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Abstract. This is a study of several notions of size of subsets of groups. The

first part (Sections 3–5) concerns a purely algebraic setting with the underlying

group discrete. The various notions of size considered there are similar to each

other in that each of them assesses the size of a set using a family of measures

and translations of the set; they differ in the type of measures used and the

type of translations allowed. The way these various notions relate to each other

is tightly and, perhaps, unexpectedly connected with the algebraic structure of

the group. An important role is played by amenable, ICC (infinite conjugacy

class), and FC (finite conjugacy class) groups.

The second part of the paper (Section 6), which was the original motivation

for the present work, deals with a well-studied notion of smallness of subsets of

Polish, not necessarily locally compact, groups—Haar null sets. It contains ap-

plications of the results from the first part in solving some problems posed by

Christensen and by Mycielski. These applications are the first results detect-

ing connections between properties of Haar null sets and algebraic properties

(amenability, FC) of the underlying group.

1. Introduction

In the introduction, I will outline the main results of the paper starting with
Sections 3–5. Before doing that, however, I will describe a couple of precursors to
the notions of size of subsets of groups considered in these sections. The common
underlying idea can be summarized as follows. A family of “test” measures on a
group is fixed. A set A is considered to be large if for each measure from the family
there is a translate of A with large measure; it is small if for some measure from
the family all translates of A have small measure.

An important role in the paper will be played by amenable groups. A locally
compact group G is called amenable if there exists a complex linear functional m

from the linear space of all (equivalence classes of) bounded, Haar measurable,
complex valued functions on G with the following two properties:

(i) m(f) ≥ 0 for any real valued, non-negative f and m(1) = 1 where 1 is the
function constantly equal to 1;

(ii) m(gf) = m(f) for any f and any g ∈ G where gf(x) = f(g−1x).

The theory of amenable groups is well developed. Good sources for it are [22] and
[23].
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Mitchell, in his work characterizing subsets of amenable groups G supporting a
left invariant mean [17], considers a set A to be large, left thick in his terminology,
if each finite set is included in a right translate of A. In fact, by results of [17], these
turn out to be precisely the sets for which there exists a left invariant mean m with
m(A) = 1. The group G is assumed discrete here. Later modifications of Mitchell’s
notion of largeness of a set were studied. For example, Day in [7] considers a set A

to be large, left lumpy in Day’s terminology, if for each ε > 0 and each probability
Borel measure, A has a right translate of measure > 1− ε. The group G is assumed
locally compact here. For more on these notions see Day’s survey paper [8].

This type of methods of measuring the size of subsets of groups (and functions
on groups) come up in the proof of Paterson’s characterization of amenable groups
on which each left invariant mean is two-sided invariant [21] and in Emerson’s
characterization of amenability of locally compact groups [9].

The notion of Haar null sets, discovered in the theory of differentiation on sepa-
rable Banach spaces, is another example of measuring the size of subsets of groups
in the manner described above. A universally measurable subset A of a group G

is considered small, Haar null, if for some Borel probability measure all two sided
translates of A, gAh, have measure zero. The group is assumed to be Polish. Haar
null sets were introduced by Christensen [4].

Obviously, there are two choices involved in the type of assessment of the size
of subsets of groups I outlined above. The first one concerns the class of measures
being used in the process. It is the family of all Borel probability measures in the
case of left lumpy and Haar null sets and the family of all uniformly distributed
probability measures with finite support in the case of left thick sets. The other
choice concerns the type of translations being allowed. These are one sided (right)
translations in the case of left thick and left lumpy sets and two sided translations
in the case of Haar null sets.

In Sections 3–5, I study the relationships between the measures of size obtained
by making these choices and the dependence of these relationships on the algebraic
structure of G. These problems will be considered for discrete groups G. Originally,
I investigated the questions of Sections 3–5 in order to gain an understanding of
measuring the size of sets needed to approach the problems on Haar null sets
from Section 6. However, the results obtained are perhaps of independent interest.
Moreover, Sections 4 and 5 have direct applications to the Haar null results.

From this point on, unless otherwise stated, all groups are considered with the
discrete topology.

Two classes of measures on G will be of interest to us. First the class of all
probability measures. (By a probability measure on G we mean a non-negative l1

function on G with the l1 norm equal to 1.) The second class is that of uniformly
distributed probability measures, that is, measures of the form µF (A) = |A∩F |/|F |
where F ⊆ G is finite and non-empty.

For a probability measure µ on G and A ⊆ G, set

µL(A) = sup
g∈G

µ(gA)
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and similarly for two-sided translations let

µT (A) = sup
g,h∈G

µ(gAh).

We can measure the size of A ⊆ G by defining

a(A) = inf{µL(A) : µ a probability measure on G},
that is, a(A) = inf{‖µ ∗ χA−1‖∞ : µ is a probability measure}. The question we
address is whether all probability measures on G need to be used as test measures
to compute a(A) and, in particular, if it suffices to use only uniformly distributed
measures. Define

u(A) = inf{(µF )L(A) : F ⊆ G finite and nonempty},
or, in other words, u(A) = inf{‖µF ∗ χA−1‖∞ : F ⊆ G finite non-empty}. (Note
that a set A is right thick, see above, if, and only if, u(A) = 1. Since G is discrete,
this is also equivalent to A being right lumpy.) Now the question becomes: under
what assumptions on G do we have a = u? We define analogous quantities for
two-sided translations by letting

aT (A) = inf{µT (A) : µ a probability measure on G}
and

uT (A) = inf{(µF )T (A) : F ⊆ G finite and nonempty}.
Again we ask under what circumstances aT = uT .

Below we formulate the main results in easy to state forms. Their sharper
versions and proofs can be found in the appropriate sections.

A sharper version of the following theorem is proved in Section 4.

Theorem 1.1. Let G be a group.

(i) If G is amenable, then a = u

(ii) If G contains a non-Abelian free group, then a 6= u. In fact, for each ε > 0
there exists A ⊆ G with u(A) > 1− ε and a(A) < ε.

Rather surprisingly the analogous theorem for two-sided translations is very
different. The following result is proved in Section 3.

Theorem 1.2. If G is an arbitrary group, then aT = uT .

The proof of this result is perhaps unexpected. It starts with a short argument
showing that there exists an amenable normal subgroup H of G such that the
quotient group G/H is ICC, that is, each non-identity element has infinite conjugacy
class. Using a combination of combinatorial and measure theoretic methods, we
prove next that a statement stronger than that in Theorem 1.2 holds for ICC groups.
Then using amenability of the kernel of the quotient map G → G/H, we transfer
this stronger result from G/H to G.

Combining Theorem 1.2 with the obvious inequalities, we get on an arbitrary
group G

a ≤ u ≤ uT = aT .
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When a = u is explained to a large extent by Theorem 1.1. It remains, therefore,
to analyze when the equality u = uT holds. If G is a group, let

GFC = {g ∈ G : {hgh−1 : h ∈ G} is finite}.
A straightforward calculation shows that GFC is a normal subgroup of G. A group
is called FC if GFC = G, that is, if all elements of G have finite conjugacy classes.
FC groups are rather close to being Abelian, see [10], [19]. For example, it was
proved in [19] that the center of a finitely generated FC group has finite index and
that any finitely generated FC group can be mapped onto an Abelian group by a
homomorphism with finite kernel.

A stronger form of the following result is established in Section 5.

Theorem 1.3. Let G be a group.

(i) uT ≤ [G : GFC ] u.
(ii) There exists a set A ⊆ G such that

uT (A) = 1 and u(A) =
1

[G : GFC ]

where we interpret 1/[G : GFC ] to be 0 if [G : GFC ] is infinite.

In particular, uT = u if, and only if, G is FC.

The second part of the paper deals with Haar null sets on Polish groups. Recall
that a group is called Polish if it carries a separable completely metrizable group
topology. All locally compact, second countable groups, their countable products,
as well as all separable Banach spaces (with vector addition) are Polish groups.
For other interesting examples see [1]. A subset of a Polish group G is called
Haar null if it is contained in a universally measurable set A such that for some
probability Borel measure µ on G, µ(gAh) = 0 for all g, h ∈ G. Recall that a
subset of a Polish group is called universally measurable if it is measurable with
respect to each Borel probability measure on the group. (The notion of Haar null
sets has a curious history. Christensen, in [4] and [5], worked out the basic theory
of it for Abelian Polish groups only, but he introduced the notion for arbitrary
Polish groups [5, p.123]. Haar null sets on Abelian Polish groups were rediscovered
by Hunt, Saur, and Yorke [12]. Basic results about Haar null sets for general
Polish groups with their proofs were published by Hoffmann-Jørgensen [25] and,
independently, by Mycielski [18].) Haar null sets are closed under taking countable
unions and subsets. If G happens to be locally compact, Haar null sets are precisely
Haar measure zero sets. Therefore, the notion of Haar null sets can be viewed as
extending the notion of Haar measure zero sets to not necessarily locally compact
groups, that is, to groups on which left translation invariant, Borel, locally finite
measures do not exist. This accounts for part of the interest in this notion. Its
importance stems also from its applications in Banach spaces and Polish groups, for
some examples of it see [5], [14], or [16]. For introductions to Haar null sets see [2],
[5], and [25]. One should mention that there exist other useful measure theoretic
notions of smallness in separable Banach spaces, see for example [2] and [15].
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Haar null sets are understood quite well on locally compact groups and on
Abelian Polish groups, in particular, on separable Banach spaces. It is not so
without these topological or algebraic assumptions. This problem was already
identified by Christensen in [5, p.122] but no results have been found so far in-
dicating a connection between algebraic properties of non-locally compact Polish
groups and properties of Haar null sets on them. We show that our investigation
of sizes of subsets of discrete groups from Sections 3–5 can be used to understand
Haar null sets on products of countable discrete groups. These groups are easy to
handle topologically, yet they can be (and most of them are) non-locally compact
and algebraically complicated, as complicated, in fact, as their factor groups. It
turns out that the behavior of Haar null sets on product groups is strongly con-
nected to algebraic properties of the factor groups and can be quite different from
the Abelian and the locally compact cases.

Mycielski formulated two questions which make the problem of Christensen more
precise. In [18], he asked if left Haar null sets, which are defined by modifying the
definition of Haar null by allowing only left, rather than two sided, translations,
coincide with Haar null sets. (Having two sided translations in the definition of
Haar null is crucial in the proof showing that the union of two Haar null sets
is Haar null; a very desirable property for small sets.) For Abelian and locally
compact groups the answer is affirmative. Answering Mycielski’s question, Shi
and Thompson constructed in [24] a Borel subset A of the Polish group of all
homeomorphisms of the interval [0, 1] which is left Haar null but not Haar null. We
find such an example in a group of the form

∏
n∈NHn with all the Hn’s countable

and, in fact, we characterize, in terms of algebraic properties of the Hn’s, the
product groups for which such an example can be found.

Another question which was posed in [5, p.122] and [18] was whether, for a uni-
versally measurable subset A of a Polish group which is not Haar null, 1 belongs
to the interior of A−1A. The interest in this property comes from the fact that
its being true on a Polish group G implies that G has an automatic continuity
property—any universally measurable homomorphism from G to a second count-
able group is continuous. It is known to be true if G is Abelian (a result due to
Christensen [4], [5, Theorem 7.3]) or if G is locally compact (a classical result going
back to Steinhaus and Weil [11, 20.17]) or if A has the Baire property and is non-
meager (Pettis’ theorem [5, Theorem 5.1]). We answer this question of Christensen
and Mycielski in the negative. In fact, again we characterize those product groups
for which this property holds.

Theorem 1.4. Let Hn, n ∈ N, be countable groups. Consider the group
∏

n Hn

with the product topology. The following conditions are equivalent.

(i) A subset of
∏

n Hn is left Haar null if, and only if, it is Haar null.
(ii) For each universally measurable subset A of

∏
n Hn which is not Haar null,

1 is in the interior of A−1A.
(iii) All but finitely many of the Hn’s are FC.
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2. Notation

We say that a measure is defined on a set when it is, in fact, defined on a σ-
algebra of subsets of this set. We think of a measure µ on a set X as a function on
l∞+ (µ), the set of all non-negative bounded functions on X which are µ-measurable,
and we write µ(v) for

∫
X

v(x) dµ(x) for v ∈ l∞+ (µ). If µ is a measure on a set X

and f : X → Y is a surjection, by f∗µ we mean the measure on Y defined by
f∗µ(v) = µ(v ◦ f). Most of the time we will study such functions defined on a
group G so X = G. For technical reasons, however, we will have to consider a
more general situation when X = Y ×G. For a bounded function v on Y ×G and
g, h ∈ G, let

gvh(y, x) = v(y, g−1xh−1), gv(y, x) = v(y, g−1x), vh(y, x) = v(y, xh−1).

Now assume Y and G to be discrete. Let µ be a probability measure on Y ×G,
that is, an assignment of weights to points of Y × G, that is, an l1 non-negative
function on Y × G with the l1 norm 1. We let Sµ stand for the support set of µ,
that is, {g ∈ G : µ({g}) > 0}. We write l∞+ (Y × G) for the set of all bounded
non-negative functions on Y ×G. All these functions are µ-measurable. Sometimes
we write l∞+ if Y and G are obvious from the context. For a function v ∈ l∞+ (Y ×G),
let

µT (v) = sup
g,h∈G

µ(gvh), µL(v) = sup
g∈G

µ(gv), and µR(v) = sup
h∈G

µ(vh).

These functions are no longer measures. However, they are homogeneous subaddi-
tive functions on l∞+ . For a set A ⊆ Y ×G, we write

µT (A) = µT (χA), µL(A) = µL(χA), and µR(A) = µR(χA).

where χA is the indicator function of A. Note that if Y consists of one point, then,
after naturally identifying G with Y × G, µT (A), µL(A), µR(A) coincide with so
denoted quantities defined in the introduction. Given a measure µ, we sometimes
write gµ, µh, and gµh for measures defined on l∞+ (Y × G) by µ(gv), µ(vh) and
µ(gvh), respectively.

For two functions φ and ψ defined on l∞+ , define

(2.1) φ ≤ ψ ⇔ (φ(v) ≤ ψ(v) for all v ∈ l∞+ with ‖v‖∞ ≤ 1).

|A| stands for the cardinality of A. We denote by N the set of all natural numbers
(including 0).

3. Two-sided translations

We will formulate a theorem which is stronger than Theorem 1.2 and seems to
represent the “right” generality for this result. Recall the definition (2.1) of ≤
which we will apply here to µF and µT .

Theorem 3.1. Let G be an arbitrary group and let µ be a probability measure on
G. Given ε > 0 and C > 1 there exists a finite non-empty subset F of G such that

µF ≤ CµT + ε.
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If we apply Theorem 3.1 to ε > 0, C > 1, and the indicator function χA of a set
A ⊆ G, then it immediately follows that uT (A) ≤ CaT (A) + ε. Since ε > 0 and
C > 1 are arbitrary, this is all that is needed to see that aT (A) = uT (A) which is
Theorem 1.2.

Before embarking on the proof of this result, we survey the classes of groups that
will be used in it.

A group is ICC if each non-identity element has infinite conjugacy class. ICC
groups are of relevance in constructing examples of von Neumann algebras. For
more on this and examples of such groups see [13, Section 6.7].

Recall from the introduction that a group is called FC if all its elements have
finite conjugacy classes. The structure of such groups was thoroughly studied by
Neumann in [19]. In particular, he observed that in a finitely generated FC group,
the center has finite index. Thus, each such group is amenable and, since each
group is a directed union of its finitely generated subgroups and amenable groups
are closed under such unions, it follows that FC groups are amenable. We will use
this fact below. (This result has been substantially generalized, see [23, Corollary
14.26].)

Day deduced from the fact that amenable groups are closed under directed unions
and extensions by amenable groups that each group has a (unique) largest normal
amenable subgroup [6, Lemma 1, p.518]. This subgroup is sometimes called the
amenable radical and we will use this name here.

The proof of Theorem 3.1 constitutes the remainder of this section. We start
with a simple observation which is however but pivotal to the proof.

Lemma 3.2. The quotient of a group by its amenable radical is ICC.

Proof. Let G be a group and let H be its amenable radical. Let (G/H)FC be the
normal subgroup consisting of all elements in G/H which have finite conjugacy
classes. Then (G/H)FC is FC and, therefore, amenable. Thus, its preimage under
the quotient map G → G/H is an amenable normal subgroup of G containing H.
Hence (G/H)FC consists of the identity only. ¤

Lemma 3.2 will allow us to split the proof of Theorem 3.1 into two parts: one
dealing with amenable groups and the other with ICC groups. We start with the
amenable case.

Lemma 3.3. Let H be an amenable group and let Y be a set. Denote by p the
projection Y ×H → Y . For any probability measures µi, i = 1, . . . , n, on Y ×H

and C > 1 there exists K ⊆ H finite non-empty and such that for each i ≤ n,

p∗µi × µK ≤ C(µi)L.

Proof. Let Sµi , for i = 1, . . . , n, be the support of µi and let S be the union of the
projections of the Sµi ’s on H. Find finite K ⊆ H such that |KS−1| < C|K|.

Fix now i ≤ n. It will suffice to prove the inequality v : Y ×H → [0,∞) with
domain included in p(Sµi)×K. Define A(v) : Y → R by letting for y ∈ Y

A(v)(y) =
∑

x∈H

v(y, x).
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For any v as above, we have

p∗µi(A(v)) =
∑

(y,x)∈Y×H

v(y, x)
∑

h∈H

µi({(y, hx)})

=
∑

h∈H

(
∑

(y,x)∈Y×H

v(y, h−1x)µi({(y, x)}))

=
∑

h∈H

µi(hv).

(3.1)

Now if v is equal to zero outside of p(Sµi
)×K,

p∗µi(A(v)) = |K|(p∗µi × µK)(v)

and, therefore, (3.1) gives

|K|(p∗µi × µK)(v) =
∑

h∈H

µi(hv) =
∑

{µi(hv) : S ∩ hK 6= ∅}

≤ |SK−1|µL
i (v) < C|K|µL

i (v).

¤

Lemma 3.4. Let G be a group, let µ be a measure on it, and let C > 1, ε > 0. If
F ⊆ G is finite non-empty and such that µF ≤ CµT + ε, then for any ε′ > 0, there
exists a finite set B ⊆ G such that for any v : G → [0, 1], there are g, h ∈ B with

µF (v) ≤ Cµ(gvh) + ε + ε′.

Proof. Note that for any positive number δ, there is a finite family A of functions
from G to [0, 1] which are identically 0 outside of F such that each function from
G to [0, 1] is uniformly approximated on F up to δ by one of the functions from A.
Let B be a finite collection of g, h ∈ G which are needed to guarantee

µF (v) ≤ Cµ(gvh) + ε + ε′/2.

for all functions v in A. Now let v : G → [0, 1] and let u ∈ A uniformly approximate
v on F up to δ > 0. Let v′ be the function equal to v on F and to 0 outside of F .
Then for some g, h ∈ B

µF (v) ≤ µF (u) + δ ≤ Cµ(guh) + ε + ε′/2 + δ

≤ C(µ(gv
′
h) + δ) + ε + ε′/2 + δ ≤ Cµ(gwh) + (C + 1)δ + ε + ε′/2.

By making δ appropriately small, we are done. ¤

Lemma 3.5. Let G be a group and H an amenable normal subgroup of it. Assume
that the conclusion of Theorem 3.1 holds for G/H. Then it holds for G as well.

Proof. Let G be a group with a probability measure µ on it. Fix C > 1 and
ε > 0. Let H be an amenable normal subgroup of G. Denote by π the projection
G → G/H. Combining our assumption that Theorem 3.1 holds for G/H with
Lemma 3.4 (applied to the group G/H and the measure π∗µ), we obtain a finite
set F ′ ⊆ G/H and another finite set B ⊆ G such that, for any v′ : G/H → [0, 1]
there are g, h ∈ B with

(3.2) µF ′(v′) ≤ C(π∗µ)(π(g)v
′
π(h)) + ε.
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We will show that given C ′ > 1 there exists a finite set F ⊆ G such that for any
v : G → [0, 1] there are g, h ∈ B and h0 ∈ H with

µF (v) ≤ C · C ′ · µ(gh0vh) + ε.

This will prove the lemma.
Let Y ⊆ G be a selector of the family of cosets of H. Let φ : G → G/H × H

be the bijection given by φ(g) = (π(g), h) where h is the unique element of H with
g = hy for a y from Y . Now consider the finitely many measures on G/H × H

given by φ∗(gµh) for g, h ∈ B. By applying Lemma 3.3 to this family of measures
and the constant C ′ we obtain a finite set K ⊆ H such that for any g, h ∈ B and
any v : G → [0, 1] there exists h0 ∈ H such that

(3.3) (π∗(gµh)× µK)(v) ≤ C ′φ∗(gµh)(h0v).

Define

F =
⋃

i≤n

Kyi

where y1, . . . , yn are the elements of Y which are mapped by π to elements of F ′.
Let v : G → [0, 1]. Define v′ : G/H → [0, 1] by letting it be 0 on cosets not

containing any of the yi’s and

v′(π(yi)) = µKyi(v ¹ Hyi)

for i ≤ n. Note that the definition of v′ gives

(3.4) µF (v) = µF ′(v′)

and

(3.5) g′(π∗µ)h′(v′) = (g′(π∗µ)h′ × µK)(v ◦ φ−1)

for g′, h′ ∈ G/H. Formula (3.2) allows us to pick ḡ, h̄ ∈ B such that

(3.6) µF ′(v′) ≤ C π(ḡ)(π∗µ)π(h̄)(v
′) + ε.

Note that, for g, h ∈ G, we have

(3.7) π(g)(π∗µ)π(h) = π∗(gµh).

Combining (3.4), (3.5), (3.6), (3.7), we obtain that for

(3.8) µF (v) ≤ C(π∗(ḡµh̄)× µK)(v ◦ φ−1) + ε.

Additionally, by (3.3), for some h0 ∈ H, we get

(π∗(ḡµh̄)× µK)(v ◦ φ−1) ≤ C ′
(
φ∗(ḡµh̄)(h0(v ◦ φ−1))

)
= C ′ḡµh̄(h0v)

= C ′µ(ḡh0vh̄).
(3.9)

By (3.8) and (3.9) we obtain for h, g, h0 as specified above

µF (v) ≤ CC ′µ(ḡh0vh̄) + ε

which we were required to prove. ¤
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We need a measure theoretic lemma. Here are some notions that will make the
statement of the lemma more succinct. Let X be a set. Let v : Xk → R. By a
one-dimensional section of v we mean a function of the form

X 3 x → v(x1, . . . , xi−1, x, xi+1, . . . , xk) ∈ R
for some fixed 1 ≤ i ≤ k and fixed x1, . . . , xi−1, xi+1, . . . , xk ∈ X. In the lemma
below, the set X comes equipped with a σ-algebra and all measures defined on this
set or its products are defined on this σ-algebra or on its products, that is, the
σ-algebras generated by the multi-dimensional cubes. When a function is defined
on a product of some number of copies of X, it is said to be measurable if it is
measurable with respect to the appropriate product σ-algebra. Note that under
the convention adapted here all one dimensional sections of a measurable function
are measurable.

Lemma 3.6. Let µ be a finite measure on X. Let µ0 be a probability measure on
X. Assume that µ is absolutely continuous with respect to µ0.

Let 0 < r < s. For large enough k ∈ N, any measurable v : Xk → R with
0 ≤ v ≤ 1 and

∫
Xk v dµk

0 ≥ s has a measurable one-dimensional section whose
integral with respect to µ is ≥ rµ(X).

Proof. Let s > r > 0 be given. Let dµ = f dµ0 for some µ0-integrable function
f : X → [0,∞). Pick ε > 0 so that (1− ε)(s− ε) ≥ r. Put

Ak = {(x1, . . . , xk) ∈ Xk :
1
k

k∑

i=1

f(xi) ≥ (1− ε)µ(X)}.

Since µ(X) =
∫

X
f(x) dµ0(x), by the Law of Large Numbers [3, pp.282–284], for

large enough k, we have

(3.10) µk
0(Ak) ≥ 1− ε.

Fix an i between 1 and k. Let s(x1, . . . , xi−1, xi+1, . . . , xk) be the integral with
respect to µ of the one dimensional section of v determined by the tuple x1, . . . , xi−1,
xi+1, . . . , xk ∈ X. Using (3.10) and the facts that µ0 is a probability measure and
0 ≤ v ≤ 1, we obtain

1
k

k∑

i=1

∫

Xk−1
s(x1, . . . , xi−1, xi+1, . . . , xk) dµk−1

0 (x1, . . . , xi−1, xi+1, . . . , xk)

=
1
k

k∑

i=1

∫

Xk

v(x1, . . . , xk)f(xi) dµk
0(x1, . . . , xk)

=
∫

Xk

v(x1, . . . , xk)
(1
k

k∑

i=1

f(xi)
)
dµk

0(x1, . . . , xk)

≥ (1− ε)µ(X)
∫

Ak

v dµk
0

≥ (1− ε)µ(X)(s− ε) ≥ rµ(X).

The conclusion of the lemma follows. ¤
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Lemma 3.7. Let G be a group with a probability measure ν on it. Let µ be a
probability measure on G. Assume that µ is absolutely continuous with respect to
ν. Let g1, g2, · · · ∈ G. Then for any s > r for k ∈ N large enough, we have that for
any v : G → [0, 1], if (g−1

1
ν∗ · · · ∗g−1

k
ν)(v) ≥ s, then µT (v) ≥ r.

Proof. Fix s > r. Taking X = G and applying Lemma 3.6 to µ0 = ν and µ, we find
that for k large enough the conclusion of the lemma holds. Fix such a k and assume
that (g−1

1
ν∗ · · · ∗g−1

k
ν)(v) ≥ s for some v : G → [0, 1]. Since g−1

1
ν∗ · · · ∗g−1

k
ν = φ∗νk,

for the function φ : Gk → G given by φ(h1, . . . , hk) = g1h1 · · · gkhk, it follows that
νk(v ◦ φ) ≥ s. So a one-dimensional section of it has µ-integral ≥ r, that is, for
some h1, . . . , hi−1, hi+1, . . . , hk ∈ G we have

∫

G

v ◦ φ(h1, . . . , hi−1, g, hi+1, . . . , hk) dµ(g) ≥ r.

However, the function

G 3 g → v ◦ φ(h1, . . . , hi−1, g, hi+1, . . . , hk)

is simply equal to

(g1h1···gi−1hi−1gi)−1v(gi+1hi+1···gkhk)−1

which finishes the proof. ¤

We will now prove two lemmas about ICC groups. The first one contains a result
that is stronger than we need here. Its full strength will be used later on.

Lemma 3.8. Let G be a group. Assume that K1 ⊆ G is a finite set consisting
of elements with infinite conjugacy classes. Then for any finite set K2 the set
{g ∈ G : gK1g

−1 ∩K2 = ∅} has cardinality |G|.
Proof. For g ∈ G, C(g) stands for the centralizer of g: {h ∈ G : hgh−1 = g}.
Assume that the conclusion of the lemma fails. Let K1 = {h1, . . . , hn} and let
K2 = {f1, . . . , fm} be such that, if we let

B = {g ∈ G : gK1g
−1 ∩K2 6= ∅},

then |G \B| < |G|. Note that

(3.11) B ⊆
⋃

i≤n,j≤m

Aij

where Aij = {g ∈ G : ghig
−1 = fj}. Let S = {(i, j) : i ≤ n, j ≤ m,Aij 6= ∅}.

Now, if we pick gij ∈ Aij for (i, j) ∈ S, then an easy calculation shows that
g−1

ij Aij ⊆ C(hi). Therefore, from (3.11), we get

(3.12) B ⊆
⋃

(i,j)∈S

gijC(hi).

Since the complement of B has cardinality smaller than |G|, there exists g0 ∈ G

with

(3.13) g0 · (G \B) ⊆ B.
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Combining (3.12) and (3.13), we see that G is covered by finitely many translates
of C(hi), i = 1, . . . , n. Now B.H. Neumann’s lemma [20, Lemma 2.7] implies that
there exists i0 ≤ n such that C(hi0) has finite index in G. This is equivalent to hi0

having finite conjugacy class, contradiction. ¤

Lemma 3.9. Let G be an ICC group and let P ⊆ G be finite. Then there exist
g1, g2, · · · ∈ G such that, for any k ∈ N, the mapping φ : P k → G given by
φ(h1, . . . , hk) = g1h1g2h2 · · · gkhk is injective.

Proof. We choose g1, g2, · · · ∈ G recursively as follows. Let Q = PP−1 \ {1}. We
require that for each i > 1,

(3.14)
(
(g1Pg2P · · · gi−1P )−1g1Pg2P · · · gi−1P

) ∩ giQg−1
i = ∅.

Note that these conditions are easily fulfilled by Lemma 3.8 since G is ICC. We
claim that with this choice of gi’s, given k, φ defined as in the statement of the
lemma is 1-to-1. Let (h1, . . . , hk) and (h′1, . . . , h

′
k) be different sequences from P k

and let i0 ≤ k be the largest i with hi 6= h′i. If φ applied to these two sequence
yielded the same value, we would have

g1h1g2 · · · gi0hi0 = g1h
′
1g2 · · · gi0h

′
i0

which if i0 = 1, would give h1 = h′1, a contradiction with our choice of i0, and if
i0 > 1,

(g1h
′
1g2 · · ·h′i0−1)

−1g1h1g2 · · ·hi0−1 = gi0h
′
i0h

−1
i0

g−1
i0

which in turn would contradict (3.14). ¤

Proof of Theorem 3.1. By Lemmas 3.2 and 3.5, it remains to show that the con-
clusion of Theorem 3.1 holds for all ICC groups. In fact, we will show that it holds
with C = 1. Fix ε > 0.

We apply Lemma 3.9 to obtain a sequence g1, g2, · · · ∈ G so that for each k the
function φk : P k → G defined, as in the lemma, by

φk(h1, . . . , hk) = g1h1g2h2 · · · gkhk

is 1-to-1.
We assume that the support P of µ is finite. Let ν = µP . Clearly µ is absolutely

continuous with respect to ν. Therefore, we are in a situation in which we can
apply Lemma 3.7 we only need to specify a pair of positive reals r < s. Fix M ∈ N
so that 1/M < ε/2. Let j be an integer with 0 < j < M . For each pair of the form
r = j/M and s = (j +1)/M , the conclusion of the lemma holds for k large enough.
So we can find a k for which this conculsion holds for all r, s of the above form. It
follows then easily that for any v : G → [0, 1],

(3.15) (g−1
1

ν ∗ · · · ∗ g−1
k

ν)(v) ≤ µT (v) + ε.

Since g−1
1

ν∗ · · · ∗g−1
k

ν = (φk)∗νk and since ν is a normalized counting measure and
φk is 1-to-1, it follows that

g−1
1

ν∗ · · · ∗g−1
k

ν = µD
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where D = φk(P k). Now taking into account (3.15), we get

µD(v) < µT (v) + ε

which proves the theorem. ¤

4. Left translations

Theorem 1.1 follows immediately from the following result.

Theorem 4.1. Let G be a group.

(i) If G is amenable, then, for C > 1, for each probability measure µ there
exists a finite non-empty set F such that

µF ≤ CµL.

(ii) If F2 < G, then, for any ε > 0, there exists A ⊆ G with u(A) > 1 − ε and
a(A) < ε.

Proof. (i) This is simply Lemma 3.3 for Y a one point set and all the µi’s equal to
µ.

(ii) Fix ε > 0, and let c = 1− ε. Put σn =
∑n

i=1
1
i . Fix n so that

(4.1) − ln ε + 3 < εσn.

Since the free group on two generators contains Fn, the free group on n genera-
tors, Fn is a subgroup of G. Let b1, b2, . . . , bn be free generators of Fn. Let ν be a
probability measure whose support is Sν = {bj : j ≤ n} and which is defined there
by

ν({bj}) =
1

σn · j .

For each finite set D ⊆ Fn we will define now D′ ⊆ D with the properties spelled
out in (4.4) and (4.5). Fix s ∈ Fn written in the reduced form. Define Ds to consist
of all the generators bj such that s does not end in b−1

j and sbj ∈ D. Further, let
ms ∈ N be such that

(4.2) c|Ds| ≤ |{bj : bj ∈ Ds, j ≥ ms}| < c|Ds|+ 1.

Let

(4.3) D′ = (D \
⋃

s∈Fn

sDs) ∪
⋃

s∈Fn

s{bj ∈ Ds : j ≥ ms}.

Note that s1Ds1 ∩ s2Ds2 = ∅, hence, by the first inequality in (4.2), D′ contains
at least c|⋃s∈Fn

sDs| of the elements of
⋃

s∈Fn
sDs. From this we immediately get

(4.4) |D′| ≥ c|D|.
We will now show that for any s ∈ Fn, we have

(4.5) ν(s−1D′) < ε.



14 SÃLAWOMIR SOLECKI

There is at most one 1 ≤ j ≤ n with s ending in b−1
j and, for all but this one j,

sbj ∈ D′ implies bj ∈ Ds and j ≥ ms. Thus, using (4.2) we get

ν(s−1D′) ≤ 1
σn

∑

sbj∈D′

1
j
≤ 1

σn
+

1
σn

∑
{1
j

: j ≥ ms, bj ∈ Ds}

≤ 1
σn

+
1
σn

+
1
σn

∑
{1
j

: ms ≤ j ≤ ms + c|Ds|}
(4.6)

Now, the second inequality in (4.2) implies |Ds| − (ms− 1) < c|Ds|+ 1, which by a
simple calculation gives (1− c)−1ms ≥ ms + c|Ds|. Applying it to (4.6) and using
(4.1), we obtain

ν(s−1D′) ≤ 2
σn

+
1
σn

∑
{1
j

: ms ≤ j ≤ ms

1− c
}

≤ 2
σn

+
1
σn

+
1
σn

∫ ms(1−c)−1

ms

1
x

dx ≤ − ln(1− c) + 3
σn

< ε

and (4.5) is proved.
Let Y ⊆ G be a selector of the family of all the left cosets of Fn in G. Let P ⊆ G

be a finite set. Define

(4.7) P ∗ =
⋃

g∈Y

(g−1P ∩ Fn)′

where the operation (·)′ on the right hand side of the above formula is defined by
(4.3). It follows immediately from (4.4), (4.5), and the fact that the support of ν

is contained in Fn that for any finite P ⊆ G

(4.8) |P ∗| ≥ c|P |
and

(4.9) ν(gP ∗) < ε for all g ∈ G.

Let Pi, i < |G|, list all finite subsets of G. By transfinite recursion, we easily
find elements gi ∈ G, i < |G|, so that for i < j we have

gj 6∈
⋃

i<j

giPiS
−1
ν SP−1

j .

This equation is set up to guarantee that for i 6= j the sets giPiS
−1
ν and gjPjS

−1
ν

are disjoint which immediately implies that

(4.10) ∀g ∈ G Sν ∩ ggiPi 6= ∅ for at most one i < |G|.
Define now

A =
⋃

i<|G|
(giPi)∗

where the operation (·)∗ is described by (4.7).
Note that if F ⊆ G is finite non-empty then F = Pi for some i < |G| and,

therefore, by (4.8),
µF (g−1

i A) ≥ µPi(g
−1
i (giPi)∗) > c.
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On the other hand, from (4.10) and (4.9) we get that, for any g ∈ G, ν(gA) < ε.
Thus, A is as required. ¤

Remark. For countable G, point (ii) in Theorem 4.1 can be strengthened as follows.
For each n = 1, 2, . . . , we introduce an auxiliary measure of sizes of subsets of G.
Recall that σn =

∑n
i=1

1
i . For v : G → [0, 1] define

an(v) = σn inf{µL(v) : µ a probability measure on G with |Sµ| ≤ n}.
The following statement justifies the introduction of the quantity an:

a ≤ u ≤ an for each n ∈ N.

Here is its proof. a ≤ u is obvious. To show u ≤ an, it will suffice to prove that for
any probability measure µ with |Sµ| = n, there exists a finite nonempty set F such
that for any v : G → [0, 1],

(4.11) µF (v) ≤ σnµ(v).

Let g1, . . . , gn list Sµ in such a way that µ({gi}) ≥ µ({gi+1}). Put wi = µ({gi}).
Let k ≤ n be such

kwk = max{iwi : i = 1, . . . , n}.
We claim F = {g1, . . . , gk} does the job. Since iwi ≤ kwk for all i = 1, . . . , k, we
have 1 =

∑n
i=1 wi ≤ kwk

∑n
i=1 1/i whence

(4.12)
1
k
≤ wkσn.

Now let v : G → [0, 1]. It follows from (4.12) and the fact that the wi’s are non-
increasing that

µF (v) =
1
k

k∑

i=1

v(gi) ≤ σn

k∑

i=1

(v(gi)wk) ≤ σn

k∑

i=1

v(gi)wi ≤ σnµ(v).

Now Theorem 4.1(ii) can be strengthened to the following.
If G is countable and F2 < G, then, for each ε > 0 there exists A ⊆ G with

u(A) ≥ 1− ε and an(A) ≤ − ln ε + 3 for each n.
Note that the condition an(A) ≤ − ln ε + 3 for each n implies that a(A) ≤

(− ln ε + 3)/σn for each n; thus, a(A) = 0.
We will leave it to the reader to modify the proof of Theorem 4.1 to establish

the statement above.

5. Left and two-sided translations

Theorem 1.3 is an immediate consequence of the following result. To state this
result in full strength, let us introduce one more piece of notation. For a subset A

of a group G, let uR(A) be defined as u(A) except that the right, rather than left,
translations of A are taken in the definition. Clearly, uT ≥ uR.

Point (i) of the theorem below gives uT ≤ [G : GFC ]a and hence also uT ≤ [G :
GFC ]u. Point (ii) shows that this estimate cannot be improved.

Theorem 5.1. Let G be a group, and let GFC be the normal subgroup of G con-
sisting of all finite conjugacy class elements.
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(i) Let C > 1 and let µ be a probability measure on G. There exists a finite set
K ⊆ G such that

(µK)T ≤ C · [G : GFC ] · µL.

(ii) If [G : GFC ] is finite let p = [G : GFC ]; if [G : GFC ] is infinite, let p be any
natural number. There exist A ⊆ G and D ⊆ G with |D| = p such that
(a) uR(A) = 1;
(b) hA∩D has at most one element for any h ∈ G; in particular, u(A) ≤

1/p.

Lemma 5.2. Let G be a group with M = [G : GFC ] finite and let Y be a set.
Denote by p the projection from Y × G to Y . For any probability measure µ on
Y ×G and C > 1 there exists a finite non-empty set F ⊆ G such that

(p∗µ× µF )T < CMµL.

Proof. The assumption that M is finite implies that G is amenable. Thus, by
Lemma 3.3, it will suffice to prove our lemma only for a measure µ of the form
ν × µF for a finite non-empty subset F of G and a probability measure ν on Y .
This boils down to showing that for any F ⊆ G finite and non-empty and any C > 1
there exists a K ⊆ G finite non-empty with (µK)T ≤ CM(µF )L. Fix, therefore, F

and a constant C > 1. Put H = GFC . Let {g1, . . . , gM} select one element from
each coset of H in G. Since conjugacy classes in G of elements of H are finite and
included in H, the set

L =
M⋃

i=1

⋃

g∈G

g−1(g−1
i F ∩H)g

is a finite subset of H. Since H, being FC, is amenable, we can find a finite set
K ⊆ G such that |LK−1| ≤ C|K|.

Now let v : G → [0, 1] be given. Note that it will suffice to show that for any
f ∈ G,

(5.1) µK(vf ) ≤ CM(µF )L(v).

Fix, therefore, f ∈ G. Define

F ′ =
M⋃

i=1

gif
−1(g−1

i F ∩H)f.

Note that since H is normal, |F | = |F ′|. Now we compute

|K|µK(vf ) =
∑

x∈K

vf (x) =
∑

g∈G

µF ′(g(vf |K))

=
1
|F ′|

∑

g∈G

M∑

i=1

∑
{((gvf )|gK)(x) : x ∈ gif

−1(g−1
i F ∩H)f}

≤ 1
|F |

M∑

i=1

∑

g∈(gif−1(g−1
i F∩H)f)K−1

∑
{(gv)(x) : x ∈ gif

−1g−1
i F}
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and we continue after substituting y = gifg−1
i x and noticing that, for each 0 ≤ i ≤

M , f−1(g−1
i F ∩H)f ⊆ L

≤ 1
|F |M |LK−1| max

i∈{1,...,M}
max

g∈giLK−1

∑
{(gifg−1

i gv)(y) : y ∈ F}

≤ CM |K| (µF )L(v).

Thus, (5.1) follows, and we are done. ¤

Proof of Theorem 5.1. (i) This is a special case of Lemma 5.2.
(ii) The proof of this point is a refinement of the proof of Lemma 3.1 in [21]. Put

M = [G : GFC ]. Let a1, . . . , ap, p ∈ N, be elements of G chosen from different cosets
of GFC . If M is finite, we let p be equal to M ; if M is infinite, p is an arbitrary
natural number. Enumerate Kα, α < |G|, finite subsets of G. By transfinite
induction we construct Aα ⊆ G and hα ∈ G, α < |G|, so that

(1) Aα =
⋃

β≤α Kβhβ ;
(2) a−1

j ai 6∈ A−1
α Aα if i 6= j, i, j ≤ p.

Assuming this has been accomplished, we define A =
⋃

α<|G|Aα. Clearly (1)
implies that uR(A) = 1. On the other hand, conditions (1) and (2) imply that
any left translate of the set D = {a1, . . . , ap} intersects A in at most one point.
Therefore, µL

D(A) = 1/p implying that u(A) ≤ 1/p.
To define the sequence with properties (1) and (2), let A−1 = ∅. Assume Aα′

and hα′ , for α′ < α, have been constructed. Let B =
⋃

α′<α Aα′ and let L =
{a−1

j ai : i 6= j, i, j ≤ p}. Since the conjugacy classes of all elements a−1
j ai, i 6= j,

are infinite, by Lemma 3.8, the set of all h ∈ G such that hLh−1 ∩ K−1
α Kα = ∅

has cardinality |G|. That is, there is a subset of G of cardinality |G| consisting of
h such that for all i 6= j,

(5.2) a−1
j ai 6∈ h−1K−1

α Kαh.

Since, by our inductive assumption (1), B has cardinality smaller than |G|, there
exists an h ∈ G with (5.2) and such that

h 6∈ K−1
α BL−1 ∪K−1

α BL.

This formula can be rephrased to say that for all i, j ≤ p with i 6= j

(5.3) a−1
j ai 6∈ h−1K−1

α B

and

(5.4) a−1
j ai 6∈ B−1Kαh.

Put Aα = Kαh ∪B and hα = h. Now, (1) is clear. To check (2), we compute

A−1
α Aα = (h−1K−1

α ∪B−1)(Kαh ∪B)

= h−1K−1
α Kαh ∪B−1B ∪B−1Kαh ∪ h−1K−1

α B.

For i 6= j, by our inductive assumption (2), we get a−1
j ai 6∈ B−1B and, by (5.2),

(5.3), and (5.4), we obtain that a−1
j ai does not belong to any other part of the

union on the right hand side. Therefore, (2) holds for α. ¤
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Remark. As in Theorem 4.1(ii), Theorem 5.1(ii) can be strengthened if the group
G is assumed to be countable. Define

τn = min(n, [G : GFC ])

and define for v : G → [0, 1]

un(v) = τn inf{(µF )L(v) : |F | ≤ n}.
We have u ≤ uT ≤ un for each n. The first inequality is obvious as is the second
one if [G,GFC ] ≥ n. The case [G : GFC ] < n follows from Lemma 5.2. Now we
have the following stronger version of Theorem 5.1(ii)

Let G be a countable group. There exists A ⊆ G such that uR(A) = 1 and
un(A) ≤ 1 for each n.

Note that if [G : GFC ] is infinite, then un(A) ≤ 1 for each n implies u(A) = 0.
We leave it to the reader to modify the proof of Theorem 5.1(ii) to get the above
statement.

6. Haar null sets

The definition of Haar null sets is contained in the introduction. A subset of a
Polish group G is called left Haar null if it is contained in a universally measurable
set A for which there exists a Borel probability measure µ on G such that µ(gA) = 0
for all g ∈ G.

We will now apply the results proved above to answer questions of Mycielski.
He asked in [18] the following two questions. Is each left Haar null subset of a
Polish group Haar null? And given a Polish group G and a universally measurable
subset A of G which is not Haar null, is 1 in the interior of A−1A? The answers to
both these questions are in the negative. (The first of these questions was answered
by Shi and Thomson [24] who produced an example in the Polish group of all
homeomorphisms of the interval [0, 1].) In fact, we characterize all groups of the
form

∏
n Hn with each Hn countable for which the answers are positive.

Theorem 6.1. Let Hn, n ∈ N, be countable groups. The following conditions are
equivalent.

(i) A subset of
∏

n Hn is left Haar null if, and only if, it is Haar null.
(ii) For each universally measurable set A ⊆ ∏

n Hn which is not Haar null,
A−1A contains 1 in its interior.

(iii) For each closed set A ⊆ ∏
n Hn which is not Haar null, A−1A is dense in

some non-empty open set.
(iv) All but finitely many of the Hn’s are FC.

Lemma 6.2. Let Hn, n ∈ N, be countable with all but finitely many of them
amenable. Let A ⊆ ∏

n Hn be universally measurable. If A is not left Haar null,
then 1 is in the interior of A−1A.

Proof. Let N0 be chosen so that Hn is amenable for n ≥ N0. Assume 1 is not in
the interior of A−1A. We can then pick a sequence gm ∈ ∏

n Hn such that gm → 1
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as m →∞ and gm 6∈ A−1A. This last condition is equivalent to

(6.1) Agm ∩A = ∅.
Let Kn be the set {gm(n) : m ∈ N}. Note that since gm → 1, each Kn is finite. For
n ≥ N0 fix a finite set Ln ⊆ Hn with the property that for all h ∈ Kn

(6.2) |(Lnh \ Ln) ∪ (Ln \ Lnh)| < 2−n|Ln|.
This is possible by amenability of the appropriate Hn’s.

Consider the measure
µ =

∏
n

µLn
.

Since A is not left Haar null, there exists a g ∈ ∏
n Hn with µ(gA) > 0. This allows

us to find N1 ≥ N0 and hn ∈ Hn for n ≤ N1 such that if we let Nh̄ = {g ∈ ∏
n Hn :

g(n) = hn for n ≤ N1}, then

(1) 2
3µ(Nh̄) < µ(gA ∩Nh̄);

(2) 2
3 <

∏
n>N1

(1− 2−n).

Now pick m with gm(n) = 1 for all n ≤ N1. From (1) it follows that

(6.3)
2
3
µ(Nh̄) < µgm(gAgm ∩Nh̄)

From (6.2) and (2) we obtain

2
3
µ(Nh̄) < µ(Nh̄)

∏

n>N1

(1− 2−n)

≤ µ(Nh̄)
∏

n>N1

1
|Ln| |Ln ∩ Lngm(n)−1|

= µ(
∏
n

Lngm(n)−1 ∩Nh̄)

= µgm(
∏
n

Ln ∩Nh̄).

(6.4)

Note that the support of µgm is
∏

n Lngm(n) and that µgm is invariant under
permutations of the set

∏
n Lngm(n) which are products of permutations of the

Lngm(n)’s. Note also that the mapping from
∏

n(Ln ∩ Lngm(n)) to
∏

n Lngm(n)
given by h → hgm extends to such a permutation. Therefore, we get that for any
universally measurable B ⊆ ∏

n(Ln ∩ Lngm(n)),

µgm(B) = µgm(Bgm).

From this equality and from (6.4), keeping in mind that
∏

n Lngm(n) is the support
of µgm , we get that for any universally measurable B ⊆ ∏

n Hn,

µgm(B ∩Nh̄) ≤ µgm(B ∩
∏
n

Ln ∩
∏
n

Lngm(n) ∩Nh̄) + µgm(Nh̄ \
∏
n

Ln)

≤ µgm((B ∩
∏
n

Ln ∩
∏
n

Lngm(n) ∩Nh̄)gm) + (1− 2
3
)µ(Nh̄)

≤ µ(B ∩Nh̄) +
1
3
µ(Nh̄).
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Applying this inequality to B = gAgm and combining the result with (6.3), we
obtain

1
3
µ(Nh̄) < µ(gAgm ∩Nh̄).

However, this inequality together with (1) yields

µ(gAgm ∩ gA) > 0

contradicting (6.1). ¤

Proof of Theorem 6.1. (iv) ⇒ (i) It is enough to prove (i) for universally measur-
able sets. Let A ⊆ ∏

n Hn be universally measurable and left Haar null, and let
µ be a Borel probability measure witnessing that it is left Haar null. We will find
another Borel probability measure witnessing that A is Haar null. Let m0 be such
that Hn is FC if m ≥ m0. Let us also fix 0 < Cn < 1 with

(6.5) ε =
∏
n

Cn > 0.

For n ≥ m0−1 define πn and π∞ to be the projections from
∏

i∈NHi to
∏

m0≤i≤n Hi

and
∏

m0≤i Hi, respectively. (For convenience, we adopt the convention that if
n = m0 − 1, then

∏
m0≤i≤m0−1 Hi = {∅} and πn maps all the points in its domain

to ∅.) Further put

µn = (πn)∗µ and µ∞ = (π∞)∗µ.

By Lemma 5.2 for M = 1, we obtain, for n ≥ m0, a finite nonempty set Fn ⊆ Hn

such that

(6.6)
1

Cn
(µn)L(v) > (µn−1 × µFn)T (v).

To make this inequality applicable to our situation, we note that it implies that
for n ≥ m0, v :

∏
m0≤i≤n Hi → [0, 1] and for any h ∈ ∏

m0≤i≤n Hi with all but
the n-th coordinate equal to 1 there exists g ∈ ∏

m0≤i≤n Hi with all but the n-th
coordinate equal to 1 such that

(6.7) µn(gvh) > Cn(µn−1 × µFn)(v).

Inequality (6.7) is obtained by applying (6.6) to vh. We now prove the following
claim.

Claim. Let ε be given by (6.5). For any universally measurable B ⊆ ∏
m0≤i Hi,

for each h ∈ ∏
m0≤i Hi there exist g ∈ ∏

m0≤i Hi such that for any m ≥ m0,

µ∞(πm(gBh)×Hm+1 ×Hm+2 · · · ) ≥ ε · (µFm0
× µFm0+1 × · · · )(B).

Proof of Claim. First we set up some notation. Put

b = (µFm0
× µFm0+1 × · · · )(B).

Let m be such that m0 − 1 ≤ m. For t ∈ ∏
m0≤i≤m Hi, let

Bt = {x ∈
∏

m+1≤i

Hi : tx ∈ B}
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where tx stands for the sequence in
∏

m0≤i Hi equal to the finite sequence t followed
by x. (Here again we use the convention that

∏
m0≤i≤m0−1 Hi = {∅}.) Define

vm :
∏

m0≤i≤m Hi → [0, 1] by letting

vm(t) = (µFm+1 × µFm+2 × · · · )(Bt).

In particular,

(6.8) vm0−1(∅) = (µFm0
× µFm0+1 × · · · )(B) = b.

We will need the following formula connecting vm and vm+1 with m0−1 ≤ m whose
verification we leave to the reader. For any gi, hi ∈ Hi, m0 ≤ i ≤ m,

ḡm
(vm)h̄m

(xm0 , . . . , xm)

=
∫

Hm+1

(ḡm,1)(vm+1)(h̄m,1)(xm0 , . . . xm, x) dµFm+1(x).
(6.9)

where ḡm = (gm0 , . . . , gm) and h̄m = (hm0 , . . . , hm).
We now proceed with the proof of the claim. Let us fix h = (hm0 , hm0+1, · · · ) ∈∏

m0<i Hi. By induction on m with m0 ≤ m, we will produce gm ∈ Hm such that

(6.10) µm(ḡm(vm)h̄m
) > Cm0 · · ·Cmb

where ḡm = (gm0 , . . . , gm) and h̄m = (hm0 , . . . , hm).
If we succeed and let g = (gm0 , gm0+1, . . . ) and h = (hm0 , hm0+1, . . . ), by the

definition of ε, inequality (6.10) yields our claim. Indeed, the indicator function of
πm(gBh) is pointwise ≥ ḡm(vm)h̄m

so, for all m,

µ∞(πm(gBh)×Hm+1 ×Hm+2 × · · · ) ≥ µm(πm(gBh))

≥ µm(ḡm(vm)h̄m
) > Cm0 · · ·Cmb > εb.

We will show now how to find gm+1 assuming that (6.10) holds for ḡm and h̄m.
Precisely the same argument gives (6.10) for m = m0 if we only keep in mind that
(6.8) gives

µm0−1(vm0−1) = (µFm0
× µFm0+1 × · · · )(B) = b.

So assume (6.10) for m. From it we get

(µm × µFm+1)((ḡm,1)(vm+1)(h̄m,1)) > Cm0 · · ·Cmb

since by (6.9) the left hand side of the above formula is equal to the left hand side of
(6.10). Now applying to it (6.7) with v = (ḡm,1)(vm+1)(h̄m,1) and (1, . . . , 1, hm+1) ∈∏

m0≤i≤m+1 Hi, we obtain gm+1 ∈ Hm+1 such that

µm+1((ḡm,gm+1)(vm+1)(h̄m,hm+1)) > Cm+1(Cm0 · · ·Cmb)

which is (6.10) for m + 1 and the claim is established.
Let ν be a measure on

∏
i<m0

Hi with a one point support. We claim that
ν × µFm0

× µFm0+1 × · · · witnesses that A is Haar null. If not, then for some
g, h ∈ ∏

n Hn,

(ν × µFm0
× µFm0+1 × · · · )(gAh) > 0.
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The above inequality will remain true if we pass to a compact subset of A. In fact,
for the sake of simplicity, we assume that A is compact. Find a t ∈ ∏

i<m0
Hi with

(µFm0
× µFm0+1 × · · · )(g′Ath

′) = δ > 0

where g′ = g|[m0,∞), h′ = h|[m0,∞) and At = {x ∈ ∏
m0≤i Hi : tx ∈ A}. Now

from the claim, we obtain that for some g′′ ∈ ∏
m0≤i Hi and for all m ≥ m0,

(6.11) µ∞(πm(g′′(g′Ath
′)(h′)−1)×Hm+1 × · · · ) ≥ εδ.

Since A is compact,

g′′g′At =
⋂
m

πm(g′′g′At)×Hm+1 × · · ·

which together with (6.11) yields

µ∞(g′′g′At) > 0

Since
∏

i<m0
Hi is countable, this last formula contradicts the fact that µ witnesses

A being left Haar null.
(i) ⇒ (iv) Assume that infinitely many of the Hn’s are not FC. By grouping the

factor groups into finite blocks, we can assume, as we do, that none of the Hn’s
is FC. By Theorem 5.1(ii), we can find An ⊆ Hn be such that u(An) ≤ 1/2 and
uR(An) = 1. Let

A =
∏
n

An.

The condition u(An) ≤ 1/2 implies that A is left Haar null. Indeed, it gives sets
Dn ⊆ Hn, n ∈ N, such that µDn(hAn) ≤ 1/2 for all h ∈ Hn. Then the measure
µD0 × µD1 × · · · witnesses that A is left Haar null. The condition uR(An) = 1
implies that for each finite set F ⊆ Hn there exists an h ∈ Hn with Fh ⊆ An.
If µ is a Borel probability measure on

∏
n Hn, let K be a compact set of positive

measure. Then the projection Fn of K on the n-th coordinate is finite. By what was
said above, we can find hn ∈ Hn with Fnhn ⊆ An. If we let h = (hn)n ∈

∏
n Hn,

it follows that K ⊆ Ah−1; thus µ(Ah−1) > 0. Since µ was arbitrary, A is not Haar
null, in fact, not even right Haar null.

(ii) ⇒ (iii) is clear.
(iii) ⇒ (iv) Assume that infinitely many of the Hn’s are not FC. As in the proof

of (i) ⇒ (iv) we can suppose that all the Hn’s are not FC. By Theorem 5.1(ii), for
each n we can find an An ⊆ Hn, with uR(An) = 1, for which there exists an at least
two element set D containing 1 such that for each h ∈ Hn, hAn∩D has at most one
element. This easily implies that A−1

n An 6= Hn, in fact, x 6∈ A−1
n An for any x ∈ D

with x 6= 1. It follows that A =
∏

n An is such that A−1A has dense complement in∏
n Hn. Since A−1A is also closed, it is nowhere dense. Furthermore, uR(An) = 1

implies, as in (i) ⇒ (iv), that A is not Haar null.
(iv) ⇒ (ii) Let A ⊆ ∏

n Hn be universally measurable and not Haar null. Since
the implication (iv) ⇒ (i) has already been established, we see that A is not left
Haar null. Since all but finitely many of the Hn’s are amenable, as they are FC, it
follows from Lemma 6.2 that 1 is in the interior of A−1A. ¤
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Remark. The proof of Theorem 6.1 gives, in fact, that if infinitely many of the Hn’s
are not FC, then there exists one set A ⊆ ∏

n Hn which is closed, is left Haar null,
is not Haar null, and has A−1A nowhere dense.

7. Questions and additional remarks

The first of the questions below is related to Theorem 1.1. An affirmative answer
to it would show that condition a = u from this theorem characterizes amenability.

Question. Is it true that if G is not amenable, then, for each ε > 0, there exists
a probability measure µ on G with the property that for any non-empty finite set
F ⊆ G there exists A ⊆ F such that (µF )(A) > 1− ε and µL(A) < ε?

I will also mention a problem related to Emerson’s characterization of amenabil-
ity [9] and to the measures of size of subsets of G defined in the introduction: a,
aT , u, and uT . Clearly all of these functions are monotonic, that is, they assign
smaller values to smaller (with respect to inclusion) sets. It is natural to ask when
they are subadditive, that is, when their value on A ∪B is bounded by the sum of
their values on A and B. By reproducing the simple argument from [25] that Haar
null sets are closed under taking finite unions, we see that aT is always subadditive.
Since aT = uT , so is uT . By the proof (but not the statement) of [9, Theorem 1.7
(a)⇔(b)], we get that a is subadditive if G is amenable. (To see how this proof
applies here, note that a(v), for a bounded v : G → R, is equal to inf ‖µ∗ ṽ‖∞ where
the infimum is taken over all l1 non-negative functions µ on G with the l1 norm
1 and ṽ(g) = v(g−1). With this in mind, we see that [9, Theorem 1.7, (a)⇔(b)]
says that G is amenable precisely when a(v1) = a(v2) = 0 implies a(v1 + v2) = 0
for bounded functions v1, v2.) Since a = u on amenable groups, u is subaddi-
tive on such groups as well. The following question seems, therefore, natural. An
affirmative answer to it would give a characterization of amenability.

Question. Is it true that if a (or u) is subadditive as a function of subsets of a group
G, then G is amenable?

Acknowledgement. I thank the referee for useful comments particularly those lead-
ing to simplification of the proof of Lemma 3.6.
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