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A b s t r a c t  

I n  this paper we study the amount of secret information that must be given to 
participants in any secret sharing scheme that is secure against coalitious of dishonest 
participants in the model of Tompa and Woll [20]. \Ve show that any  ( k .  n) threshold 
secret sharing algorithm in which any coalition of less than C participants has probability 
of successful cheating less than some E > 0 it must give to each participant shares xhose 
sizes are a t  least the size of the secret plus log f .  

1 Introduction 

In 1979 Blakley 12) a n d  Shamir  [15] gave protocols t o  solve the  following probleni: divide a 
secret s in R shares d l , .  . . ,d, in such a way tha t :  

i) t h e  knowledge of k or more d,'s makes s computablc, 

ii) t h e  knowledge of k - 1 or less d,'s leaves s cornplctely indeterminate. 

This  problem, known in t h e  l i terature  as  ' . ( k ,  n )  Threshold Serrrt,  Sharing", has received 
considerable a t tent ion in t h e  las t  few years because of its many applications to several fields, 

as d a t a  security, secure computat ion a n d  others  [lo]. For a n  extensive bibliography a n d  

illustration of t h e  main results in the  a rea  we refer the reader to  [ l i ]  and [IS]. 

Let P = {PI , .  , . , P,} be a set of participants, S be the  set of secrets and  D l . .  . . , D, be 

t h e  sets  in which the  shares t o  participants PI , .  . . , P, are  taken. Any probability distribution 

{ p ( s ) } , c s  o n  t h e  set of secrets S and a sharing algorithm for secrets in S (both k n o w  by 

each par t ic ipant)  naturally induce a probability distribution { p ( d l , .  . . , d , ) } d , ~ ~ ~ , . .  , ~ , E D ,  o n  

t h e  joint space DI x . . . x D, of t h e  possible values of the shares. Therefore, we will consider 
each D, a s  a random variable. Formally, a ( k , n )  Threshold Secret Sharing Srherne is a 

method t o  dis t r ibute  shares  t o  t h e  n participants such tha t :  
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1. for any k-tuple of distinct indexes i l . .  . ., ik, 1 5 i, 5 n, for each ( d l , .  . . , dk)  E Di, x 

... x Di, such that p ( d l , . .  .,&) > 0 there exists an unique secret s E S such that 

P(S I dll...,d&) = 1 ,  

2. for any j < k ,  for any j-tuple of distinct indexes i l , .  . .,i,, 1 5 i, 5 n, for each 
di,.. . , d J  E D,, x . . . x D,,, such that p ( d 1 , .  . ..d,) > 0, for each s E S it holds 
P(Sl4,...,d,) = P(S). 

The first property implies that the shares held by any group of k participants univocally 
determines the secret s E S. Notice that the second property means that the probability 
that the secret is equal to  s given that the shares held by any group of j < k participants are 
d l ,  . . . , dj  is the same as the a priori probability that the secret is s. Therefore, no amount 
of knowledge of shares of less than k participants enables a Bayesian opponent to  modify an 
a pn’ori guess regarding which the secret is. 

Using the information theoretic concepts of entropy (see Appendix for definitions and 
properties) the two previous conditions can be stated as follows [12], [8], [3]: 

1’. for any k-tuple of distinct indexes il, . . . , i k ,  1 5 i j  5 n, it holds H( S I Di,, .  . . , Di,) = 

0, 

2’. for any j < k, for any j-tuple of distinct indexes i l , .  . .,i,, 1 5 i, 5 R. it holds 
H ( S I  D,, ). . . .  Dl,) = H ( S ) .  

Tompa and M’oll [20] considered the following scenario: let us suppose that k - 1 participants 
P;, , .. . , Pik-, want to cheat a k-th participant Pik. Let dl ,  . . . , dk-1, dk be the shares held 
by participants Pi,, . . . ,P i ,  and s be the correct secret, that is, the secret the participants 

would reconstruct if they pooled together their shares. The k - 1 cheaters Pi,,. . . , P,L--I,  not 
knowing d k ,  could return d i , .  , ., di-l  forged shares in a tentative to force the k-th participant 
Pi, to reconstruct a secret s’ # s. Tompa and Woll showed that Shamir’s scheme [15] is 
insecure against this attack, in the sense that even a single participant, with high probability. 
can deceive other k - 1 honest participants. Tompa and Woll, however, modified Shamir‘s 
scheme to make it secure against cheating. Briefly, they proposed a sharing algorithm that 
specifies a subset Sicgal of the set S of possible secrets. A secret will be accepted as  authentic 
only if it is an element of Slegal. If a set of k participants calculate the  secret to be an element 

of S,iicgai = S - Slcgal, then they realize that a t  least one of them is cheating. In other words 
Slegai is the set of legal secrets that each participant would expect to reccinstruct. Silltgnl is a 
set of illegal secrets that is introduced only to reveal cheating. Other papers that addressed 
the problem of coping with cheaters in secret sharing schemes are [l], [i]. [14], [16] and [20]. 

An important issue in the implementation of secret sharing schemes is the size of shares 
distributed to participants since the security of a system degrades as the amount of the 
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information that must be kept secret increases. Recently, several papers studied this topic 
and both upper bounds and lower bounds on the size of the shares have been provided 131, 
[4], [5], [6], [8], [19]. In this paper we study the amount of secret information that must 
be given to participants in terms of the probability that the previously described attack be 
successful. Our motivations are based on the observation that the Tompa and Woll secret 
sharing scheme requires that each participant must receive an m o u n t  of secret information 
that grows with the level of security one imposes against dishonest coalitions. We show 
that this phenomenon is unavoidable, in the sense that in any secret sharing scheme that 
has probability of successful cheating less than some c > 0, it must give to  each participant 
shares whose size is at least the size of the secret plus log !.’. The security of the schemes 
presented in this paper is unconditional, since they are not based on any computational 
assumption. 

2 Robust Secret Sharing Schemes 

Tompa and Woll [20] defined the cheating probability as “the probability that from k - 1 

forged shares d i : .  . . , di - l  and any dk the secmt s’ reconstructed is legal, but not a correct 
one”. In order to formally define the problem let us introduce some notations. For each 
k-tuple of distinct indexes il,. . . , ik, 1 5 i j  5 n, and for any ( d l , .  . . , & )  E Di, X . . . X Di, 
such that p(d1,. . ., d k )  > 0 (i-e., for any k-tuple of shares that the secret sharing algorithm 
can possibly give to participants Pi, ,  . . . , Pir to share a particular secret s E S), let us de- 
note by ( d l , .  . . , d k )  -+ s the fact that the values d l , .  . . ,dk force participants Pi,, . . . ,Pi& 
to reconstruct the secret s E S. Since the sharing algorithm and the probability distri- 
bution { p ( s ) } , ~ s  are known to all participants, it follows that the probability distribution 
{ p ( d i , .  . .,dn)}d,cD1 ,.._, d,cD, is also known. Assume that the k - 1 cheaters Pi,, . . .,Pi,-, 
know the correct secret s and their legal shares d l ,  . . . , dk- l .  From Decision Theory it is 

well known (see for example [ll]) that the decision rule that minimizes the probability of 
error is the Bayesian decision rule that chooses the hypothesis with largest “a posteriori” 
probability. Therefore, the best strategy the k - 1 cheaters Pi, ,  . . . , can  follow to cheat 
a I;-th participant Pik is to give him forged values d; ,  . . . ,dL-, that maximize the following 
quantity 

c P(d6 I dl I . . . ,dk-lr 9) . 
d k € D , , : ( d :  , . . . ,d ; - ]  , d k ) - S - { 8 )  

Averaging on all secrets in S and on the possible shares the sharing algorithm could give, we 
have that the maximum average probability P(Cheat I Di,, . . . , D i k - ] ,  S) that k - 1 partic- 
ipants P,, , . . . , Pi,-, , knowing the correct secret, succedees in cheating the k-th participant 
f l ,  is: 

‘All loguithms in this paper are of base 2 
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For a fixed c, 1 2 z > 0, we define a ( k , n , c )  Robust Secret Sharing Scheme as secret 
sharing scheme that satisfies the following properties: 

P1) for any k-tuple of distinct indexes i l l . .  . , a & ,  it holds H ( S  1 Dil , .  . ., Di,) = 0 ,  

P 2 )  for any j-tuple of indexes i l , .  . . , i , ,  1 5 j < k, it holds H(S I Dil,. . ., Di,) = H ( S ) ,  

P3) P(Cheat 1 D;,,.. ., Di,-,,S) 5 E .  

Properties P1 and P2 are those of a ( k , n )  threshold scheme. The property P3 assures 
that any cheating tentative has arbitrarily small probability of succeeding, even though the 
cheaters know the correct secret. 

Note that the condition E > 0 for ( k , n , c )  Robust Secret Sharing Schemes is necessary, 
since the probability of cheating P(Cheat I Di,,. .., Dik-,,S) cannot be 0 in any (k,n) 
Threshold Secret Sharing Scheme. For a proof of this fact see the remark following Lemma 2. 

A quantity that will play an important role to derive our result is the probability that 
k - 1 participants Pi, , .  . ., Pik-, can guess the share of the k-th participant Pi,, given that 
they know the correct secret s besides their own shares dl, . . . , dk-]. Again, the best strategy 
that  the k - 1 participants can follow is to  choose the value & E D;, that maximizes the 
conditional probability 

p(dk ldl~..*~dk-l,s). 

Averaging on all the possible shares and secrets it follows that the maximum average prob- 
ability P(GuessDi, I D;], . . ., Dik-,,S) that k - 1 participants P i , , . .  .,Pi&-,, knowing the 
correct secret, succeeds in guessing the value of the share of the k-th participant fl, is: 

P(GuessDi, 1 Di, , . . . , Dik-,, S )  

The following lemma holds. 

Lemma 1 In any (k, n) Threshold Secret Sharing Schemes one has 
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Proof. Since the function logz is convex, the lemma follows from Jensen inequality [13]. 

= log P(GuessDi, I D;, , . . . , Dik-,, S). 

The relationship between the cheating probability P(Cheat I D;, , , . . , Dik-,, S) and the 
guess probability P(GuessD;, I D;, , . . . , D;k-l, S) is stated by the following lemma: 

Lemma 2 I n  any (k, n) Threshold Secret Sharing Schemes one has 

P(GuessD;, I D,,, .  . ., Di,-,, S) 5 P(Cheat I Di, , . . . , D;,-,, S) . 

Proof. The proof follows from the following argument. For all dl E Di,, . . . , dk-1 E Dik-, 
and s E S, in correspondence of a value E Di, that maximizes the guess probability, that 
is, for which maxd,ED;,p(dk I dl . . . dk-ls) = p(& I dl . . .&IS), it must exist a choice of k- 1 
shares di E Di,, .  . .,d;.] E Dik-, such that (di,. . . , d i M 1 , & )  -+ s', for some s' E S - {s}. 

In the opposite case, the value would univocally identify a secret s, in the sense that the 
k-th participant Pi, knowing only the share &, could reconstruct the correct secret s. This 
contradicts Property P2. Therefore, 

0 

1 maxdkED,, p(dk I dl,..-rdk-l,s) 5 m a d ; .  ..., d;-, p(dk I dl,...,dk--l,s) 
&ED,, :(di ,..., dL-, ,dk)-S-{s) 

and the lemma follows. 

Remark. It is clear that the probability of guessing P(GuessD;, I D,, , . . . , Di,..,, S) is 
positive. Therefore, from Lemma 2 it follows that P(Cheat I Di,, . . ., Dik-,, S) > 0. 

The following theorem represents our main result. 
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Theorem 1 In any ( k , n , e )  Robust Secret Sharing Scheme, for any k-tuple of distinct in- 

dezes il, . . . , it it  holds 

H(Di, ,  I Di l r . . . ,D ih- l )  2 H ( S ) + l o g  $. 

Proof. From (3) of Appendix we have: 

As a consequence of Properties P1 and P2 it follows that 

Fkom Lemmas 1 and 2, and Property P3 of (k,n,c) Robust Secret Sharing Scheme, the 
theorem follows. Indeed, 

(by Lemma 1) 
1 

P(GuessDi,  I Di, , . . ., D i k - l , S )  
I H(S)+log 

1 
P(Cheat I Di , ,  . . . , Dik- ] ,  S) 

2 H ( S ) t l o g  (by Lemma 2) 

2 H ( S ) t l o g  ; 1 (by Property P3). 

0 

Corollary 1 In any (k, n, E )  Robust Secret Sharing Scheme, if the secret is uniformly chosen 
it holds 

log1 Di 12 log I s I +log:. 

Proof. The proof is immediate from Theorem 1 and properties (1) and (2) of the entropy 
in the Appendix. 0 

The corollary shows that in a (k, n , e )  Robust Secret Sharing Scheme the size of the shares 
given to participants - measured as the number of bits necessary to their representation - 
necessarily grows as c decreases. For completeness, we recall that in the Tompa and wall 
algorithm the size of shares log ID,[ satisfies the bound 
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We have proved a tradeoff between the size of the shares and the probability of successful 
cheating in perfect (i.e., properties 1. and 2. hold) threshold schemes. The same technique 
can be used for non-perfect schemes, such as, for example, rump schemes. 
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3 Appendix 

In this section we shall review the information theoretic concepts we used in the paper. For 
a complete treatment of the subject we refer the reader to [9]. 

Given a probability distribution { P ( Z ) } , ~ X  on a finite set X, define the entropy of S, 
B(X), as: 

H(X) = - 1 p(z)logp(z). 
I E X  

The entropy H(X) is a measure of the average information content of the elements in S 
or, equivalently, a measure of the average uncertainty one has about which element of the 
set X has been chosen when the choices of the elements from X are made according to the 
probability distribution { P ( Z ) ) , ~ X .  The entropy R ( X )  enjoys the following property: 

(1) 0 5 H ( X )  5 log I-XI, 

where H(X) = 0 if and only if there exists 20 E X such that p ( z 0 )  = 1; H ( X )  = log IS1 if 
and only if p ( z )  = l/lXl, for each z E X. 

Given two sets X and Y and a joint probability distribution { p ( z ,  g ) } r c ~ , , , e ~  on their 
Cartesian product, the conditional entropy H(XIY) of X given Y is defined as: 

H(-XIY)  = - c c P ( Y ) P ( z l Y ) l o g P ( Z l Y ) .  
YEY ZEX 

The conditional entropy satisfies the following inequalities 

The entropy of the joint space X Y  satisfies: 

H ( X Y )  = H ( X )  + H ( Y I X )  = H ( Y )  + H ( X 1 Y ) .  

Analogously, the conditional entropy of XY given 2 satisfies: 
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