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Abstract

The Hadoop Distributed File System (HDFS) is designed to handle
massive amounts of data, preferably stored in very large �les. The
poor performance of HDFS in managing small �les has long been a
bane of the Hadoop community. In many production deployments
of HDFS, almost 25% of the �les are less than 16 KB in size and as
much as 42% of all the �le system operations are performed on these
small �les. We have designed an adaptive tiered storage using in-
memory and on-disk tables stored in a high-performance distributed
database to e�ciently store and improve the performance of the
small �les in HDFS. Our solution is completely transparent, and it
does not require any changes in the HDFS clients or the applications
using the Hadoop platform. In experiments, we observed up to
61 times higher throughput in writing �les, and for real-world
workloads from Spotify our solution reduces the latency of reading
and writing small �les by a factor of 3.15 and 7.39 respectively.
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1 Introduction

Distributed hierarchical �le systems typically separate metadata
from data management services to provide a clear separation of
concerns, enabling the two di�erent services to be independently
managed and scaled [1–5]. While this architecture has given us
multi-petabyte �le systems, it also imposes high latency on �le
read/write operations that must �rst contact the metadata server(s)
to process the request and then the block server(s) to read/write
a �le’s contents. With the advent of lower cost main memory
and high-performance Non-Volatile Memory Express solid-state
drives (NVMe SSDs) a more desirable architecture would be a
tiered storage architecture where small �les are stored at meta-
data servers either in-memory or on NVMe SSDs, while larger �les
are kept at block servers. Such an architecture would mean that
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reading/writing small �les would save a round-trip to the block
servers, as metadata server(s) would now fully manage the small
�les. Such an architecture should also be able to scale out by adding
new metadata servers and storage devices.

A distributed, hierarchical �le system that could bene�t from
such an approach is the Hadoop Distributed File System (HDFS) [6].
HDFS is a popular �le system for storing large volumes of data on
commodity hardware. In HDFS, the �le systemmetadata is managed
by a metadata server, which stores the entire metadata in-memory
on the heap of a single JVM process called the namenode. The �le
data is replicated and stored as �le blocks (default size 128 MB) on
block servers called the datanodes. Such an architecture is more
suitable for providing highly parallel read/write streaming access
to large �les where the cost of the metadata operations, such as �le
open and close operations, is amortized over long periods of data
streaming to/from the datanodes.

Best practices for Hadoop dictate storing data in large �les in
HDFS [7]. Despite this, a signi�cant portion of the �les in many
production deployments of HDFS are small. For example, at Yahoo!
and Spotify, who maintain some of the world’s biggest Hadoop
clusters, 20% of the �les stored in HDFS are less than 4 KB, and a
signi�cant amount of �le system operations are performed on these
small �les. In Logical Clocks’ administered Hadoop cluster majority
of the �les are small, that is, 68% of the �les are less than 4 KB (see
Figure 1a. and section 2). Small �les in HDFS a�ect the scalability
and performance of the �le system by overloading the namenode.
In HDFS the scalability and performance of the �le system is limited
by the namenode architecture, which limits the capacity of the �le
system to ≈500 million �les [8]. Storing the data in small �les not
only reduces the overall capacity of the �le system but also causes
performance problems higher up the Hadoop stack in data parallel
processing frameworks [9]. The latency for reading/writing small
�les is relatively very high as the clients have to communicate with
namenode and datanodes in order to read a very small amount of
data, described in detail in section 3.2.

The problem with adding a tiered storage layer, that stores small
�les in the metadata service layer (namenode) of HDFS is that it
would overload the already overloaded namenode. However, a new
open-source1 distribution of HDFS, HopsFS [8, 10], has been intro-
duced as a drop-in replacement for HDFS that stores �le system
metadata in a highly available, in-memory, distributed relational

1HopsFS Source Code: https://github.com/hopshadoop/hops
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a.  File Size Distribution

Yahoo HDFS File Distribution
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b.  File Operations Distribution

Spotify HDFS File Ops Distribution
LC HopsFS File Ops Distribution
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c.  Breakdown of File System Operations at Spotify
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d.  Breakdown of File System Operations at Logical Clocks
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Figure 1: These �gures show the distribution of the �les and operations according to di�erent �le sizes in Yahoo!, Spotify,

and Logical Clocks’ Hadoop clusters. Figure a. shows the cumulative distribution of �les according to di�erent �le sizes. At

Yahoo! and Spotify ≈20% of the �les are less than 4 KB. For Logical Clocks’ Hadoop cluster ≈68% of the �les are less than

4 KB. Figure b. shows the cumulative distribution of �le system operations performed on �les. In both clusters, ≈80% of all the

�le system operations are performed on �les. At Spotify, and Logical Clocks ≈42% and ≈18% of all the �le system operations

are performed on �les less than 16 KB �les, respectively. Figure c. and Figure d. show the breakdown of di�erent �le system

operations performed on �les. At Spotify ≈64% of �le read operations are performed on �les less than 16 KB. Similarly, at

Logical Clocks, ≈50% of �le stat operations are performed on �les less than 16 KB.

database. HopsFS supports multiple stateless namenodes with con-
current access to �le system metadata. As HopsFS signi�cantly
increases both the throughput and capacity of the metadata layer
in HDFS, it is a candidate platform for introducing tiered storage
for small �les.

In this paper, we introduce HopsFS++, the latest version of
HopsFS, which uses a new technique for optimizing the �le system
operations on small �les by using inode stu�ng while maintaining
full compatibility with the HDFS clients. Inode stu�ng is a tech-
nique that improves the throughput and latency of �le system op-
erations for small �les by collocating the metadata and data blocks
for small �les. We modi�ed HopsFS to only decouple metadata and
data blocks for large �les. For small �les, the data blocks are stored
with the metadata in the distributed database. The database transac-
tions and database replication guarantee the availability, integrity,
and consistency of the small �les stored in the database. We have
implemented a tiered storage service where data blocks for very
small �les, typically ⩽1 KB, are stored in memory in the database,
while data blocks for other small �les, ⩽ 64 KB, are stored on-disk
in the database, typically on NVMe SSDs. Larger �les are stored on
existing Hadoop block storage layer comprising of the datanodes.
This architecture has the cost advantage that potentially hundreds
of millions of �les can be stored on commodity NVMe disks without

the need for enough main memory in database servers to store all
the blocks of the small �les. The architecture is also future-proof,
as higher-performance non-volatile memory (NVM), such as Intel’s
3D XPoint (OptaneTM), instead of NVMe disks, could be used to
store small �les’ data. The metadata layer can also easily be scaled
out online by adding new namenodes, database nodes, and storage
disks to improve throughput and capacity of the small �le storage

layer.
To the best of our knowledge, this is the �rst open-source tiered

block stored solution for a hierarchical �le system that uses a dis-
tributed relational database to store small �les blocks. Our solution
for small �les has been running in production at a data center ad-
ministered by Logical Clocks AB in Luleå, Sweden [11]. HopsFS++
is a drop-in replacement for HDFS, and the tiered storage for small
�les is implemented such that all the changes for tiered block stor-
age are fully transparent to HDFS clients and the data processing
frameworks using HopsFS++. We have evaluated our system with
real-world workload traces from Spotify and with experiments on
a popular deep learning workload, the Open Images Dataset, con-
taining 9 million images (mostly small �les) as well as a number of
microbenchmarks. Our results show that for 4 KB �les, HopsFS++
could ingest large volumes of small �les at 61 times and read 4 KB
�les at 4.1 times the rate of HDFS using only six NVMe disks. Our
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solution has 7.39 times and 3.15 times lower operational laten-
cies for writing and reading small �les respectively for Spotify’s
workload traces. For �les from the Open Images Dataset, and a
moderate-sized hardware setup, HopsFS++’s throughput exceeds
HDFS’ by 4.5 times for reading and 5.9 times for writing �les. Fur-
ther scalability is possible with more disks and larger clusters. The
HopsFS++ solution can be scaled out at each of the storage tiers,
by adding more memory, NVMe SSDs, and servers, respectively.

2 Prevalence of Small Files In Hadoop

We have analyzed the �le systems namespaces and operational logs
of Spotify and Logical Clocks’ administered (LC) deployments of
their Hadoop clusters to �nd out how pervasive are the small �les?
Hadoop cluster statistics for Yahoo! are publicly available at [12],
which contains information about the distribution of �les according
to di�erent �le sizes. For Spotify, we analyzed the entire HDFS
namespace and the audit logs for HDFS operations to determine
the number of di�erent types of �le system operations performed
on di�erent sized �les. At Spotify, more than 100 GB of HDFS audit
logs are generated every day. We analyzed multiple snapshots of
the HDFS namespace (FSImage) and more than 10 TB of audit log
�les representing three months of cluster operations. For Logical
Clocks, we have analyzed the audit logs representing �le system
operations for one week.

Figure 1a. shows the cumulative distribution of �les according
to di�erent �le sizes. Spotify, Yahoo!, and LC clusters contain 357,
41, and 47 million �les respectively. Both at Spotify and Yahoo!
20% of the �les are less than 4 KB. In the case of LC, 68% of the
�les are less than 4 KB. At LC there are signi�cantly more small
�les because the cluster is heavily used for training and testing
deep learning algorithms where usually the input consists of a
large number of small �les, such as images. Figure 1b. shows the
cumulative distribution of �le system operations performed on
small �les. For Yahoo! the distribution of �le system operations
performed on di�erent sized �les is not publicly available. Both at
Spotify and LC, approximately 80% of the �le system operations are
directly performed on �les. Small �les receive a signi�cant portion
of all the �le system operations. At Spotify, 42% of all the �le system
operations are performed on �les that are less than 16 KB, while in
case of LC 27% of the �le system operations are directly performed
on small �les that are less than 64 KB.

Figure 1c. and Figure 1d. show the breakdown of the percentage
of di�erent types of �le system operations performed on di�erent
sized �les. For example, at Spotify 68%, 33%, 7%, and 25% of all the
read �le, create �le, stat �le, and list �le operations are performed
on �les less than 64 KB respectively. Similarly, at LC 22%, 43%, 88%,
and 2% of all the read �le, create �le, stat �le, and list �le operations
are performed on �les less than 64 KB respectively.

Clearly, small �les in Hadoop cluster are very pervasive and a
signi�cant number of �le system operations are performed on the
small �les. In section 3 and in section 4, we explain the internals of
HDFS and HopsFS and showwhy small �les have poor performance.
Spotify’s cluster contains the most number of small �les. Almost
71 million �les at Spotify are smaller than 4 KB in size. Assuming
if each �le is exactly of size 4 KB then all the �les will only take
≈800 GB of disk space with triple replication. The amount of disk

space taken by small �les is very small and it is feasible to store
these small �les on a small number of high-performance NVMe
disks. In section 5 we show how we store small �les in-memory
and on NVMe disks in a distributed relational database to improve
the performance of small �les.

3 HDFS

Apache HDFS [6] is an open source Java implementation of the
Google File System (GFS) [13]. HDFS is the default distributed hi-
erarchical �le system for Hadoop data processing platform [14].
HDFS stores its metadata on a single server called the Active Name-
Node (ANN) see Figure 2. The active namenode is responsible for
handling all public �le system operations, such as create, delete,
rename, etc., sent by potentially thousands of concurrent �le sys-
tem clients. HDFS is implemented in Java and the entire metadata
is stored in-memory on the heap of a single Java Virtual Machine
(JVM) process. The Java garbage collection imposes a practical limit
on the maximum size of the Java heap, currently, with signi�cant
ongoing tuning e�ort, at around 200-300 GB [15, 16]. Files in HDFS
are split into large blocks of 128 MB (default), which are replicated
three times (default) across the datanodes. Irrespective of the block’s
size, it will be stored on the datanodes. The metadata, in contrast,
is stored at the namenode and includes �le and directory names,
the hierarchical directory structure, user permissions and owner-
ship, time-stamps, access control lists, extended attributes, �le to
block mappings and other data structures related to monitoring
and repairing the �le system state.

HDFS uses an Active/Standby deployment model to provide
high availability of the metadata service. The active namenode
logs all the changes in the �le system namespace to a quorum of
journal nodes (usually three), and the Standby NameNode (SbNN)
pulls the changes from the journal nodes and applies the changes
to its in-memory copy of the �le system metadata. A ZooKeeper
coordination service is used to reliably fail-over from the active
to the standby namenode in the case of a failure of the active
namenode.

3.1 The Small Files’ Problem in HDFS

In existing HDFS clusters, the ratio of datanodes to the active name-
node can be as high as 4500:1 [17]. Multiple namenodes in HDFS do
not improve the performance as only one namenode can be active
at any given time. All �le system protocols and usage patterns are
optimized to reduce the memory consumption and the load on the
namenode. As the namenode is involved in translating all the client
�le system operations into block operations on datanodes, small
�les are particularly problematic as they cause (1) excessive load on
the namenode and (2) consume as much metadata storage space as
a �le of up to 128 MB in size. Note that, as there is a hard practical
limit on the number of �les that can be managed by the namenode
(≈500 million) [8], smaller average �le sizes mean smaller clusters,
ceteris paribus.

The namenode uses a map-like data structure that stores �le to
block mappings, and its maximum size is bounded by the amount
of memory that can be e�ciently managed by the JVM (a few hun-
dred GB, at most [15, 18]). Consider a simpli�ed scenario where
the largest number of blocks that can be stored in the map is one
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Figure 2: System architecture diagrams of HDFS and HopsFS with enhanced small �les support (HopsFS++). HDFS supports

only one Active Namenode (ANN) that stores the entire �le system metadata in-memory and handles all the �le system op-

erations. High availability is provided using Active/Standby deployment model that requires at least one Standby Namenode

(SbNN) and quorum of journal nodes. A coordination service such as ZooKeeper is used for reliable fail-over. Data blocks of

�les of all sizes are stored on the datanodes. HopsFS stores the metadata in MySQL Cluster distributed database; the metadata

is accessed and updated by multiple stateless namenodes. The data blocks of large �les are stored on the datanodes that spe-

cialize in providing streaming access to large data blocks. In HopsFS++ the data blocks of small �les are stored alongside the

metadata in the distributed database that specializes in providing low latency access to small amounts of data.

billion entries. If all the blocks on disk are full, that is, the blocks
are exactly 128 MBs in size, then the �le system can store 119.2 PB
of data. However, if the blocks are only 4 KB in size, then the �le
system can only store 3.7 TB data (which could easily �t on a com-
modity hard drive). At the time of writing, the Spotify HDFS cluster,
consisting of ≈2000 data nodes, stores 73 PBs of data in ≈0.5 billion
data blocks. Further scalability of the cluster is hampered by the
namenode’s inability to handle larger number of blocks, and the
cluster is beset by frequent pauses where the namenode garbage
collects the metadata. Tuning garbage collection on the namenode
for such a cluster requires signi�cant, skilled administrator e�ort.

3.2 Small Files’ Performance in HDFS

As HDFS separates metadata management from block management,
clients have to follow a complex protocol to read a �le even if
the �le only has a few bytes of data. When reading a �le, a client
�rst contacts the namenode to get the location of the data block(s)
of the �le. The namenode returns the locations of the blocks to
the client after checking that the client is authorized to access
the �le. Upon receiving the locations of the data blocks the client
establishes communication channels with the datanodes that store
the data blocks and reads the data sequentially. If the client is
located on the same datanode that stores the desired block then the
client can directly read the data from the local disk (short-circuit
read [19]). This protocol is very expensive for reading/writing small
�les where the time required to actually read/write the small data
block is signi�cantly smaller than the time taken by the associated
�le system metadata operations and data communication protocols.

The problem is even worse for writing small �les, as the protocol
for writing a �le involves a relatively very large number of �le sys-
tem operations for allocating inodes, blocks, and data transfer. In
order to write a �le, the client �rst sends a request to the namenode
to create a new inode in the namespace. The namenode allocates a
new inode for the �le after ensuring that the client is authorized to
create the �le. After successfully creating an inode for the new �le
the client then sends another �le system request to the namenode
to allocate a new data block for the �le. The namenode then returns
the address of three datanodes where the client should write the
data block (triple replication, by default). The client then establishes
a data transfer pipeline involving the three datanodes and starts
sending the data to the datanodes. The client sends the data se-
quentially to the �rst datanode in the data transfer pipeline, and
the �rst datanode then forwards the data to the second datanode,
and so on. As soon as the datanodes start to receive the data, they
create a �le on the local �le system to store the data and immedi-
ately send an RPC request to the namenode informing it about the
allocation of the new block. Once the data is fully written to the
blocks, the datanodes send another RPC request to the namenode
about the successful completion of the block. The client can then
send a request to the namenode to allocate a new block or close
the �le. Clearly, this protocol is only suitable for writing very large
�les where the time required to stream the data would take much
longer than the combined time of all the �le system operations
involved in the �le write protocol, that is, the cost of the metadata
operations and establishing communication channels with the data-
nodes is amortized over the relatively long periods of time spent in
reading/writing large �les. In contrast, the latency of �le system
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operations performed on small �les is dominated by the time spent
on metadata operations, as reading/writing a small �le involves
the client communicating with both the namenode and at least one
datanode.

3.3 Side E�ects on Hadoop Stack

Higher-level data parallel processing frameworks are designed to
workmore e�ciently with large �les [20, 21]. Poor support for small
�les in HDFS complicates the design of higher level frameworks in
the Hadoop ecosystem. In the original MapReduce framework [20],
the number of �les controlled the number of mappers required
to perform a job, with small �les leading to lots of mappers and
excessive network I/O to combine inputs and disk I/O to write
intermediate results as lots of �les.

Another problem in HDFS is the e�ect of small �les on the
resource-intensive block-reporting protocol. InHDFS’ block-reporting
protocol (default every six-hour) all the datanodes report the health
of their stored blocks to the namenode, and the namenode identi�es
and �xes the corrupt blocks. Storing a large number of small blocks
on a datanode results in huge block reports that the namenode has
to process. Large block reports can cause performance degrada-
tion of the namenode [22]. In our solution based on inode stu�ng,
blocks stored in the database are not included as part of the block
reporting protocol, as the integrity of the state of those blocks is
guaranteed by the database.

3.4 Current Solutions for Small Files

In production environments where HDFS is used by a myriad of
applications, making small �les are unavoidable, such as storing
small images, con�guration �les, intermediate results or logs of
di�erent data processing jobs. Current best practices for storing a
large number of small �les in HDFS are:

• Archiving the small �les. HDFS provides an archiving mech-
anism, known as Hadoop Archives (HAR), as a solution to
reduce the overhead on the namenode introduced by the
small �les [23]. HAR compacts many small �les into a single
�le. It also builds a multilevel index to identify the location
of a small �le in the archive. The main objective of HAR is
to reduce the number of �les and thus alleviate contention
on the namenode. HAR does not improve the performance
of reading or writing small �les. In fact, it makes the perfor-
mance of small �les worse as HAR maintains two indexes to
locate a small �le in the HAR archive. Reading the indexes
and seeking to a small �le in the HAR archive slows down
�le system operations on small �les. Moreover, once a �le
is added to HAR archive it cannot be changed or deleted
without recreating the whole archive �le.

• Using alternative storage systems, such as HBase [24] and
Cassandra [25] for storing small �les. However, these pro-
posed solutions signi�cantly complicate the design of the
applications higher up in the stack, that need to be aware
of �le size and edge cases when accessing small �les stored
in di�erent storage systems. Additionally, these storage sys-
tems have di�erent consistency semantics, for example, in
HDFS the data is kept strongly consistent while Cassandra
provides eventual consistency for the stored data. This adds

additional complexity at the application level, which could
be avoided if the storage layer handles both large and small
�les e�ciently.

3.4.1 Heterogeneous Storage Both HopsFS and HDFS have support
for heterogeneous storage volumes [26, 27], where each mounted
disk on the datanodes is categorized as one of ARCHIVE, DISK, SSD,
or RAM_DISK storage volumes. During �le creation, a preference
for a storage type can be supplied, and HDFS/HopsFS will try to
ensure that blocks for the �le are stored on disks of the desired
storage type on the datanodes. However, it must be noted that
heterogeneous storage does not solve the problem of small �les as
it neither reduces the load on the namenode nor it simpli�es the
�le system operations’ protocols for the small �les.

4 HopsFS

HopsFS [8] is a drop in replacement for HDFS that addresses meta-
data scalability and performance issues caused by the monolithic ar-
chitecture of the HDFS namenode. This section reviews the HopsFS
architecture, and the following section describes how we extended
HopsFS to support high-performance �le system operations on the
small �les.

HopsFS provides a more scalable metadata management service
comprising of multiple active namenodes and a distributed data-
base, see Figure 2. Unlike HDFS, where the amount of the metadata
is limited as the entire metadata is stored in-memory of the name-
node, HopsFS stores its metadata in an external distributed database.
By default, HopsFS provides support for the relational, distributed,
in-memory MySQL Cluster database [28]. Removing the metadata
from the namenode makes them stateless, and when using MySQL
Cluster as the database, it raises by an order of magnitude both
the amount of metadata that can be managed in-memory and the
throughput of the cluster, in �le system operations per second [8].
Despite the distributed architecture, HopsFS provides the same
metadata consistency semantics as HDFS and it is fully API com-
patible with HDFS, that is HopsFS can be accessed using HDFS
clients.

In HopsFS, the datanodes provide the block storage service for
�les of all sizes. HopsFS stores the data blocks for large and small
�les on the datanodes and the �le system operations protocols for
reading and writing �les are the same as HDFS. Despite having
higher throughput for metadata operations, the end-to-end latency
for �le system operations on small �les was comparable to HDFS for
unloaded clusters. Our goal, with tiered metadata storage in this
paper, is to provide HopsFS with signi�cantly improved throughput
and latency for the �le system operations performed on small �les.

4.1 MySQL’s Network Database (NDB) Cluster

MySQL’s Network Database (NDB) Cluster is an open source, real-
time, in-memory, shared nothing, distributed database management
system (and is not to be confused with clustered MySQL Servers
based on the popular InnoDB storage engine). The MySQL server
supports many database storage engines. While the SQL API for
the NDB engine is also available via a MySQL Server, it is not often
used to build high-performance applications for NDB. Instead, the
NDB storage engine can be accessed using the native (C++) NDB
API or the ClusterJ (Java) API. To NDB, the MySQL Server is just
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Figure 3: MySQL Cluster consists of three types of nodes:

NDB datanodes, clients, and the management nodes. The

NDB datanodes store the distributed database; the manage-

ment nodes provide con�guration information to the new

NDB database nodes and the clients; and the clients nodes

are active members of the cluster that access and update the

data stored in the distributed database.

another client instance that uses NDB native APIs to provide a SQL
interface for the data stored in NDB.

NDB Cluster consists of three types of nodes: NDB datanodes,
management nodes, and clients. NDB datanodes are organized into
node replication groups of equal sizes where the size of the node
group is the replication degree of the database. For example, if the
replication degree is set to two (default), then each node group
in the MySQL Cluster will contain exactly two NDB datanodes.
MySQL Cluster horizontally partitions the tables, that is, the rows
of the tables are distributed among the database partitions that are
uniformly distributed among the NDB datanodes. Each node group
is responsible for storing and replicating all the data assigned to
the NDB datanodes in the node group. For example, in the MySQL
Cluster setup shown in Figure 3, there are four NDB datanodes
organized into two node groups as the replication factor is set to
two. The �rst NDB data node NDB1 is responsible for storing the
P0 data partition while the backup/replica of the data partition, P0r
is stored on the second NDB datanode NDB2.

By default, the database is stored in-memory at the NDB data-
nodes, with recovery logs and snapshots stored on disk. All trans-
actions are committed in-memory, and transaction logs are (by
default) �ushed to disk every 2 seconds. The database can tolerate
failures of multiple NDB datanodes as long as there is at least one
surviving replica for each of the partitions. For example, in Fig-
ure 3, the database cluster will remain alive if NDB1 and NDB4 fail.
However, if two nodes in the same node group fail, then the data-
base will halt its operations until the unavailable node group has
recovered. As such, NDB favors consistency over availability [29].
MySQL Cluster supports both node level and cluster level recovery
using persistent transaction redo and undo logs and checkpointing
mechanisms. Every two seconds a global checkpointing mechanism

ensures that all the NDB datanodes checkpoint their logs to a local
disk. Global checkpoints are needed as there are multiple indepen-
dent transaction coordinators that need to agree on a consistent
snapshot of the system when recovering.

4.1.1 On-Disk Data Tables in NDB Although NDB is an in-memory
database, it also supports storing selected columns in on-disk tables.
Updates to disk data in NDB are made in-place, a direct consequence
of it being a relational database that uses a variant of T-trees to
index data [30] (T-trees are similar to B-trees, but optimized for
main-memory systems). As such, the throughput and latency of
on-disk columns in NDB are not great when used with spinning
disks, as they have poor performance when there are many random
reads (disk seeks). In contrast, modern NVMe SSDs can perform
many more random read/write operations per second making them
a more suitable storage device for tables with on-disk data. In the
near future, Non-Volatile Memory (NVM) technologies, such as
Intel’s 3D XPoint (OptaneTM), could also be used to store on-disk
data in NDB, further improving the throughput and decreasing
the latency for on-disk columns. In NDB, on-disk tables store their
primary keys and indexes in-memory and there is also a page cache
(of con�gurable size) for on-disk columns, set by a combination of
theDiskPageBu�erEntries andDiskPageBu�erMemory con�guration
parameters. For read-heavy workloads, a high page cache hit-rate
for on-disk data can signi�cantly improve the performance of data-
base transactions. Users can also con�gure the number of threads
used for reading/writing data �les that back on-disk columns, us-
ing the DiskIOThreadPool con�guration parameter. Increasing the
number of threads above 1 improves read/write throughput on the
backing data �le, but the practical upper limit is only a few threads,
at most, to prevent side e�ects, such as timeouts in NDB’s heartbeat
and global checkpointing protocols. One limitation of NDB on-disk
columns is that the storage capacity used is not easily downsized,
as data �les can only be removed if all data objects inside them are
empty (which is highly unlikely). New data �les, however, can be
added on-line, as needed, to increase on-disk data capacity.

5 Tiered Block Storage in HopsFS++

HopsFS++ introduces two �le storage layers, in contrast to the
single �le storage service in HopsFS (and HDFS). The existing large
�le storage layer is kept as is, consisting of datanodes specialized
in handling large blocks, and a new small �le storage layer has
been designed and implemented where small blocks are stored in
the distributed database. The new small �le storage layer is tiered
where very small blocks are stored in tables that reside in-memory,
while other small blocks are stored in on-disk tables in the database,
see Figure 4. and Figure 5. Our approach bene�ts from the fact
that HDFS is an append-only �le system, so we avoid dealing with
complex scenarios where small �les could keep changing between
large �les and small �les states. In our system, when a small �le is
appended and it becomes a large �le, then it stays a large �le.

Our small �le storage layer is based on an inode stu�ng tech-
nique that brings the small �les’ data blocks closer to the metadata
for e�cient �le system operations. An average �le requires 1.5 KB
of metadata [8] with replication for the high availability of the
metadata. As a rule-of-thumb, if the size of a �le is less than the
size of the metadata (in our, case 1 KB or less) then the data block
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Figure 4: In HopsFS++ the entire metadata of the �le system

is signi�cantly smaller than the stored �le system data, and

it can easily �t in-memory of the NDB datanodes. However,

often it is infeasible to store all the small �les in-memory.

Small �les that are ⩽1 KB are stored in-memory in the dis-

tributed database while larger small �les can be stored in

on-disk tables stored on high-performance NVMe SSDs.

is stored in-memory with the metadata. Other small �les are stored
in on-disk data tables. The latest high-performance NVMe SSDs are
recommended for storing small �les data blocks as typical work-
loads produce a large number of random reads/writes on disk for
small amounts of data.

Inode stu�ng has two main advantages. First, it simpli�es the
�le system operations protocol for reading/writing small �les, that
is, many network round trips between the client and datanodes (in
the large �le storage layer) are avoided, signi�cantly reducing the
expected latency for operations on small �les. Second, it reduces
the number of blocks that are stored on the datanodes and reduces
the block reporting tra�c on the namenode. For example, when a
client sends a request to the namenode to read a �le, the namenode
retrieves the �le’s metadata from the database. In case of a small �le,
the namenode also fetches the data block from the database. The
namenode then returns the �le’s metadata along with the data block
to the client. Compared to HDFS this removes the additional step
of establishing a validated, secure communication channel with the
datanodes (Kerberos, TLS/SSL sockets, and a block token are all
required for secure client-datanode communication), resulting in
lower latencies for �le read operations. For our experiments on �le
read latency, we took a much more optimistic scenario where the
clients always had existing, unsecured connections to datanodes,
but, in practice, in secure HDFS deployments, connection setup can
introduce increased latency for reading small �les.

Similar to reading small �les, writing a small �le in our system
avoids many communication round trips to the datanodes for repli-
cating the small �les’ blocks, as well as the time required by HDFS
to set up the replication pipeline for writing the �le. In HopsFS++,
we take advantage of the fact that, when writing �les, both the
HDFS and HopsFS++ clients bu�er 64 KB of data on the client side
before �ushing the bu�er and sending the data to the datanodes.
The 64 KB bu�er size is a default value and can be con�gured, but for
backward compatibility with existing HDFS clients, in HopsFS++,
we keep the 64 KB size bu�er. The 64 KB bu�er size was established

experimentally by the Hadoop community as a reasonable trade-
o� between the needs of quickly �ushing data to datanodes and
optimizing network utilization by sending larger network packets.

For HopsFS++, when writing a �le, the client �rst sends a �le
open request to the namenode to allocate a new inode. The client
then starts writing the �le data to its local bu�er, see Figure 5. If the
client closes the �le before the bu�er �lls up completely (64 KB),
then the data is sent directly to the namenode along with the close
�le system operation. The namenode stores the data block in the
database and then closes the �le. In case of a large �le, the client
sends an RPC request to the namenode to allocate new data blocks
on the datanodes and the client then writes the data on the newly
allocated data blocks on the datanodes. After the data has been
copied to all the allocated data blocks, then the client sends a close
�le request to the namenode. In HopsFS++ all �le system operation
protocols for large �les are performed exactly the same way as in
HDFS (and HopsFS).

1 KB 21 KB

1 KB 2 KB 4 KB 8 KB

1. First 16 KB

2. Next 4 KB

3. Last 1 KB

FS Client

Data Buffer
> 64 KB 

≤ 1 KB Small Files

Large Files

Datanodes

 ≤ 64 KB & file.close() 

In-Memory Table On-Disk Tables

> 1 KB

Figure 5: In HopsFS++, small �les that are less than 1 KB are

stored in the "1 KB" in-memory table. For larger small �les

the data is split into smaller chunks and stored in the corre-

sponding on-disk data tables, for example, a �le of 21 KB is

split into 2 chunks of 8 KB, 1 chunk of 4 KB and 1 chunk of

1 KB. Chunking the �le into table buckets gives better per-

formance than simply storing the �le as a single blob in a

table.

5.1 Small Blocks in the Database

The small �les’ blocks are stored in the database tables in variable
length data columns, such as varchar. The varchar columns have
very low overhead for storing variable length data, as they only
require one or two bytes of additional memory to store the length
information of the data. A naïve solution for HopsFS++ would be to
have two tables with varchar data columns to store the small �les.
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The �rst table would be stored in memory and it would contain
the data blocks for �les that are ⩽1 KB. The other table would
store larger data blocks and the table would be stored on disk. This
solution has two main problems. First, in NDB the maximum row
size is 14 KB, and second, in NDB the on-disk varchar columns
consume the entire space, that is, a varchar column of maximum
length n would take n bytes on disk even if there is only one byte
stored. Blob data columns are also an alternative for storing large
variable length data. Using blobs any amount of data can be stored
in a single row. However, in NDB the blob columns have higher
overhead compared to varchar columns as the database internally
splits the data into 2 KB chunks and stores the chunks in a separate
blob table. In our experiments, we have observed that for large
amounts of data, blob columns in NDB were signi�cantly slower
than varchar columns. In order to e�ciently use the disk space, we
split the data blocks into smaller chunks and store the chunks in
di�erent disk data tables using varchar columns, see Figure 5. For
example, in order to store a 21 KB small �le in the database the �le
is split into 4 chunks, that is, 2 chunks of 8 KB, 1 chunk of 4 KB and
1 chunk of 2 KB. These chunks are then stored in the corresponding
disk data tables. These chunk sizes were selected experimentally. In
NDB, the database disk page size for on-disk data is 32 KB. In our
experiments, we have observed that for a chunk size larger than
8 KB, disk paging was less e�ective and the throughput dropped.

5.2 Small File Threshold Sizes

The threshold sizes at which small �les are stored in-memory, on-
disk in the database, or in the large �le storage layer is con�gurable,
and dependent on a number of factors, such as the cluster’s dis-
tribution of �le sizes, the amount of available memory and NVMe
storage space at database nodes, the number of database nodes,
and the number of namenodes in the system. The upper limit on
the size of the di�erent small �le storage layer tiers (in-memory or
on NVMe SSDs) is, in practice, determined by the characteristics
of the database. Our default database, MySQL Cluster, can scale
available in-memory block storage to a few tens of TBs, due to a
limit of 48 database nodes in the cluster. Increasing the 48-node
limit would be challenging, due to the presence of internal global
agreement protocols in NDB, such as heartbeat and global check-
points protocols. Database nodes can attach a number of NVMe
SSDs for storing on-disk data, so with NDB, the NVMe SSD storage
layer could potentially scale to >100 TBs. However, as motivated in
the evaluation section 6.3, there is a threshold size for �les, above
which, for performance reasons, they should be stored in the large
�le storage layer.

Given this, we need to de�ne a default small size of HopsFS++.
Based on the distribution of �le sizes from both Spotify Yahoo! and
Logical Clocks’ Hadoop clusters (Figure 1) and the experiments,
we set the default threshold size for small �les for HopsFS++ to be
⩽64 KB. The choice of the 64 KB boundary is also in�uenced by the
default 64 KB client-side write-bu�er in HDFS. 64 KB �les comprise
≈30% of all �les in the Spotify’s HDFS cluster. These �les consumed
3.4 TB of disk space with replication, which is 0.00015% of the 73
PB of disk space consumed by the entire distributed �le system,
and yet these �les receive ≈45% of all the �le system operations.

5.3 HDFS Backwards Compatibility

HopsFS++ is fully compatible with HDFS for the metadata opera-
tions. Our changes for small �les have required changes in the name-
node and datanode to maintain compatibility with HDFS clients.
Existing HDFS clients should be able to transparently read and
write small �les stored in the HopsFS++ small �le storage layer.

As existing HDFS clients are not aware of our new HopsFS++
protocol for writing �les, all new small �les created by HDFS clients
will be stored on the datanodes. When an HDFS client requests
to append to a small �le stored in the small �le storage layer, the
namenode will �rst move the requested small �le to the datanodes,
before �nally returning the addresses of the datanodes storing the
small �le’s data block to the HDFS client. The HDFS client can then
append to the �le, following the existing HDFS write protocols.

We introduced a mechanism that allows HopsFS++ clients and
datanodes easily distinguish between �les stored in the small �le
storage layer and �les stored in the large �le storage layer. Data
blocks stored in the small �le storage layer and on the datanodes
have di�erent ID ranges. The IDs for blocks stored on the datanodes
are monotonically increasing positive number, while the data blocks
stored in the database have monotonically decreasing negative
numbers. When HopsFS++ namenodes detect that an HDFS client
wants to read a small �le stored in the database, then it returns the
small block’s ID and a handle for a randomly selected datanode
in the system to the HDFS client. The HDFS client contacts the
datanode to read the data block. When HopsFS++ datanodes receive
a request to read a small �le’s block (with a negative ID), they
forward the request to small �le storage layer. After reading the
�le’s data from the small �le storage layer, it relays the data to the
HDFS client without breaking the HDFS data read pipeline. These
changes increase the latency of �le system operations on small �les
for HDFS clients. However, if lower latency small-�le operations
are desired, then the HDFS applications simply have to be linked
with the HopsFS++ client libraries. Note that, while existing HDFS
clients will experience higher latency than HopsFS++ clients, the
system’s throughput for reading/writing small �les is una�ected
by the choice of HopsFS++ or HDFS clients.

6 Evaluation

While vanilla HopsFS (without small-�les extension) supports higher
throughput for reading/writing �les than HDFS, end-to-end laten-
cies for �le system operations in HDFS and HopsFS clusters are
identical, therefore, all of our experiments are designed to compara-
tively test the performance and scalability of �le system operations
performed on small �les in HopsFS++ and HDFS.

All the experiments were run on-premise using Dell PowerEdge
R730xd servers (Intel (R) Xeon (R) CPU E5-2620 v3 2.40 GHz, 256 GB
RAM, 4 TB 7200 RPM HDD) running CentOS 7.2 (Linux kernel
3.10.0-327.el7.x86_64) connected using a single 10 GbE network
adapter. In the experiments, we used a six-node database cluster,
NDB version 7.5.6, and the database replication degree was set to
(default) 2. On each database server, an Intel 750 series 400 GB
PCIe NVMe SSD was installed to store the small �les in the data-
base. According to the manufacturer’s speci�cations, each drive is
capable of performing 2200 MB/s sequential read, and 900 MB/s
sequential write operations. Using the FIO benchmark [31] we have
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Figure 6: Throughput of �le write and �le read operations for HopsFS++. The throughput of the �le system operations linearly

increases as more namenodes are added to the system. Using 22 namenodes, HopsFS++ can create more than 80 thousand

1 KB �les per second and 70 thousand 4 KB �les per second. Similarly, for reading the throughput of the �le system linearly

increases as more namenodes are added to the system. For 1 KB �les, HopsFS++ is able to perform more than 400 thousand

�le read operations per second. In both experiments, the throughput halves when the �le size is doubled beyond the 4 KB �le

size.

tested the drives to perform 160 thousand random read operations
and 40 thousand random write operations for 20% write intensive
workload using 4 KB block size. The NVMe SSDs were formatted
with Ext4 Linux �le system. For testing the performance of the two
�le systems we used the benchmark utility published in [8], which
is an extension of Quantcast File System (QFS) [32] benchmarking
system. QFS is an open source implementation of HFDS, written
in C++. The benchmarking utility is a distributed application that
spawns tens of thousands of �le system clients, distributed across
many machines. The benchmark application can generate �le sys-
tem operations based on Spotify’s traces, and it can also test the
maximum throughput of any single �le system operation.

In these experiments, a total of 36 servers were used. Apache
HDFS, version 2.7.3, was also run on the same servers. Apache
HDFS was set up using 5 servers in the metadata service layer,
which is a common practice in the production deployments of
large HDFS clusters. One server was used for active namenode,
one for standby namenode, and three servers were used for the
ZooKeeper and HDFS journal nodes. HDFS only uses ZooKeeper
during namenode fail-over, and co-locating the two services does
not have any negative impact on the performance of normal HDFS
operations. The remaining machines were used as HDFS datanodes
to store the �le blocks. The HDFS cluster was set up according to the
best practices of HDFS, as described here [33]. Rest of the servers
were used as Apache HDFS datanodes. For HopsFS++, the same set
of machines were divided among the database, namenodes and the
datanodes. Six servers where used for the NDB distributed database
and the rest of the servers were divided among the datanodes and
the namenodes according to the di�erent experiment requirements.

6.1 Read/Write Throughput Benchmarks

In the �rst set of experiments, we investigated the scalability of
�le read and write operations in HopsFS++. As in HopsFS++ the
namenodes access and update the data stored in the database, the
throughput of �le system operations that can be performed by
HopsFS++ metadata layer directly depends on the number of the
namenodes. Figure 6. shows the throughput of �le system opera-
tions as a function of the number of namenodes and the size of the
stored �les.

For writing small �les, the throughput of the �le system linearly
increases as more namenodes are added to the system. Using 22
namenodes, HopsFS++ can create more than 80 thousand 1 KB
�les per second. For 4 KB �les, HopsFS++manages to write 70 thou-
sand �les per second. We have observed that, for sizes beyond 4 KB,
the performance of small �les halves when the size of the small
�les is doubled. For these experiments, we had only six NVMe
drives available, which would quickly become saturated as we were
not only storing the replicated small �les on the NVMe drives but
also the undo and redo logs of the database on the same drives.
HopsFS++ managed to write 9 thousand 64 KB �les per second us-
ing only 4 namenodes, and the throughput of the �le system did not
increase because the NVMe drives were fully saturated. Similarly,
for reading the throughput of the �le system linearly increases as
more namenodes are added to the system. For 1 KB �les, HopsFS++
is able to perform more than 400 thousand �le read operations per
second. Similar, to the �le-write experiment, the throughput halves
when the �le size is doubled beyond the 4 KB �le size.

Figure 7. shows the comparison of the throughput of �le read
and write operations, between HDFS and HopsFS++. These �gures
show the maximum average throughput that we achieved in our
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outperformsHDFS by 66.6 times and 61.3 times for small �les of size 1KBand 4KB respectively. Similarly, for readingHopsFS++

outperforms HDFS by 4.5 times and 4.2 times for small �les of size 1 KB and 4 KB respectively.

experiments. In our tests, for HDFS, we were unable to write more
than 1400 �les per second irrespective of the size of the small �les.
HDFS has poor performance for �le write operations, due to its com-
plicated write pipeline protocol that requires many internal RPCs
to get set up. Additionally, in HDFS, the �le system metadata consis-
tency is maintained using multiple readers/single-writer lock, that
is, each metadata operation that updates the namespace takes an
exclusive lock on the entire namespace to update the metadata. This
greatly impacts the performance of �le write operations in HDFS.
HopsFS++ does not have this problem as it does not lock the en-
tire namespace in order to update a single �le/block. In HopsFS++,
all �le system operations are implemented as transactions that
lock only the metadata required for the �le system operations. In
HopsFS++, the throughput of the �le system operations depends on
the size of the database cluster and the number of the namenodes.

For writing small �les of size 1 KB and 4 KB, HopsFS++ outper-
forms HDFS by 66 and 61 times, respectively. Similar to previous
experiments, the throughput halves when the �le size is doubled.
For small �les of size 64 KB, HopsFS++ can write 7.1 times more
�les per second than HDFS.

Similarly, for reading small �les the performance of HDFS is
limited by the single active namenode. For reading very small �les,
that is, for 1 KB �les, HDFS operates at maximum throughput which
is similar to the HDFS throughput as measured by the HDFS cre-
ators [34]. The throughput of HDFS drops to 37 thousand operations
per second for 64 KB �les. HopsFS++ outperforms HDFS by 4.5

and 4.2 times for small �les of size 1 KB and 4 KB, respectively.We

expect that the performance of HopsFS++ will increase with additional

hardware, that is, with more NVMe drives, namenodes and database

servers.
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Figure 9: Open images dataset �le size distribution. 83.5% of

the �les in the dataset are ⩽ 64 KB.

6.2 Industrial Workloads

6.2.1 Small Files’ Operational Latencies for Spotify Work-

loads In this experiment, we ran the workload traces from Spotify.
The Spotify workload is described in detail in [8]. All the �le system
operations are performed on the small �les. The workload created
and accessed the �les according to the statistics shown in Figure 1.
In the Spotify workload, the percentage of �le append operation is
zero, that is, in case of HopsFS++ the small �les’ sizes did not grow
and exceed the maximum small �le size threshold limit to be moved
from the small �le storage layer to the large �le storage layer. In
these experiments, we only ran 20 namenodes for HopsFS++ and
25 datanodes in HDFS setup, that is, the number of servers for
both the �le system that stored and retrieved small �les was 26
(HopsFS++ 20 NN + 6 NDB, HDFS 1 ANN + 25 DNs), and rest of
the machines were used as �le system clients to run the workload
traces. In these experiments, the two �le systems were run at 50%
loads to accurately measure the end-to-end latency experienced by
the �le system clients.

Figure 8. shows the end-to-end latency of �le read and write
operations in the Spotify workload. HopsFS++ has a signi�cantly
lower end-to-end latency for reading and writing small �les, this is
due to simpli�ed �le system operation protocols for small �les. For
90th percentile, HopsFS++ has 7.39 times and 3.15 times lower
operational latencies for writing and reading small �les respectively
for Spotify’s workload traces.

6.2.2 Open Images Dataset: Mixed File Sizes Training ma-
chine learning models at scale is an increasing popular data-center
workload. Reading/writing a mix of small and large �les is a typical
task in an image classi�cation pipeline, where the images are �rst
read and then transformed (rotated, warped) before being fed as
training data to neural networks. In this experiment, we read and
wrote the open images dataset containing 9 million �les [35]. The
Open Images Dataset, curated by Google, is frequently used to train
convolutional neural networks for image classi�cation tasks [35].
It is an extended version of the ImageNet dataset, widely used to
benchmark image classi�cation solutions. This dataset is particu-
larly interesting as it contains both large and small �les, based on
our de�nition of a small �le as being one smaller than 64 KB in
size and a large �le being larger than 64 KB in size. It is also of

interest, because a real-world distributed deep learning application,
reported by Facebook on the ImageNet dataset [36], read images at
a rate of 40 thousand images/sec during training. With increased
demand for even larger, more performant distributed deep learning
systems, such systems will soon be able to process more �les per
second than is currently possible with HDFS.

The �le size distribution for the Open Image Dataset is shown in
Figure 9. In this experiment, the setup for HDFS is the same as the
one described above. For HopsFS++, we used 10 namenodes and 12
datanodes to store large �les blocks. In this experiment, HopsFS++
outperformed HDFS by a factor of 5.9 times and 4.5 times for both
reading and writing the large dataset respectively, see Figure 10.

6.3 Small File Threshold

Although �les of several megabytes in size can be stored in MySQL
Cluster as blobs, in practice, a size threshold exists where small �les
are more e�ciently stored in the large �le storage layer instead
of in the database. Real-time OLTP databases impose a limit on
the maximum row size because large rows hog resources and can
cause unrelated transactions to timeout due to starvation. In this
experiment, we tested the performance of small �les of di�erent
sizes to determine, for our experiment setup, the largest �le that
can be e�ciently stored in the database than in the large �le storage
layer. We ran 100 �le system clients that wrote varying size small
�les ranging from 1 KB to 1 MB. Using 100 clients both HDFS and
HopsFS++ �le systems were operating at approximately 50% loads.
For HopsFS++, the number of namenodes was set to 20; and all the
�les, that is, �les of size 1 KB to 1MBwere stored in the database. For
HDFS, we ran 25 datanodes that stored all the �les. Figure 11. shows
the performance for the di�erent �le sizes, aggregated throughput
and the average end-to-end latency observed by the �le system
clients.

For HDFS, the latency and the throughput of �le write opera-
tions do not vary for small �les because the �le system metadata
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For bulk reading the �les, HopsFS++ is 4.5 times faster than
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Figure 11: Establishing the small �le size threshold

(crossover point). At the threshold �le size, it is better to

store smaller �les in the database, and larger �les in the

large �le storage service of HopsFS++/HDFS.

operations take signi�cantly longer than the time needed to write
the data to the datanodes. This is due to multiple readers/single-
writer concurrency mechanism in HDFS namenode that serializes
all �le system operations which update the namespace. At 50% load,
HDFS managed to write ≈700 �les per second, and the throughput
remained the same for all small �les of di�erent sizes. For writing
�les, HopsFS++ has high throughput for very small �les, such as
�les ranging from 1 KB to 4 KB, but the throughput gradually drops
as the �le sizes increases. The end-to-end latency for small �les
increases as the size of the �les increases. Similarly, for read opera-
tions, the throughput drops and end-to-end latency increases for
read operations as the �le size is increased. Together, these results
suggest that HopsFS++ can e�ciently store small �les up to 64 KB
in size, using NDB as a storage layer for the small �les.

7 Related Work

Walnut [37], from Yahoo! in 2012, described a hybrid storage sys-
tem that stores large �les in a �le system and small �les in a Log-
Structured Merge-Tree (LSM-tree) database, BLSM [38]. They iden-
ti�ed an object size threshold of 1MB for SSD storage, where objects
under 1 MB in size could be stored with higher throughput and
lower latency in the database, while objects larger than 1 MB were
more e�cient to store in a �le system. Although they chose 1 MB
as the crossover region, the results showed that between 100 KB
and 1 MB, there was no clear winner.

Although we use MySQL Cluster to store stu�ed inodes as on-
disk columns in tables, WiscKey [39] recently showed how separat-
ing the storage of keys from values in an LSM-tree database can
help improve throughput and reduce latency for YCSB workloads
on SSDs. This tells us there is still signi�cant potential for perfor-
mance improvements when using SSDs for disk-based columns in
MySQL Cluster.

File systems like HDFS and GFS store the data block on the data-
nodes as �les. The �les are managed by local �le systems such as
Ext4, ZFS, and Btrfs. These local �le systems often provide function-
alities, such as erasure coding, journaling, encryption and hierarchi-
cal �le system namespace, that may not be directly required by the
distributed �le systems. For small �les, the overhead introduced by
the local �le systems is considerable compared to the time required
to actually read/write the small �les. In distributed �le systems
these features, such as encryption, replication, erasure coding, etc.,
are provided by the distributed metadata management system. The
iFlatLFS [40] improves the performance of the handling of the small
�les by optimally storing the small �les on the disk of the datanodes
using a simpli�ed local �le system called the iFlatLFS. The iFlatLFS
is a local �le system install on all the datanodes that manage the
small �les stored on the disk. TableFS [41] has shown that better
performance can be achieved if the metadata and the �le data is
stored in a local key-value store such as LevelDB [42], however,
TableFS is a not a distributed �le system. James Hendricks et al.
has shown that the performance of small �les can be improved
by reducing the interactions between the clients and the metadata
servers, and by using Caching, and prefetching techniques [43].

HDFS provides archiving facility, known as Hadoop Archives
(HAR), that compresses and stores the small �les in large archives
as a solution to reduce the contention on the namenode cause by
the small �les, see section 3.4 for more details. Similar to HAR,
Xuhui Liu et al. group the small �les by relevance and combines
them into a large �le to reduce the metadata overhead. It creates a
hash index to quickly access the contents of the small �le stored
in a large �le [44]. MapR is a proprietary distributed �le system
that stores �rst 64 KB of all the �les with the metadata [5], which
improves the performance of small �les.

In industry, many companies handle di�erent client require-
ments for fast access to read/data by using multiple scale-out stor-
age services. Typically, this means using a NoSQL database, such
as Cassandra or HBase, for fast reading/writing data, as done by
Uber [45], while an archival �le system, such as HDFS, is used for
long-term storage of data. This approach, however, complicates
application development, as applications need to be aware of where
data is located. In contrast, our small �le storage layer solution
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ensures that HopsFS++ clients are unaware of whether a �le is
stored in the database or on a HopsFS++ datanode.

Finally, one advantage of using MySQL Cluster is that, because
its updates are made in-place, it has lower write-ampli�cation than
LSM-tree databases [24, 46], which can improve SSD device lifetime.

8 Conclusions

The poor performance of HDFS in managing small �les has long
been a bane of the Hadoop community. The main contribution of
this paper is to show that a �le system designed around large blocks
(optimized to overcome slow random I/O on disks) can be transpar-
ently redesigned to leverage NVMe hardware (with fast random
disk I/O) for small �les. In this paper, we introduced a tiered �le
storage solution for small �les in HopsFS++ that is fully compatible
with HDFS. Our system naturally matches the storage hierarchy
typically seen on servers, where small fast data is stored in-memory,
and larger, frequently accessed �les are stored on NVMe SSDs, and
the biggest �les are stored on spinning disks. We have implemented
a distributed version of this architecture for HopsFS++ where very
small �les are stored in-memory in the back-end NewSQL database,
MySQL Cluster, while other small �les can be stored on NVMe
SSD storage at database nodes. The large �le storage service of
HDFS/HopsFS++ remains unchanged, and we adapted our changes
so that HDFS/HopsFS++ client compatibility has been retained.
Through a mix of throughput and latency benchmarks on a Hadoop
workload from Spotify, as well as a real-world workload of 9m
small �les, used in Deep Learning, we showed that HopsFS++ can
deliver signi�cant improvements in both throughput and latency,
with the highest gains seen in writing �les. We were limited in
our available hardware, and are con�dent that with more servers,
storage devices and tweaks to our software, the small �le storage
layer could produce even bigger performance gains.

Our small �les extension to HopsFS++ is currently running
in production, providing Hadoop-as-a-Service to hundreds of re-
searchers, and is available as open-source software. We expect, also,
our work to provide important feedback on improving the perfor-
mance of on-disk data for MySQL Cluster. Finally, our expectation
for the new improved HopsFS++ is that it will enable data parallel
processing frameworks higher up in the stack (such as MapReduce,
Apache Flink, and Apache Spark) to reimagine how they use the
�le system, now that creating and reading small �les can both scale
and be fast.
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