2 Bernoulli Process with Variable Rate

In the previous experiments, the frequency of the event is fixed over time, which

leads to the sequence having structure only on a single scale. To test the ability of

our method for finding the true underlying scale at which the data is structured, we

designed an algorithm to simulate a Bernoulli process with variable rate.

The full process is described in Algorithm 4. The first component of the variable

rate is based on a slow increase of the event frequency over time, which ranges from
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Fig. 4 Stability of the set of window lengths from Clara++ for varying number of repetitions (one value

per figure) and number of samples (adjacent bars in each figure). Squares, triangles, circles and diamonds

represent the medians for various window lengths, the dotted lines represent 90 % confidence intervals and

dashed lines denote that the confidence intervals for the window lengths are overlapping. For comparison,

the variability for the PAM++ algorithm is also shown for each number of window lengths. We observe that

increasing the number of repetitions and the number of samples both have a considerable positive effect in

reducing the variability of the result.

Algorithm 4 Simulate a variable-rate Bernoulli process SIM2(n, p, c)

for i = 1 to n do

t1 = 0.5+(i−1)/(n−1); // Multiplier for scale 1: [0.5–1.5]

t2 = 0.5 · sin(c ·2 ·π · (i−1)/(n−1)); // Multiplier for scale 2: [−0.5–0.5]

S(i) = Bernoulli(p · (t1 + t2))
end for

0.5 · p at the start to 1.5 · p at the end of the sequence S. The second component

consists of the event frequency going up and down rhythmically, based on a sine wave

with peak amplitude 0.5 and mean 0. Finally, both components are added together to

give the variable event frequency, multiplied by the parameter p. The extra parameter,

c, decides the periodicity of the sine wave, hence the second scale. We have generated

a sequence with parameters n = 100,000, p = 0.1 and c = 16. The sequence has

10,009 events and has also been used to generate Figure 1.

Experiment 3. As discussed in Section 4.2, we try to estimate the optimal set of

window lengths for a sequence using a W-T matrix based on samples from the data.

We investigated empirically how many samples T should be based on to obtain a

solution close to the solution that was obtained on the full matrix, i.e., the matrix T

that covers the whole input sequence. We have varied the number of samples from

1 to 16,384 using powers of 2 and computed the solution 100 times for each sample

size to assess the variance. We have used window lengths from 1 up to ⌊n/c⌋= 6,250

(which is the scale of the second component in the data) and k = 3.



Size Matters 15

1 2 3 4
10

0

10
1

10
2

10
3

Number of window lengths

W
in

d
o
w

 l
e
n
g
th

Fig. 5 Stability of the set of window lengths from Clara++ over 100 data sets with the same properties.

Squares, triangles, circles and diamonds represent the medians for various window lengths, the dotted lines

represent 90 % confidence intervals and dashed lines denote that the confidence intervals for the window

lengths are overlapping. The variation is much greater than in Figure 4, indicating that the variability in the

results due the non-deterministic nature of the optimisation algorithm is much smaller than the variability

over data sets with the same properties.
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Fig. 6 Stability of window lengths from Clara++ on a sequence obtained from simulating a Bernoulli

process with rate that varies over time, using various numbers of samples to construct the Window-Trace

matrix T . Squares, triangles and circles represent the medians for various window lengths, the dotted lines

represent 90 % confidence intervals and dashed lines denote that the confidence intervals for the window

lengths are overlapping. Surprisingly, the variability in the solutions does not decrease significantly when

increasing the number of samples beyond 32.

Figure 6 illustrates the results. We observe that the solutions are remarkably ro-

bust: the solutions using only 8 samples are already quite accurate approximations

and from 32 samples and up, the solutions are practically equivalent. Thus, we can

conclude that for simple data sets like this, a Window-Trace matrix based on 32 po-

sitions in S is sufficient.

Experiment 4. Finally, we tested if we can retrieve the two scales that are present

in the synthetic sequence. To prevent making it too easy for the algorithm, we use

window lengths from 1 to 20,000 and the Window-Trace matrix T is based on 1,000

indices in S. In a typical setting, we do not know how many scales a data set has.

It is useful to note that a higher k always provides more information, thus choosing

k too high is better than too low. For exploratory purposes, we use k = 3. Figure 7

illustrates the results. We find that the variable trend in the data can be identified well.

As a sanity check, we have computed the optimal solution for a data set generated

with Algorithm 3 with an equal number of events. The prediction error on both data

sets with both solutions is given in Table 1. We observe that the solutions are clearly
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Fig. 7 The representation of the data based on the solution for k = 3 on a sequence obtained from simu-

lating a Bernoulli process with rate that varies over time. The variable trend in the data is clearly shown by

the shorter window lengths, while the longest window length reveals the slow trend.

Table 1 A cross-comparison of the total prediction error for two comparable synthetic data sets with the

optimal solution for either sequence. The solutions are clearly different from each other and the prediction

error differs by a factor of two or more.

Fixed-rate optimal solution Variable-rate optimal solution

Data sequence (16148, 9058, 3044) (16050, 3055, 1018)

Fixed rate 0.71 ·106 1.91 ·106

Variable rate 0.22 ·106 0.11 ·106

specific to the data, and that in both cases optimising the set of window lengths for

the data specifically leads to only half as much error. We also observe that the data

from the time-varying process is much more predictable, the error is almost ten-fold

lower. This is expected, as the data from the fixed rate process is maximally random.

Notice that our objective is to find a set of window lengths that is most infor-

mative with respect to the chosen statistic and the event sequence. The method is

not designed to find subtle differences in structure that have only a small effect of

the informativeness of a set of window lengths. Hence, we do not expect, e.g., that

the window lengths found here would be sensitive to small variations in periodicity

of the signal or that would be efficient in distinguishing components of the signal

with approximately similar frequencies. Other methods are better suited to find such

structures, such as FFT in the case of periodicity.

6.3 Choosing Proper Parameter Values

Based on the previous experiments we draw the following conclusions regarding the

parameter choices:

– We find that the accuracy of the solution can be increased by using more repe-

titions in the Clara++ algorithm. We recommend at least 80 repetitions, instead

of the default value of 5. More complex data and a larger set of window lengths

possibly require more repetitions.

– Increasing the number of samples also has a strong effect on the accuracy of

the solution. However, increasing the value should be done with care, as it the
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computational complexity is quadratic in the number of samples. We recommend

to use 80 samples or more, instead of the default value of 40+2k.

– The number of samples in the Window-Trace matrix can be small; 32 samples is

sufficient for a Bernoulli sequence.

– For these synthetic sequences, the uncertainty present in the data is larger than

the variability of the solutions for the optimisation problem.

7 Evaluation on Real Data

To evaluate the usefulness of our problem setting in practice, we have designed four

experiments on real data. In Section 7.1 we consider tracking the frequency of several

words of varying type and frequency throughout the novel Pride and Prejudice. In

Section 7.2 we study what window lengths would be appropriate for tracking the evo-

lution of hapax legomenon ratio throughout texts from various genres. In Section 7.3

we examine tracking the frequency of nucleotides and dinucleotides in two reference

genomes from the NCBI repository, and in Section 7.4 we identify the appropriate

window lengths for analysing multi-scale structured time series.

7.1 Optimal Window Lengths for Several Words

Burstiness (Katz 1996) and dispersion (Gries 2008) of words in natural language cor-

pora have become important concepts in research in linguistics (Gries 2008), natural

language processing (Madsen et al 2005) and text mining (Lijffijt et al 2011). Bursti-

ness and dispersion are used interchangeably to refer to measures for the variability

of the frequency of a word, i.e., a poorly dispersed or very bursty word tends to be

highly frequent in some (parts of) texts and infrequent in all other (parts of) texts.

In Section 5, we have shown that the optimal set of window lengths does not have

a relation to the frequency of the event studied, thus it would be interesting to know

if the optimal set of window lengths does depend on the burstiness of an event in a

sequence.

To test this, we conducted the following experiment. We downloaded the popular

novel Pride and Prejudice by Jane Austen, which is freely available through Project

Gutenberg (http://www.gutenberg.org/). The novel has approximately 120,000 words.

We selected the 30 most and least bursty words with a frequency of at least 100. In

this case, we measured the burstiness of a word by fitting a Weibull distribution to the

inter-arrival time distribution of the word, then the shape parameter of the distribution

is a measure for burstiness (Altmann et al 2009; Lijffijt et al 2011). The Weibull (or

stretched exponential) distribution is a two-parameter exponential family distribution

which can be used to model the distribution of the interarrival-times of the words. To

study the effect of burstiness on the optimal sets of window lengths, we used k = 3

and window lengths from 1 to 2000.

The result is shown in Figure 8. The value for the Weibull β parameters are given

at the top of the figure. We identify a clear trend: for the two smaller window lengths,

we observe that these are longer for bursty words than for non-bursty words, al-

though there is quite some variation within the two groups. The effect is strongest
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Fig. 8 Optimal sets of window lengths for analysing the evolving frequency of 60 words in the novel

Pride and Prejudice, for k = 3. Squares, triangles and circles represent the medians for various window

lengths, the dotted lines represent 90 % confidence intervals and dashed lines denote that the confidence

intervals for the window lengths are overlapping. The words are sorted by burstiness, i.e., the Weibull β
parameter. We observe that the variability of the window lengths over different runs is quite large, but that

the algorithm chooses significantly longer window sizes in the case of bursty words. This trend is most

visible for the middle window lengths (triangles).

for the words “I” and “you”, which are the most frequent bursty words. Although the

effect is weak, the average and median window lengths for the longest windows are

also higher for bursty words than for non bursty words (mean/median non-bursty vs.

bursty: 1083/1083 vs. 1136/1134, std. non-bursty vs. bursty: 63 vs. 81).

The fact that bursty words give longer window lengths may be due to the fact

that they exhibit a larger scale structure (bursts and intervals between bursts) than the

more uniformly distributed non-bursty words. The variation over individual words

inside the groups is likely due to an interaction with the frequency of the word and

because the Weibull β conveys not exactly the same ‘burstiness’ as is captured by our

method.

7.2 Hapax Legomenon Ratio in Several Genres

The genre of a text largely determines its structure, which can be measured in terms

of several linguistic features, for example the hapax legomenon ratio of texts (Biber

1988). We investigated if the optimal set of window lengths shows significant varia-

tion over texts from different genres, using the British National Corpus (The British

National Corpus 2007) and the genre annotation from (Lee 2001). We have randomly

sampled 100 texts from the BNC for each of the main genres in the corpus: conver-

sation, imaginative fiction, academic prose and newspaper texts. The statistic used

is now hapax legomenon ratio, as given in Equation (2), and we have used window

lengths from 1 to 1,000 and k = 3.
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Fig. 9 Optimal sets of window lengths for analysing the evolving Hapax legomenon ratio for 400 texts

from the British National Corpus, for various genres. Each point corresponds to a window length selected

for that book, given the value of k, and red lines present the averages of the four genres. Both imaginative

prose and conversations are significantly different from the other three genres (p < 10−3, Wilcoxon rank-

sum test, all three averages). The selected window lengths are shorter, possibly indicating a more uniform

scale structure.

The result is shown in Figure 9. Although the set of window lengths varies over

texts within each genre, we find that imaginative prose and conversations each seem

to have a different structure than the texts from other three genres. This suggests that

the scale structure of imaginative prose is more uniform than for other genres. A likely

explanation is that the texts in the imaginative prose class are long coherent stories,

while the texts in the other classes are collections of articles, topics and conversations.

7.3 Frequency of Nucleotides throughout DNA

Studies in biology and bioinformatics have shown that DNA chains consist of a num-

ber of important, known functional regions, at both large and small scales, which

contain a high occurrence of one or more nucleotides (Papapetrou et al 2006). Exam-

ples of such regions include: isochores, which correspond to multi-megabase regions

of genomic sequences that are specifically GC-rich or GC-poor and exhibit greater

gene density; CpG islands, that correspond to regions of several hundred nucleotides

that are rich in the dinucleotide CpG which is generally under-represented (relative

to overall GC content) in eukaryotic genomes and their presence in the genome has

been associated with gene expression in nearby genes.

We have studied Chromosome 1 of two organisms: Homo Sapiens (human) and

Canis Familiaris (dog), of lengths 225 and 122 million nucleotides, respectively.

The data has been downloaded from the NCBI data repository3. We focused on six

event types: the four nucleotides A, C, G, and T, as well as dinucleotides TA and

CG. We tested our algorithm using k = 3 and window lengths up to 10,000. The

statistic used in our experiments was the relative event frequency and we sampled

1,000 columns for the W-T matrix.

In Figure 10 we see a comparison of the best window lengths found by our algo-

rithm for the two organisms. We observe that the four single nucleotides as well as

3 http://www.ncbi.nlm.nih.gov
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Homo Sapiens Canis Familiaris

Fig. 10 Optimal sets of window lengths for the evolving frequency of nucleotides in Homo Sapiens chro-

mosome 1 and dog chromosome 1, for k = 5.

the two dinucleotides exhibit highly similar behaviour for both organisms. This is ex-

plained by the high genomic structural similarity between humans and dogs (Kirkness

et al 2003). Nonetheless, we see that the nucleotides C and G and both dinucleotides

behave substantially different from the nucleotides A and T. One may think that this

is merely a frequency effect, as the nucleotides A and T are much more frequent.

However, from Section 5 we know that the frequency of an event does affect the

distances between window lengths, but not the clustering.

Figure 11 illustrates the running frequency over the first 200,000 bases for chro-

mosome 1 of Homo Sapiens, for all four nucleotides and the two dinucleotides, us-

ing the optimal window lengths. We observe that the different window lengths give

somewhat different views of the data. As expected, the exact locations of bursts of

the dinucleotide are identified most accurately by the shortest window length. How-

ever, the significance of each burst is seen directly from the line corresponding to

the longest window length, since that line takes a fairly constant value throughout

most of the sequence. Hence, there is clear value in using multiple window lengths,

although in case two window lengths may be sufficient.

7.4 Smoothing of Time Series

An example of a time series with multi-scale structure comes from the Infrawatch

project (Knobbe et al 2010; Vespier et al 2012). The data consists of 24 hours of

measurements from a strain sensor on a bridge (the Hollandse brug in the Nether-

lands). The data contains structure at three time scales: a high frequency component

generated by individual cars and trucks passing on the bridge, a medium frequency

component generated by traffic jams, and a low frequency component generated by

weather effects (e.g., temperature). The sensor was sampled at 10 Hz and the total

length of the time series is 860,953 measurements.

We tested our method on this data with the following parameter setting. Since

the scale space is potentially very large, and the frequencies below 1 Hz (window

length 10) are not interesting, we constructed the set of potentially interesting window
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Fig. 11 Frequency of the studied (di-)nucleotides over the first 200,000 bases for chromosome 1 of Homo

Sapiens, using the best window lengths for that (di-)nucleotide.

lengths Ω = {10,14,20, . . . ,163840,231705}, i.e., rounded powers of
√

2 starting at

window length 10. Also we use N = 1,000 and k = 3.

The result is presented in Figure 12. At a first glance, it is difficult to say whether

the three window lengths correspond directly to the three time scales that are present

in the data, because the window lengths correspond to different views and not to fre-

quency bands, as studied, for example, by Vespier et al (2012). Still, we observe that

the three window lengths give very different views of the data, each of which repre-
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Fig. 12 Smoothing of a time-series containing measurements from a strain sensor on a bridge in the

Netherlands, using an optimised set of three window lengths. The top figure shows the full sequence (24

hours), while the bottom figure shows a zoom-in on the traffic jam that occurred between 9am and 10am.

sents a different time scale. The substantial difference between the window lengths

becomes most clear in the zoomed-in figure. Evidently, this provides strong support

for our claim that it can be useful to study a set of window lengths.

8 Conclusions

We have studied the novel problem of identifying a set of window lengths that con-

tain the maximal amount of information in the data. We have presented a generally

applicable objective function that users could employ, which can also be efficiently

optimised algorithmically, or analytically for certain simple statistics and data distri-

butions. We have extensively studied the performance of the proposed optimisation

algorithm, as well as the identified solutions for three examples of sliding window

statistics on both synthetic data and real data. We have illustrated that the analytical

results and the computational results on synthetic data are useful as a baseline for

practical use. We have illustrated how sampling can be used to obtain the optimal set

of window lengths more efficiently, making the method practical for (collections of)

sequences of any size. Moreover, we have shown that the window lengths themselves

can show interesting properties of the data; among other findings, we have identi-

fied relations between the optimal window lengths and (1) the structure of sequences

composed of multiple interleaved sources and (2) the burstiness of events.

A question left for further research is how many window lengths a user should

employ in practical settings. One may be able to find a good trade off by exploring the
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value of the loss function for various number of window lengths, while an alternative

approach is to just select the number of window lengths as high as practically feasible,

since more windows is always more informative. Although it was our initial goal,

we have not explored the use of the method in an interactive setting, where a user

could for example fix one or more window lengths in advance, give the optimisation

algorithm hints about good window lengths, or construct the set of window lengths

interactively. There are clearly many interesting opportunities for future research in

this direction.
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A Proof of Theorem 1.

Preliminaries. Let (X1, . . . ,Xn) be a sequence of Bernoulli random variables with common parameter p,

i.e., Xi ∈ {0,1} ,Pr({Xi = 1}) = p, for all i ∈ {1, . . . ,n}. The random variables could, for example, denote
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the occurrences of an event. Similar to the notation for event sequences, we use Xi,ω to denote the subse-

quence of length ω starting at position i, (Xi, . . . ,Xi+ω−1). Let the statistic f be the relative frequency of

ones:

f (Xi,ω ) =
1

ω

i+ω−1

∑
j=i

X j. (5)

The selection of an optimal set of window lengths is based on the squared error between predictions

made using those window lengths (Problem 1). Under the constraint of using a k-partition nearest neigh-

bour regressor, the predictions correspond to the value of the nearest window length (Section 4.1). Thus,

to select the optimal window lengths, we have to compute the distance (squared error) between all pairs of

window lengths. We find that the distance between window lengths is as follows.

Theorem 1 For the statistic and generative process described above, the expected distance between two

window lengths γ and ω , with γ < ω , is

E [d(ω,γ)] =
ω − γ

ωγ
p(1− p).

Proof The expected distance between two window lengths γ and ω is

E [d(ω,γ)] = E

[

1

n∗

n∗

∑
i=1

(

f (Xi,γ )− f (Xi,ω )
)2

]

.

Since X1, . . . ,Xn are i.i.d. random variables, this simplifies to

E [d(ω,γ)] = E
[

(

f (X1,γ )− f (X1,ω )
)2
]

.

Assuming without loss of generality that γ < ω , we find that

f (X1,ω ) =
1

ω

ω

∑
j=1

X j

=
1

ω

γ

∑
j=1

X j +
1

ω

ω

∑
j=1+γ

X j

=
γ

ω
f (X1,γ )+

ω − γ

ω
f (X1+γ,ω−γ ).

Thus we can rewrite the expected distance as

E [d(ω,γ)]

= E

[

(

f (X1,γ )−
γ

ω
f (X1,γ )−

ω − γ

ω
f (X1+γ,ω−γ )

)2
]

= E

[

(

ω − γ

ω

)2
(

f (X1,γ )− f (X1+γ,ω−γ )
)2

]

=

(

ω − γ

ω

)2

E
[

(

f (X1,γ )− f (X1+γ,ω−γ )
)2
]

=

(

ω − γ

ω

)2

E
[

f (X1,γ )
2
]

+E
[

f (X1+γ,ω−γ )
2
]

−2E
[

f (X1,γ ) f (X1+γ,ω−γ )
]

.

These three expectations are

E
[

f (X1,γ )
2
]

=
p(1− p)

γ
+ p2,

E
[

f (X1+γ,ω−γ )
2
]

=
p(1− p)

ω − γ
+ p2, and

E
[

f (X1,γ ) f (X1+γ,ω−γ )
]

= p2.
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For brevity, we skip the derivation for these three expectations. They can be derived, for example, using

the fact that the variance of a binomial distribution is Var [Bin(n, p)] = E
[

Bin(n, p)2
]

−E [Bin(n, p)]2 =
np(1− p), and its expectation is E [Bin(n, p)] = np.

By writing out the expected distance we find that

E [d(ω,γ)] =

(

ω − γ

ω

)2
p(1− p)

γ
+ p2 +

p(1− p)

ω − γ
+ p2 −2p2

=

(

ω − γ

ω

)2 (
1

γ
+

1

ω − γ

)

p(1− p)

=
(ω − γ)2

ω2

ω − γ + γ

γ(ω − γ)
p(1− p)

=
ω − γ

ωγ
p(1− p).


