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Abstract Allometry refers to the size-related changes of mor-

phological traits and remains an essential concept for the study

of evolution and development. This review is the first system-

atic comparison of allometric methods in the context of geo-

metric morphometrics that considers the structure of morpho-

logical spaces and their implications for characterizing allom-

etry and performing size correction. The distinction of two

main schools of thought is useful for understanding the differ-

ences and relationships between alternative methods for

studying allometry. The Gould–Mosimann school defines al-

lometry as the covariation of shape with size. This concept of

allometry is implemented in geometric morphometrics

through the multivariate regression of shape variables on a

measure of size. In the Huxley–Jolicoeur school, allometry

is the covariation among morphological features that all con-

tain size information. In this framework, allometric trajecto-

ries are characterized by the first principal component, which

is a line of best fit to the data points. In geometric morpho-

metrics, this concept is implemented in analyses using either

Procrustes form space or conformation space (the latter also

known as size-and-shape space). Whereas these spaces differ

substantially in their global structure, there are also close con-

nections in their localized geometry. For the model of small

isotropic variation of landmark positions, they are equivalent

up to scaling. The methods differ in their emphasis and thus

provide investigators with flexible tools to address specific

questions concerning evolution and development, but all

frameworks are logically compatible with each other and

therefore unlikely to yield contradictory results.
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Introduction

Variation in size is an important determinant for variation in

many other organismal traits. Developmental processes are

accompanied by a dramatic growth in size in developing or-

ganisms, and evolutionary diversification often involves dif-

ferentiation of body size among related taxa. Accordingly,

allometry has been an important concept for evolutionary bi-

ology and related disciplines for much of the last century

(Huxley 1924, 1932; Cock 1966; Gould 1966; Calder 1984;

Schmidt-Nielsen 1984). During this time, the methods for

quantifying morphological variation underwent momentous

change, from the development of multivariate approaches to

the emergence of the discipline of morphometrics (Jolicoeur

and Mosimann 1960; Jolicoeur 1963; Sneath and Sokal 1973;

Oxnard 1974; Pimentel 1979; Reyment et al. 1984). Finally,

the rise of geometric morphometrics in the 1980s and 1990s

has established the current methods for analyzing variation in

organismal shape (Bookstein 1986, 1991; Rohlf 1990; Rohlf

and Bookstein 1990; Marcus et al. 1993, 1996; Rohlf and

Marcus 1993; Monteiro and dos Reis 1999; Klingenberg

2010; Zelditch et al. 2012; Adams et al. 2013; Mitteroecker
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et al. 2013). Throughout this history of different frameworks

for quantifying morphological variation, allometry has played

a more or less prominent role.

Along with the ways of characterizing morphological var-

iation in general, the concept of allometry and the methods for

analyzing it have changed drastically as well. In some ap-

proaches, the main emphasis is on covariation among different

traits (Huxley 1924, 1932; Jolicoeur 1963), whereas others

focus on the covariation between size and shape (Mosimann

1970; Monteiro 1999). Another difference is whether the

methods separate size and shape (Mosimann 1970;

Bookstein 1986; Goodall 1991) or whether they reject this

distinction and consider morphological form as a single uni-

fied feature (Lele and Richtsmeier 1991; Mitteroecker et al.

2004). As a consequence of the different concepts of allome-

try, the various methods also differ in the way in which they

carry out corrections for the effects of size on morphological

variation, which is one of the most used applications of allom-

etry (Burnaby 1966; Sidlauskas et al. 2011).

A number of review papers have provided overviews of the

biological concepts related to allometry (Cock 1966; Gould

1966; Klingenberg 1998) and the statistical methods for allo-

metric analyses mainly in the context of traditional morpho-

metrics (Bookstein 1989; Klingenberg 1996b). There is no

comparable survey, however, for allometric analyses in the

context of geometric morphometrics (but see Mitteroecker

et al. 2013). This paper surveys the methods for analyzing

allometry in geometric morphometrics. To appreciate the

range of current concepts and their interrelations, it is helpful

to take a historical perspective that considers the origin of

ideas before explaining their role in currently used methods

in geometric morphometrics. This article adopts this approach

and therefore starts by revisiting the concepts of allometry,

size, and shape as they have been used traditionally, before

employing these concepts to compare the different frame-

works that are currently used in geometric morphometrics.

Considering the structure of shape spaces has proven helpful

for comparing morphometric methods (Rohlf 1996, 2000) and

serves in this paper as a framework for comparing different

methods for analyzing allometry. A particular focus of atten-

tion is how the different allometric concepts are applied for

size correction inmorphometric data. Finally, the relationships

among alternative methods are discussed.

Allometry, size, and shape in different morphometric

frameworks

There are several concepts of allometry, which all concern the

effect of size on morphological variation, but differ in the

specific definitions of terms and in the aspects of morphology

on which they focus. It is possible to distinguish two main

schools of thought according to the way they characterize

allometry: the Huxley–Jolicoeur school, which emphasizes

the covariation among traits as a consequence of variation in

size, and the Gould–Mosimann school, which defines allom-

etry as covariation of size and shape (Klingenberg 1998). A

fundamental difference between the two concepts of allometry

is that the framework of the Huxley–Jolicoeur school does not

involve a distinction of size and shape, which is the central

element in the framework of the Gould–Mosimann school.

As it turns out, the distinction between these two schools is

also useful for understanding the differences between different

allometric approaches currently used in geometric morpho-

metrics. Therefore, this section provides a brief overview of

the two schools of thought and contrasts them directly with

each other in some key aspects. The purpose of this section is

solely to provide a background for the comparison of the

methods currently used in geometric morphometrics. It is

therefore not a complete historical survey of allometry, but

inevitably leaves out many concepts and methods.

A common feature of both schools of thought is the treat-

ment of size. In all the different frameworks, allometry is

variation in various traits that is explained by or associated

with variation in size (Gould 1966; Mosimann 1970;

Bookstein et al. 1985; Klingenberg 1998; Mitteroecker et al.

2013). The origin of the size variation depends on the context

of the study, and according to this context, different levels of

variation can be defined (Cock 1966; Gould 1966; Cheverud

1982; Klingenberg and Zimmermann 1992a; Klingenberg

2014). Many studies have analyzed the changes associated

with the dramatic size increases over individual growth, or

ontogenetic allometry (Huxley 1924, 1932; Loy et al. 1996;

Bulygina et al. 2006; Rodríguez-Mendoza et al. 2011;

Mitteroecker et al. 2013; Murta-Fonseca and Fernandes

2016). Others have focused on the consequences of size var-

iation within a single ontogenetic stage, or static allometry,

most often based on samples of adults from a population

(Rosas and Bastir 2002; Drake and Klingenberg 2008;

Weisensee and Jantz 2011; Freidline et al. 2015). Evolution

can also alter the size of organisms and produce associated

morphological changes due to evolutionary allometry

(Cardini and Polly 2013; Klingenberg and Marugán-Lobón

2013; Martín-Serra et al. 2014; Sherratt et al. 2014). These

three levels of allometry, and sometimes others as well, have

been compared in a range of studies (Cheverud 1982; Leamy

and Bradley 1982; Klingenberg and Zimmermann 1992a;

Klingenberg et al. 2012; Pélabon et al. 2013; Freidline et al.

2015; Strelin et al. 2016). These three classical levels of al-

lometry are not the only levels of variation where allometry

can apply, but others exist as well and may be worth investi-

gating (Klingenberg 2014). For example, fluctuating asymme-

try of shape may have a component of allometry, where asym-

metry of shape is an allometric consequence of asymmetry in

size (Klingenberg 2015). Such allometry of fluctuating asym-

metry has been found in several study systems (e.g.,
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Klingenberg et al. 2001; Breuker et al. 2006; Ludoški et al.

2014; Martínez-Vargas et al. 2014). The different allometric

frameworks reviewed in this paper are applicable to all these

levels—the level of allometry reflects the composition of the

data, whether it is a single growth stage or an ontogenetic

series, a single population or multiple species from some

clade.

If a dataset contains more than one source of size variation,

and thus more than one level of allometry, problems can arise

because the levels of allometry may be confounded. For in-

stance, if there is ontogenetic variation as well as environmen-

tal or genetic variation that affects size, there is ontogenetic

allometry and possibly also allometry in response to the ge-

netic and environmental variation. To disentangle these levels,

study designs are required in which the different factors are

known, and the analyses of allometry need to reflect those

designs. For instance, if genotypes and environments are

known, they can be used as grouping criteria and pooled

within-group analyses for the different levels of allometry

can be carried out. If the factors causing size variation are

not known explicitly, such a separation of levels is not possi-

ble and they will be inevitably confounded to a greater or

lesser extent.

Bivariate and multivariate allometry:

the Huxley–Jolicoeur school

The concept of allometry originated from the discovery that

pairwise plots of log-transformed length measurements of or-

ganisms often fit remarkably well to straight lines and the idea

that constant ratios between the relative growth rates of differ-

ent parts can account for this (Huxley 1924, 1932). The slopes

in pairwise plots of log-transformed measurements (Fig. 1)

indicate the ratios between the relative growth rates of the

respective traits and are the basis for the terminology of al-

lometry (Huxley and Teissier 1936). Usually, one trait is con-

sidered as the trait of interest and is plotted on the vertical axis,

whereas the other trait is considered as a measure of size and is

plotted on the horizontal axis. If both traits have the same

relative growth rates, the slope in plots of log-transformed

traits is 1.0 and their proportions do not change as size in-

creases, a situation that is called isometry (gray line in

Fig. 1). If the trait of interest has the greater relative growth

rate, it is increasing disproportionately more in relation to the

size measure, so that the slope is greater than 1.0—a situation

that is called positive allometry (red line in Fig. 1).

Conversely, for negative allometry, the trait of interest has a

lesser relative growth rate than the size measure, it is increas-

ing disproportionately less than the size measure and the slope

is less than 1.0 (blue line in Fig. 1).

If there are more than two traits, a multivariate generaliza-

tion of this allometry concept is required because considering

all pairwise plots of variables may become very cumbersome

even for relatively few measurements. The most straightfor-

ward such generalization considers a multidimensional space

where each log-transformed measurement corresponds to one

axis. Each bivariate allometric plot is then a projection from

this multidimensional space onto the plane defined by the axes

that correspond to the two measurements (Fig. 2a). From this

line of reasoning, it follows that the multivariate generaliza-

tion of the straight lines in bivariate allometric plots is a

straight line in the space of log-transformed measurements

(Fig. 2b). The question then arises how to estimate this line

in the multivariate space.

Jolicoeur (1963) offered a solution for this problem: run a

principal component analysis (PCA) of the covariance matrix

of log-transformed measurements and use the resulting first

principal component as the estimate of the allometric line.

Because the first principal component (PC1) is that direction

in the multidimensional space that accounts for the greatest

possible proportion of the total variance, the sum of the vari-

ances in all the directions perpendicular to it is minimal. This

use of principal components follows the original proposal of

the method (not yet under that name) as a means to obtain a

best-fitting line for multivariate data according to a least-

squares criterion (Pearson 1901). PCA is one of the most

fundamental and widespreadmethods in multivariate statistics

(Jolliffe 2002) and is widely used for studying multivariate

allometry (for review, see Klingenberg 1996b). Using the

PC1 to estimate a best-fitting line is very suitable for multi-

variate allometry, because it treats all variables equally.

The coefficients of the PC1 indicate its direction in the

multidimensional space (the PC1 coefficient of each variable

can be interpreted as the cosine between the coordinate axis

for that variable and the PC1 axis). The bivariate allometric

coefficients for specific pairs of variables can be obtained

from the ratios of the respective PC1 coefficients (Jolicoeur

1963). If the data fit a straight line tightly, the bivariate and

log height

log width

Fig. 1 Bivariate allometry of height versus width in a set of triangles. The

gray line shows isometry, with a slope of 1.0 in the plot of log-

transformed height versus width and no change in the ratio of the two

measurements. The red line is an example of positive allometry of height

versus width, and the blue line is an example of negative allometry
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multivariate estimates are usually close, but if there is a sub-

stantial amount of scatter, they may differ (depending also on

the specific method used to obtain the bivariate coefficients).

For isometry, with no change in the proportions among vari-

ables along the allometric axis, all PC1 coefficients are

equal—with the usual scaling for PC coefficients, for p vari-

ables each PC1 coefficient is then p−0.5 (Jolicoeur 1963).

Some empirical studies have examined the results of bivariate

and multivariate allometry and generally found a close agree-

ment (e.g., Davies and Brown 1972; Shea 1985).

A key assumption of the Huxley–Mosimann approach is

that size is the dominant contributor of variation in the mea-

surements and of covariation between them. If this is not the

case, for instance in data from organisms that are strictly stan-

dardized for size, bivariate regressions or the PC1 will not

reflect allometry, but some other factor. To guard against this

possibility, investigators should check that there is indeed a

noticeable amount of size variation in the data, which is obvi-

ous in many instances. Furthermore, the coefficients from re-

gressions or PCA can indicate whether the data are consistent

with the expectations for allometry. Because allometric

variation usually means that all measurements increase togeth-

er, although possibly somemore than others, it is expected that

all bivariate regression coefficients are positive and all PC1

coefficients have the same sign (also usually positive). This

test is not absolutely reliable, because there are rare examples

where one or a few measurements decrease with overall size

increase (a phenomenon called enantiometry; Huxley and

Teissier 1936; Klingenberg 1996b). In the vast majority of

biological datasets, however, size is the dominant factor con-

tributing to variation and allometric analyses using the

Huxley–Jolicoeur approach are therefore appropriate.

The position along the allometric axis can be used as an

indication of the overall size of each specimen (but note that

the allometric axis is usually associated with changes in shape,

so this index will usually be correlated with shape in various

ways). In practice, this means that the PC1 scores, or PC1

scores rescaled so that they behave as a linear dimension

(Klingenberg and Zimmermann 1992b), can be used as an

index of size that takes into account all measured traits simul-

taneously (Creighton and Strauss 1986; Klingenberg and

Spence 1993; Klingenberg 1996a).

By contrast, the directions perpendicular to the allometric

axis correspond to variation that is uncorrelated to size and

morphological changes related to size via allometry, and there-

fore constitute a size-free axis or space (Fig. 3). Using this

size-free space for further analyses is a way to correct for

allometric effects of size. Burnaby (1966) provided a method

to project the data onto a space orthogonal to one or more
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(a)

(b)

Fig. 2 Bivariate and multivariate allometry. a Three pairwise plots of

three variables (e.g., log-transformed measurements). In each plot, there

is a linear allometric relationship (red line). b Combining the three

bivariate relationships into a 3D space. The allometric trajectory is a

line in the space (bold red line), whereas the bivariate plots are its

projections onto the planes defined by pairs of axes (pale red lines).

Note that all three variables are equivalent and there is no basis for

choosing Bdependent^ or Bindependent^ variables (modified from

Klingenberg 1998)
P
C

1

P
C

1

Size-free axis

x

y

Fig. 3 Size correction in the Huxley–Jolicoeur framework. The first

principal component (PC1) in each group is an allometric axis.

Projecting the data onto the space perpendicular to this allometric axis

yields a space free of size and size-associated morphological variation

(Burnaby 1966). In this bivariate example, this is a single size-free axis.

For multiple groups, the assumption is that the allometric axes of all

groups are parallel
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arbitrary vectors, usually an allometric vector, which has been

widely adopted and discussed (Rohlf and Bookstein 1987;

Klingenberg 1996b; McCoy et al. 2006). If the PC1 of log-

transformed measurements is used as an allometric vector, as

is often done, Burnaby’s procedure reduces to omitting the

PC1 and only using the other PCs in further analyses. This

is often very effective: in the example of Fig. 3, where the

groups overlap for each of the variables considered separately,

the size-free axis can clearly distinguish the two groups.

If there are two or more groups in the data, Burnaby’s

method for size correction requires that the allometric axes

of the groups are parallel (Fig. 3) or, at least, that the directions

of the allometric axes are sufficiently similar so that a single

direction can be found that is a satisfactory compromise for all

groups. There are generalizations of PCA for estimating the

common allometric axis in multigroup studies: multigroup

PCA (MGPCA; Pimentel 1979; Thorpe 1983), which is a

PCA of the pooled within-group covariance matrix, and the

somewhat more flexible method of common principal com-

ponent analysis (CPCA; Airoldi and Flury 1988; Flury 1988),

which is based on a model where all groups share the same

directions of the PCs, but may differ in the amounts of varia-

tion for which each PC accounts. In the context of allometry,

numerous studies have used either MGPCA (Leamy and

Thorpe 1984; Smith and Patton 1988; Lessa and Patton

1989; Jones 1992; Malhotra and Thorpe 1997) or CPCA

(Klingenberg and Zimmermann 1992a; Klingenberg and

Spence 1993; Klingenberg 1996b; Klingenberg and Ekau

1996; Patterson et al. 2001; Larson 2004; Fadda and Leirs

2009; Bolzan et al. 2015).

For comparing allometries among different taxa, there are a

number of graphical displays for allometric vectors that can

identify growth gradients and similar patterns (Solignac et al.

1990) or the arrangement of allometric trajectories through the

space of morphological variables (Boitard et al. 1982). To

quantify the difference between allometric vectors, the angles

between them in the multidimensional space can be computed

(Boitard et al. 1982; Cheverud 1982; Gibson et al. 1984;

Klingenberg and Zimmermann 1992a; Klingenberg 1996b;

Klingenberg and Ekau 1996). Also, a useful strategy is to

carry out an ordination analysis of allometric vectors, some-

times called an Ballometric space,^ for instance by using the

vectors of PC1 coefficients as the observations in a PCA or

other multivariate analysis (Solignac et al. 1990; Klingenberg

and Froese 1991; Klingenberg and Spence 1993; Gerber et al.

2008; Wilson and Sánchez-Villagra 2010; Wilson 2013).

It is helpful to note that the framework of multivariate al-

lometry distinguishes between components of variation ac-

cording to their directions: along allometric axes and perpen-

dicular to them. These allometric and size-free components of

variation have sometimes been interpreted in terms of size and

shape. Recall, however, that the framework of multivariate

allometry does not include an explicit concept of shape

(Klingenberg 1996b), although the term Bshape^ sometimes

has been used informally in interpretations of the results from

such analyses. Multivariate allometry, as part of the Huxley–

Jolicoeur school, focuses of the covariation among measured

traits but does not explicitly refer to size or shape. The direc-

tion along the allometric axis is a measure of size but also

involves the part of shape change that is due to allometry.

Variation in directions perpendicular to the allometric axis is

therefore not the complete variation of shape and does not

have a straightforward interpretation in terms of the geometry

of the morphological structure under study. For the sake of

clarity, therefore, it seems best to avoid the term Bshape^ al-

together in the context of multivariate allometry (Klingenberg

1996b).

Geometric reasoning in traditional morphometrics:

the Gould–Mosimann school

Avery different approach was proposed byMosimann (1970),

who offered explicit geometric definitions of size and shape

and developed an analytical framework from those defini-

tions. Size indicates the overall dimension or scale of an ob-

ject. Size is a scalar property that can be quantified by a single

number (but there may be different ways to calculate the size

of a given object, resulting in different values). Shape is con-

ceptually distinct from size: the shapes of two objects are

equal if they are geometrically similar, regardless of the sizes

of the objects. For data consisting of length measurements,

this means that all measurements in two objects with identical

shapes differ only by a constant factor that relates to the rela-

tive sizes of the objects. The analysis of ratios of measure-

ments versus overall size is therefore useful for quantifying

shape. In other words, shape is about the proportions of

objects.

In this situation, shape can be quantified as a vector of

ratios: each of the measurements divided by a standard size

variable that quantifies the overall size of the object. A stan-

dard size variable, as defined by Mosimann (1970), is a pos-

itive real-valued function G(x) of the vector x of measure-

ments so that the equation G(cx) = cG(x) holds for any posi-

tive constant c, which means that multiplying each measure-

ment by the factor c results in a c-fold increase in the value of

the size variable. This implies that a standard size variable is a

function that scales linearly in relation to the original measure-

ments. Examples of standard size variables are any one of the

original measurements, the geometric or arithmetic mean of

the measurements or any linear combination of log-

transformed measurements for which the coefficients sum up

to 1.0.

The vector of ratios that describes shape can then be written

as x/G(x). In practice, size and shape variables are often com-

puted from log-transformed measurements, producing log-

size and log-shape variables (Mosimann and James 1979;
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Darroch and Mosimann 1985). These variables, on a logarith-

mic scale, are comparable to those used in bivariate and mul-

tivariate allometry in the Huxley–Jolicoeur framework.

Allometry is characterized as the association between a

standard size variable and the corresponding vectors of shape

ratios or between a log-size variable and log-shape variables

(Fig. 4). Isometry, by contrast, is the condition where size and

shape are independent of each other and usually serves as the

null hypothesis in tests for allometry. The question whether

there is allometry or isometry can be addressed statistically by

tests of multiple correlation (Mosimann 1970; Mosimann and

James 1979).

Discussions about size correction need to take into account

the goals of the studies that proposed the various methods. In

the context of the Gould–Mosimann school, the main interest

usually has been to separate size and shape per se, rather than

to remove the allometric consequences of variation in size.

Accordingly, a range of methods are available that provide

shape data after different algebraic maneuvers that provide

equivalent results, such as doubly centering the data matrix

of log-transformed length measurements both by rows and

columns or by projecting the data onto the subspace perpen-

dicular to the isometric vector (Burnaby 1966; Mosimann and

James 1979; Darroch and Mosimann 1985; Kazmierczak

1985; Berge and Kazmierczak 1986; Somers 1986; Rohlf

and Bookstein 1987; Jungers et al. 1995; Mardia et al. 1996;

Baur and Leuenberger 2011). These methods produce vari-

ables that represent the shapes of the specimens, but do not

remove the allometric effects of size variation, which is why

the new shape variables tend to be correlated with size. Such

correlations have been the target for criticism but are inevita-

ble if a definition of shape based on geometric similarity is

used and there is allometry in the data (Cadima and Jolliffe

1996; Mardia et al. 1996).

Comparison: size as a factor intrinsic or extrinsic

to a morphospace

The preceding summaries of the allometry concepts used in

the Huxley–Jolicoeur and Gould–Mosimann frameworks

show some fundamental differences but also some connec-

tions. Both differences and relationships between the two

frameworks can be helpful for understanding the methods

currently used for studying allometry in geometric

morphometrics.

The most fundamental difference is in how size relates to

the morphological descriptors that are the focus of the two

frameworks. Size and shape (in a geometric sense) are not

separated in the Huxley–Jolicoeur framework because size is

intrinsic in every morphological variable, usually length mea-

surements, whereas the geometric distinction between size

and shape is at the core of all analyses in the Gould–

Mosimann school. This difference between approaches has

an important consequence for the analysis of allometry. In

the Huxley–Jolicoeur framework, allometry is the covariation

among morphological variables due to the joint effects that

size has on all of them and allometric patterns can be charac-

terized by a line of best fit in the space of log-transformed

measurements. In the Gould–Mosimann framework, by con-

trast, allometry manifests itself as a correlation between size

and shape. The correlation approach can only be used because

size and shape are logically distinct, so that it is a sensible

question to ask whether there is a statistical association be-

tween them.

Besides these differences, however, there are also various

connections between Mosimann’s (1970) approach and bivar-

iate or multivariate allometry (and therefore between the

Gould–Mosimann and Huxley–Jolicoeur schools). These are

clearest when log-shape and log-size variables are used and

they depend on the choice of the size variable. One connection

can be seen by comparing Figs. 1, 2, 3, and 4: because both

use the same measurement as the horizontal axis (as the size

variable in the Mosimann approach, Fig. 4), they differ just by

a shearing of the whole diagram, and the slope of each of the

lines in Fig. 4 is the slope of the corresponding line in Fig. 1

minus 1.0 (this holds precisely if there is a perfect fit of the

lines, but becomes more complicated if there is scatter around

them). Further, Mosimann (1970) showed that the conditions

for isometry in the two frameworks are equivalent: if the PC1

of the covariance matrix of log-transformed measurements

has coefficients that are the same for all the variables, then

the standard size variable computed as the geometric mean of

log width

height

width
log

Fig. 4 Allometry in the framework of Mosimann (1970). The horizontal

axis shows the size variable (the width of the triangle) and the vertical axis

a size variable (the ratio height/width). For easier comparison with Fig. 1,

both variables are shown on logarithmic scales (as log-size and log-shape

variables). Allometry is an association of shape with size (red and blue

lines). Because the shape variable and the size measure in this example

are directly related to the variables in Fig. 1, positive and negative

allometry in the Huxley framework (Fig. 1) translate to an increase or

decrease of the shape variable with increasing size. Isometry is the

condition when there is no shape change associated with size, and the

gray line is therefore flat
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the measurements is independent of the corresponding shape

vector. Therefore, even though the Gould–Mosimann and

Huxley–Jolicoeur schools differ in important ways, both

frameworks agree in that allometry implies that variation in

size is accompanied predictably by variation in proportions

among measurements, whereas isometry means that size can

change without predictable effects on proportions.

Geometric morphometrics

The advent of geometric morphometrics in the 1980s and

early 1990s brought about a series of changes of fundamental

importance for the study of allometry. Ironically, one of the

changes was that little attention was paid to allometry, except

for some tests against the null hypothesis of isometry

(Bookstein 1991). To some extent, this is understandable in

the tradition of the Gould–Mosimann school and its emphasis

on shape per se. Later, in the mid- to late 1990s, some re-

searchers revived interest in allometry and introduced the

method that is currently most widely used for characterizing

allometry in geometric morphometrics, the multivariate re-

gression of shape on centroid size (Loy et al. 1996, 1998;

Monteiro 1999).

The key advance of geometric morphometrics by compar-

ison to earlier approaches is that it uses the complete informa-

tion about a configuration of landmarks: not just a selected set

of distances, but all aspects of the relative arrangement of the

landmarks and all the interrelations among them. Whereas

Mosimann (1970) characterized shape by the proportions of

an object, geometric morphometrics considers all aspects of

shape including proportions, angles, and the relative arrange-

ment of parts. Formally, shape is defined as all the geometric

features of a landmark configuration except for its size, posi-

tion, and orientation (e.g., Dryden andMardia 1998). Through

this definition, geometric morphometrics offers a straightfor-

ward extension to the methods of the Gould–Mosimann

school. Indeed, the majority of geometric morphometric stud-

ies can be seen as standing firmly in that tradition, particularly

the analyses of allometry by multivariate regression of shape

on centroid size (e.g., Monteiro 1999).

The separation of size and shape, however, has also been

questioned (e.g., Richtsmeier and Lele 1993; O’Higgins and

Milne 2013), and therefore, several authors have independent-

ly sought to develop methods for the analysis of the form of

landmark configurations, encompassing size and shape to-

gether (Ziezold 1977; Kendall 1989; Dryden and Mardia

1992; Le 1995; Mitteroecker et al. 2004; Langlade et al.

2005; Goswami 2006a). The specifics of the methods differ,

but overall, this type of analysis is in the spirit of the Huxley–

Jolicoeur school. This insight is useful for understanding these

morphometric methods and the associated procedures for

characterizing allometry. Among these methods, the one that

is the most widely known in geometric morphometrics is the

size–shape space or Procrustes form space, which adds log-

transformed centroid size as an extra dimension to the shape

tangent space (Mitteroecker et al. 2004, 2013; Weber and

Bookstein 2011). The other main approach, known under a

variety of names such as size-and-shape space or allometric

space, but also has been called form space, involves a super-

imposition of the landmark configurations without standard-

izing to unit centroid size (Ziezold 1977, 1994; Kendall 1989;

Dryden and Mardia 1992; Le 1995; Langlade et al. 2005;

Goswami 2006a). For these methods, as it is usual for methods

within the Huxley–Jolicoeur school, allometry is character-

ized by finding a line of best fit in the multidimensional space

(Mitteroecker et al. 2004, 2013).

The following three sections introduce and compare these

methods, starting with the approach focusing on shape and its

association with size, which has become very widespread in

geometric morphometrics and is clearly allied to the Gould–

Mosimann school, and then the two alternative methods that

consider form, consisting of size and shape together, and thus

are more or less squarely in the Huxley–Jolicoeur tradition.

For each of the three methods, I present the respective mor-

phological space as a starting point for the discussion.

As a guide through the confused terminology in this area, I

have compiled the concepts and synonyms in Table 1, and

after thorough consideration, I have decided to propose a

new term for one of the concepts (Bconformation^ for Bsize-

and-shape^ and its various synonyms, none of which has been

widely used in geometric morphometrics). Detailed explana-

tions can be found in the respective section below.

Allometry in shape space: regression of shape on size

The most widespread method for studying allometry in geo-

metric morphometrics is multivariate regression of shape on

centroid size or log-transformed centroid size (e.g., Monteiro

1999; Rosas and Bastir 2002; Drake and Klingenberg 2008;

Rodríguez-Mendoza et al. 2011; Weisensee and Jantz 2011;

Klingenberg et al. 2012; Ponssa and Candioti 2012;

Mitteroecker et al. 2013; Murta-Fonseca and Fernandes

2016). Because size and shape are logically separate, the mul-

tivariate regression analysis can test whether there is a statis-

tical association between them and, if so, provides a charac-

terization of the allometry as the expected shape change per

unit of increase in the size variable. This is a direct implemen-

tation of the Gould–Mosimann framework of allometry for

geometric morphometrics.

Shape spaces

For understanding this approach and its relation to the other

methods discussed in this paper, it is helpful to consider how
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size and shape are quantified (Dryden and Mardia 1998).

Centroid size is the measure of size used almost universally

in geometric morphometrics: it is the square root of the sum of

squared distances of all the landmarks of an object from their

centroid (center of gravity, whose location is obtained by av-

eraging the x and y coordinates of all landmarks). Centroid

size fulfills Mosimann’s (1970) conditions for a standard size

variable. To quantify the shape difference between two land-

mark configurations, Procrustes superimposition can be used:

both configurations are scaled to have centroid size 1.0 and are

transposed and rotated so that the sum of squared distances

between corresponding landmarks is minimal (this involves a

translation so that both configurations share the same cen-

troid). The square root of the sum of squared distances be-

tween corresponding landmarks is called Procrustes distance:

it is the discrepancy between the landmark configurations that

cannot be removed by scaling, translation, or rotation and is

therefore useful as a measure of shape difference.

Kendall’s shape space is a representation of all possible

shapes with a given number of landmarks and a given dimen-

sionality (i.e., coordinates measured in two or three dimen-

sions), so that the distance between the points representing

any two shapes corresponds to the Procrustes distance be-

tween the respective shapes (Kendall 1984; Small 1996;

Dryden and Mardia 1998; Kendall et al. 1999). These shape

spaces are complex, multidimensional analogs of curved sur-

faces and are therefore difficult to visualize for all but the

simplest landmark configurations. A shape space that can be

visualized with relative ease is the one for triangles in two

dimensions, which turns out to be the surface of a sphere

(Fig. 5a). On this sphere, every possible triangle shape has

its particular place (the only exception is the totally degenerate

triangle whose vertices are all exactly in the same point, but

one can reasonably question whether this really is a triangle

shape at all). A helpful way to appreciate the arrangement of

shapes is to orient the shape space so that an equilateral trian-

gle is at the Bnorth pole^ (its antipode, which is its mirror

image and thus also an equilateral triangle, then is the Bsouth

pole^). In this orientation, the Bequator^ contains the collinear

triangles, where all three vertices are aligned along a straight

line, and there are six Bmeridians^ that contain isosceles tri-

angles (Fig. 5a). These particular properties are specific to the

shape space for triangles in two dimensions, but a general

feature of Kendall’s shape spaces is that every possible

shape has its specific place in the shape space with the

relevant numbers of landmarks and dimensions. Every

point in a shape space corresponds to a shape, and every

shift from one point to another corresponds to a shape

change (the direction of the shift corresponds to a class

of shape changes that are the same except for their magni-

tude). There is a shape space for any number of landmarks

and any number of dimensions (Kendall et al. 1999), al-

though geometric morphometrics is mostly concerned with

shapes in two or three dimensions (perhaps one dimension

in specific cases). Also, these shape spaces exist without

depending on any particular samples.

Table 1 The different frameworks for allometry in geometric morphometrics, the schools of thought to which they belong, and some relevant concepts

and the respective synonyms

Shape (Procrustes) form Conformation

Definition All geometric features of

an object except for size,

position, and orientation

The shape of an object combined with

the log-transformed centroid size

All geometric features of an object

except position and orientation

School Gould–Mosimann Huxley–Jolicoeur (with aspects of

Gould–Mosimann school)

Huxley–Jolicoeur

Synonyms None Size–shape (Mitteroecker et al. 2004, 2005) Size-and-shape (Kendall 1989; Dryden and

Mardia 1992, 1998; Goodall and Mardia

1993; Le 1995; Kendall et al. 1999)

Form (Goodall 1991)

Figure (Ziezold 1977, 1994)

Space Shape space Form space (Mitteroecker and Gunz 2009;

Weber and Bookstein 2011; Mitteroecker

et al. 2013)

Conformation space

Procrustes form space (Bastir et al. 2007;

Mitteroecker and Gunz 2009;

Mitteroecker et al. 2013)

Synonyms

for the space

None Size–shape space (Mitteroecker

et al. 2004, 2005)

Size-and-shape space (Kendall 1989;

Dryden and Mardia 1992, 1998; Le

1995; Kendall et al. 1999)

Form space (Goodall 1991; Rohlf 1996)

Allometry space (Langlade et al. 2005)
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Because the shape spaces are complex, multidimensional

equivalents of curved surfaces, they are not amenable to stan-

dard statistical analyses. But just as a flat map can be a good

approximation of the surface of the earth in a limited region,

perhaps up to several hundred kilometers across, it is possible

to use a linear tangent space to approximate the shape space in

the neighborhood of the point where the two spaces touch

(Fig. 5b; Goodall 1991; Dryden and Mardia 1998; Rohlf

1999). Within the tangent space, standard multivariate analy-

ses can be used. But just as for the maps of the earth, distor-

tions appear if the shape changes represented in the tangent

space are large (think of the distortions to Greenland and

Antarctica in many world maps). By choosing the mean shape

in the sample as the tangent point, it is possible to minimize

this distortion. Fortunately, in most biological datasets, shape

variation is sufficiently limited for such distortions to be neg-

ligible, even in studies that include a substantial range of

shapes such as skull shapes across the orders of mammals

(Marcus et al. 2000).

In practice, a local approximation of the tangent space for a

dataset can be obtained from a generalized Procrustes super-

imposition of the landmark configurations (Goodall 1991;

Dryden and Mardia 1998). First, all the landmark configura-

tions are scaled to unit centroid size by dividing all the land-

mark coordinates by the centroid size of the respective con-

figuration. Variation in position is removed by centering the

configurations, so that they all share the same centroid, at the

origin of the coordinate system. These configurations, stan-

dardized for size and position, are called preshapes (Goodall

1991; Dryden and Mardia 1998). Finally, variation in the ori-

entation of the landmark configurations is removed in an iter-

ative procedure. Initially, an arbitrary configuration (usually

the first in the dataset) is taken and all other configurations are

aligned to it to minimize the sum of squared distances between

corresponding landmarks. The landmark coordinates of all

configurations (including the one to which all others were

aligned) are then averaged and rescaled to have unit centroid

size. Then this consensus configuration is used as the target

and all landmark configurations are aligned to it. This proce-

dure of aligning and averaging is repeated until the sum of

squared distances between corresponding landmarks no lon-

ger changes (or equivalently, until the consensus no longer

changes). This usually takes only very few iterations (two or

three are sufficient in many datasets). As a result of this pro-

cedure, the aligned preshapes are arranged on a portion of a

sphere of unit radius (due to the standardization of centroid

size) surrounding the consensus (red half-circle in Fig. 5c).

For a limited range of shapes, this arrangement of preshapes

is a local approximation of the arrangement of the correspond-

ing shapes in Kendall’s shape space, and from either of them,

the projection onto the tangent space yields a further local

approximation. Therefore, the Procrustes superimposition

and projection to tangent space can provide a local, linear

approximation of the arrangement in shape space. This is true

even for landmark configurations with many landmarks,

where shape spaces are complex and have very many dimen-

sions so that they cannot be visualized as in Fig. 5. In this case,

T F’ P’

P

F

Tangent space

Preshape

sphere

Shape

space

O

(a)

(b)

(c)

Fig. 5 Kendall’s shape space for triangles. a A view of one half of the

shape space for triangles with some examples shown in the respective

locations. The Bpole^ corresponds to an equilateral triangle. The equator

contains the flat triangles where all three vertices are on a straight line.

The six Bmeridians^ correspond to isosceles triangles. The hidden

hemisphere of the shape space contains mirror images of the triangles

visible in this diagram. b The tangent space, a plane in this case,

touching the sphere of the shape space at an arbitrary location. c The

connection between Procrustes superimposition and Kendall’s shape

space for triangles (modified after Rohlf 1999). The preshape sphere

and tangent space are aligned to the shape space so that all three touch

at point T, the point that corresponds to the mean shape in the sample. The

shape space is only shown in part to emphasize that the alignment with

the preshape sphere is only valid in the neighborhood of point T
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using multivariate analyses in the tangent space is the most

feasible option for exploring the local structure of the shape

space in the vicinity of the average shape.

Multivariate regression

For studying allometry with geometric morphometric data, the

most straightforward method is to use a multivariate regres-

sion of the shape variables onto a measure of size (Monteiro

1999). The shape variables are the coordinates of the speci-

mens in the shape tangent space and the shape measure is

centroid size or the logarithm of centroid size. Because the

scaling step of the Procrustes superimposition removes varia-

tion of size, the shape tangent space does not contain any size

variation, and therefore size and shape are logically separate

from each other. Thus, it makes sense to test whether there is

allometry by examining whether size and shape are correlated

statistically. If so, the patterns of allometry can be character-

ized as the expected shape change per unit of increase in size.

Multivariate regression and the tests associated with it can

perform both those tasks (Monteiro 1999). This regression-

based approach is completely in the spirit of the conceptual

framework of the Gould–Mosimann school. It characterizes

allometric variation of shape as a consequence of variation in

size, which clearly reflects Gould’s (1966) definition of allom-

etry as Bthe study of size and its consequences^ (p. 587). Also,

the concepts of size and shape used in geometric morphomet-

rics are directly compatible with those of Mosimann (1970),

and the regression method and associated statistical tests are

closely related to the multiple correlation methods used by

Mosimann.

Multivariate regression uses several dependent variables

and one or more independent variables (Mardia et al. 1979;

Johnson and Wichern 1988; Timm 2002). It should not be

confused with multiple regression, where there is one depen-

dent variable and several independent variables (if there are

several independent variables in a multivariate regression, it is

sometimes calledmultivariate multiple regression). For allom-

etry, the multivariate regression model can be written as fol-

lows: y= c+bx+ε, where y is the random vector of shape (as

tangent space coordinates), c is a constant vector analogous to

an intercept, b is the vector of regression coefficients, x is

centroid size (or log-transformed centroid size), and ε is the

error term. Because the coordinates in tangent space are cen-

tered at the mean shape, the intercept term can be dropped if

size is expressed as the deviation from the average size in the

sample. Therefore, the main quantity of interest is the vector

of regression coefficients, which indicates the shape change

expected per unit of increase in centroid size. This vector can

be obtained as b=cov(x,y)/var(x). This is simply a vector of

bivariate regression coefficients of the shape variables on cen-

troid size (or log-transformed centroid size). In the context of

geometric morphometrics, this regression vector can be

visualized directly as a shape change (Monteiro 1999; Rosas

and Bastir 2002; Rodríguez-Mendoza et al. 2011;

Klingenberg 2013b).

For testing the statistical significance of the association

between size and shape, there are different methods avail-

able: parametric tests or nonparametric permutation tests,

and for each of these, there is a choice between the classical

multivariate test statistics (e.g., Wilks lambda, Pillai’s trace,

or Roy’s maximum root; e.g., Timm 2002) or a test statistic

based on Goodall’s (1991) F statistic. Goodall’s F statistic is

calculated by adding up sums of squares across all coordi-

nates and all landmarks (for total, predicted, and residual

components of variation) and computing the appropriate ra-

tio of the resulting sums. The approach based on Goodall’s

F statistic is widely used because it tends to show good

performance even with relatively small sample sizes. In the

context of allometric regression, Goodall’s F has been used

as part of parametric tests (Monteiro 1999). As an alterna-

tive, there are permutation tests that implement the null hy-

pothesis of independence between size and shape by ran-

domly reassociating shapes and sizes among specimens

(Pitman 1937; Good 2000). Permutation tests have the ad-

vantage that they do not make any assumptions about the

particular distribution of the data, which is why they have

been implemented in standard morphometrics software and

are widely used (e.g., Drake and Klingenberg 2008;

Rodríguez-Mendoza et al. 2011; Weisensee and Jantz

2011; Klingenberg et al. 2012; Martín-Serra et al. 2014).

The predicted sum of squares, as a proportion or percentage

of the total sum of squares, is an intuitive indication for how

much of the shape variation the regression can account.

To assess visually how well the data fit a straight-line rela-

tionship, it is desirable to have plots as in bivariate regression,

but it is not immediately clear what shape variable should be

plotted against size. Early studies used plots of Procrustes

residuals for individual landmarks (Walker 1993) or principal

component scores (Loy et al. 1998; O’Higgins and Jones

1998; Birch 1999) against centroid size or another size mea-

sure. These plots are not optimal for various reasons, especial-

ly when factors other than size also have effects on shape

variation (e.g., different taxa, sex dimorphism, phenotypic

plasticity). A better option is to compute regression scores

by projecting the data points in shape space onto an axis

in the direction of the regression vector (Drake and

Klingenberg 2008). This is the shape variable that has the

maximal covariation with centroid size (or log-transformed

centroid size, if that was used as the independent variable)

and is therefore an optimal summary variable. Plots of re-

gression scores versus centroid size show both the predict-

ed component of shape variation and that part of the resid-

ual variation that is in the direction of the regression vector.

The plots therefore can give a visual impression how close-

ly the data points fit a straight line.
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The regression partitions the total variation of each depen-

dent variable into a component of variation that is predicted by

the independent variable(s) and a residual component that is

variation for which the regression cannot account (the Berror^

component in the regression model). These components are

computed for each dependent variable separately (Fig. 6a). In

the context of analyses of allometry, the dependent variables

are shape variables (usually Procrustes coordinates or perhaps,

and equivalently, partial warp scores) and the sums of squared

deviations for the total, predicted, and residual components

can be added up across variables as Procrustes sums of

squares. The predicted and residual components can also be

expressed as a percentage of the total variation, which is a

useful and intuitive way to quantify the relative importance

of allometry for the shape variation in a dataset. Many studies

of allometry have used this approach in different contexts and

often found that allometry accounts for small to moderate

proportions of the total shape variation (Drake and

Klingenberg 2008; White 2009; Rodríguez-Mendoza et al.

2011; Weisensee and Jantz 2011; Klingenberg and Marugán-

Lobón 2013; Mitteroecker et al. 2013; Sherratt et al. 2014;

Golubović et al. 2015; Viscosi 2015), but this proportion can

reach 30% or even 50% in some instances (Klingenberg et al.

2012; Openshaw and Keogh 2014; Murta-Fonseca and

Fernandes 2016; Strelin et al. 2016).

There are some practical points that are useful to consider

for studies of allometry using multivariate regression of shape

on size. Overall, multivariate regression is statistically well

behaved and, when tests use statistics based on Procrustes

sums of squares and Goodall’s F, has considerable statistical

power even with fairly small sample sizes. There are some

limitations imposed by the data, however, which can lead to

unstable estimates of allometry. Estimates are unstable if the

relationship between shape and size is weak and also if the

sample only includes a limited range of sizes. The strength of

the allometric relation is usually not under the control of the

investigator (it is one of the aspects that is under study), but the

range of sizes is a question of the study design. If only a small

range of sizes is available, so that only a short section of the

allometric trajectory is covered by the data, the proportion of

shape for which allometry accounts will be underestimated

and the estimated patterns of allometric shape changes may

differ considerably from the true allometric patterns. It is help-

ful to try to include the extremes of the size distribution, the

smallest and largest specimens that are available, because

these specimens can make a substantial contribution to stable

estimates of allometry. If the range of sizes is very large, it is

often useful to use log-transformed centroid size as the inde-

pendent variable in the multivariate regression (Zelditch et al.

2000; Mitteroecker et al. 2004, 2013; Klingenberg et al. 2012;

Klingenberg and Marugán-Lobón 2013). The effect of the

log-transformation can be likened to stretching the scale of

size for small values and shrinking it for large values—be-

cause much of the allometric change is usually concentrated

among the smaller sizes, this often results in a better fit to a

straight-line relationship.

Although multivariate regression of shape on size is the

most widespread method for characterizing allometry in geo-

metric morphometrics, some authors have used different

methods. In particular, many studies used bivariate regression

or correlation of the PC1 of shape versus centroid size (or log-

transformed centroid size) for testing and displaying allometry

(O’Higgins and Jones 1998; Singleton 2002; Zollikofer and

Ponce de León 2002; Kölliker-Ott et al. 2003; Sardi et al.

2007; Morimoto et al. 2008; Sardi and Ramírez Rozzi 2012;

Watanabe and Slice 2014). This method has some drawbacks

because, unless size is the only factor contributing appreciably

to morphological variation, there is no reason why the PC1 or

any other PC necessarily is associated with allometry.

Allometric shape changes, even if allometry is perfectly linear

in shape space, may be in a direction of shape space that is at
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Fig. 6 Allometric regression and size correction. a The decomposition of

the shape deviations of each data point (black dot) from the sample

average (hollow dot) into predicted and residual components. For each

shape variable, the predicted component can be computed from the

deviation in size of the specimen of interest from the average size in the

sample and the slope of the regression line (solid line). b Size correction

by using residuals from the regression. For the residual component of

variation, there is the same expected value for shape regardless of the

size of a specimen (horizontal line)
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oblique angles to the first few or even to all PCs. This is the

reason why some studies have found that more than one PC or

PCs other than the PC1 are correlated with centroid size

(Singleton 2002; Cobb and O’Higgins 2007; Sardi et al.

2007; Weisbecker 2012; Watanabe and Slice 2014) and no

PC of shape can be expected to provide a complete or optimal

characterization of allometry. By contrast, if the allometric

trajectory is linear in shape space, multivariate regression of

shape on size is guaranteed to provide an optimal estimate

(and it is likely to provide a reasonable approximation even

if there is moderate nonlinearity). The regression approach is

therefore the preferred method for analyzing allometry within

the Gould–Mosimann framework.

Analysis of allometry in multiple groups

Many datasets contain multiple groups, such as specimens of

different species, sexes or from different locations. Such group

structure needs to be taken into account both because it can

pose a number of statistical difficulties and because, in many

instances, it offers opportunities for inferring the biological

processes responsible for the observed variation. For instance,

it can be useful to compare within- and among-group allom-

etry (Gonzalez et al. 2011; Klingenberg et al. 2012;

Klingenberg 2014) or the allometries of different groups can

be compared to each other (Mitteroecker et al. 2004; Adams

and Nistri 2010; Rodríguez-Mendoza et al. 2011; Cardini and

Polly 2013; Lazić et al. 2015).

In many situations, a common estimate for the allometry in

several groups is required, for instance when a simultaneous

estimate of the allometry within several groups is to be

contrasted to the among-group allometry, for the study of on-

togenetic scaling, or for size correction in taxonomic studies

(Frost et al. 2003; Mitteroecker et al. 2004; Gonzalez et al.

2011; Sidlauskas et al. 2011; Klingenberg et al. 2012; Strelin

et al. 2016). A method that can achieve such an estimate is

pooled within-group regression, which is equivalent to multi-

variate analysis of covariance (MANCOVA), a long

established method in multivariate statistics (e.g., Timm

2002). Pooled within-group regression uses the shape and size

deviations of each specimen from the shape and size averages

of the group to which that specimen belongs, not the grand

mean, to compute variances and covariances (Fig. 7a).

Equivalently, pooled within-group regression can be ex-

plained as a two-step procedure where the differences among

group averages are first removed by centering the shape and

size data by group and then an ordinary regression is carried

out on these centered data (Fig. 7b). To visualize how well the

data fit a straight-line relation, it is possible to use regression

scores, which, in the context of pooled within-group regres-

sion, have been called the Bcommon allometric component^

(Mitteroecker et al. 2004). The assumption that underlies the

method is that all groups share the same allometry (the

regression coefficients are the same across groups). If the

groups differ in the range of size variation (as in Fig. 7), the

groups with a greater range of sizes have a greater effect on the

regression estimates. As long as the assumption of equal re-

gression coefficients holds, this property leads to an optimal

estimate because groups with a greater range of size variation

contain more information on allometry (groups with very little

size variation, which produce unreliable estimates of allome-

try, have only very little weight in the joint estimation of

within-group allometry).

A key assumption in pooled within-group regression is that

all the groups share a common allometry, that is, that the

regression coefficients are the same across all groups. This

assumption justifies the calculation of a single estimate of

the allometric pattern within groups. In principle, it can be

tested using the statistical tests available as part of the

MANCOVA methods (Zelditch et al. 2000; Frost et al.

2003; Zelditch et al. 2003; Ljubisavljević et al. 2010;

Viscosi and Cardini 2011). Yet, the statistical significance
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Fig. 7 Pooled within-group regression. a A plot of uncentered variables.

All three groups share the same regression slope, as assumed by the

method. Computations are based on the deviations of the data points

from the respective group averages (arrows), rather than deviations

from the grand average. bA plot of group-centered variables. The scatters

of the different groups have been moved to share the same shape and size

averages. After this centering step, an ordinary regression analysis

provides a joint estimate of the shared within-group allometry
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from these tests is problematic as a criterion for deciding

whether or not a pooled within-group regression should be

used. If there is any difference between the regression vectors

of two groups, no matter how small it is, increasing sample

sizes will always produce a significant result at some point.

This leads to the perverse situation that an investigator with

a bigger dataset cannot conduct the analyses that are permis-

sible with a smaller dataset. This can be serious for a wide

range of applications, including size correction for taxonom-

ic purposes or the separation of allometric and nonallometric

components of sex dimorphism (Gidaszewski et al. 2009;

Sidlauskas et al. 2011). A solution is to relax the conditions

for using pooled within-group regression by adopting a more

flexible version of the justification for pooled within-group

regression: it provides a simultaneous estimate of a common

allometric pattern if all groups do indeed share the same

allometry, or it provides a compromise estimate as long as

the allometric patterns in all the groups are sufficiently sim-

ilar for such a compromise to be sensible. This criterion

requires some judgment by the investigator, and above all,

the magnitude of the differences among the allometries of

different groups needs to be taken into account. Small angles

or very high vector correlations between the regression vec-

tors of different groups can be taken as indications that dif-

ferences are negligible and therefore that a compromise

across groups is justifiable.

Comparing the allometries in different groups is another

important task in the analysis of allometry (Klingenberg

1996b). A wide range of methods for comparing allometric

patterns have been used in traditional morphometrics, such

as computing the angles between allometric trajectories

(Boitard et al. 1982; Cheverud 1982; Gibson et al. 1984;

Klingenberg and Zimmermann 1992a; Wilson and Sánchez-

Villagra 2010; Wilson 2013) or generating an ordination of

the allometric patterns by a PCA of the allometric vectors

of different groups (Solignac et al. 1990; Klingenberg and

Froese 1991; Klingenberg and Spence 1993; Gerber et al.

2008; Wilson and Sánchez-Villagra 2010; Wilson 2013).

With some minor adaptations, these approaches can also

be used in the context of geometric morphometrics.

Angular comparisons between allometric trajectories esti-

mated by multivariate regressions of shape on size have

been used in a number of studies (Zelditch et al. 2000,

2003; Frédérich et al. 2008; Gonzalez et al. 2010, 2011;

Frédérich and Vandewalle 2011; Urošević et al. 2013).

Gonzalez et al. (2010) summarized a number of such com-

parisons graphically as a dendrogram obtained from angles

between allometric vectors using the UPGMA clustering

method. Frédérich and Vandewalle (2011) and Urošević

et al. (2013) conducted ordination analyses of allometric

trajectories by nonmetric multidimensional scaling of the

matrix of pairwise angles between allometric vectors.

There is clearly potential for further work in this area.

Size correction

An important application of allometry is size correction.

Although extracting the shape information from the raw data

of landmark coordinates removes variation in size per se, but

the shape data may still contain a component of size-related

shape variation due to the effects of allometry. Such allometric

shape variation can influence taxonomic studies or analyses of

morphological integration and modularity (Klingenberg et al.

2003; Mitteroecker and Bookstein 2007; Klingenberg 2009,

2013a; Sidlauskas et al. 2011). The multivariate regression

approach offers a logical and straightforward method to iden-

tify and possibly remove the allometric component of shape

variation.

The multivariate regression provides a useful means for

size correction as it partitions the variation in the dependent

variables into predicted and residual components (Fig. 6). The

predicted component corresponds to allometric variation of

shape, whereas the residual component encompasses the

nonallometric variation. The residuals are uncorrelated with

the size measure used as the independent variable in the re-

gression (usually centroid size or log-transformed centroid

size). Furthermore, if the assumption of a linear relation be-

tween size and shape is met, the expected value for the resid-

uals is the same for every size (Fig. 6b). For these reasons, the

residuals from a multivariate regression of shape on size are

the optimal choice for size correction in the context of the

Gould–Mosimann framework of allometry.

Note that the dimensionality of the shape data after size

correction using the regression approach is usually the same

as before. Allometric effects of size usually do not account for

all the variation in any direction of shape space, and so there

tends to be some variation left in every possible shape vari-

able. This is markedly different from the analyses in the tradi-

tion of the Huxley–Jolicoeur framework, where allometric

and nonallometric components of variation are orthogonal in

the phenotypic space. The difference arises from the fact that

size is extrinsic to the shape space. Within the shape space,

factors other than size can also contribute to variation of the

shape feature that corresponds to the allometric vector. As a

result of this, plots of size versus the regression score, the

projection of the data points onto the direction of the allome-

tric vector (Drake and Klingenberg 2008), usually do not fit

perfectly to a straight line.

Size correction by using residuals frommultivariate regres-

sion of shape on size is widely used in morphometric studies.

Because the residuals are in the same coordinate system as the

original shape data, just with the predicted component of

shape variation removed, the size-corrected data can be used

by any morphometric technique for further analyses. A partic-

ular focus for such applications is the study of morphological

integration and modularity, where accounting for allometric

effects is especially important because allometry is a known
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factor contributing to integration (Klingenberg et al. 2001,

2003; Klingenberg 2009; Ivanović and Kalezić 2010;

Martínez-Abadías et al. 2011; Jojić et al. 2012; Klingenberg

and Marugán-Lobón 2013; Barbeito-Andrés et al. 2015).

Many studies use size correction in a situation where the

data are from multiple groups such as sexes or species (Rosas

and Bastir 2002; Mitteroecker et al. 2004; Gidaszewski et al.

2009; Sidlauskas et al. 2011; Strelin et al. 2016). A pooled

within-group regression of shape on size can take this kind

group structure into account. Further, in this case, it is impor-

tant to apply the decomposition of variation into predicted and

residual components of variation not only to the variation

within groups, but also to the differences between them.

Only in this way is it possible to determine how much of the

difference between groups is due to allometry. By computing

predicted values and residuals based on deviations from the

grand mean, rather than from the various group means

(Fig. 8a), this decomposition of group differences into

predicted and residual components can be achieved easily.

The resulting residuals are uncorrelated to size within groups,

provided that the assumptions of the pooled within-group re-

gression are met, although there may be correlations between

the group averages and size (Fig. 8b). Discrimination between

groups is often improved after such a size correction, which is

why it can be a very useful tool in taxonomic studies

(Sidlauskas et al. 2011).

Allometry in Procrustes form space

In recent years, several other approaches have been proposed

that aim at characterizing morphological form by combining

size and shape in a single space. One of these methods adds

natural log-transformed centroid size as an extra dimension to

shape tangent space to produce a Bsize–shape space^

(Mitteroecker et al. 2004), also called Bform space^ or

BProcrustes form space^ (Bastir et al. 2007; Mitteroecker

and Gunz 2009; Weber and Bookstein 2011; Mitteroecker

et al. 2013).

Given the amount of attention that the structure of

Kendall’s shape space has received in geometric morphomet-

rics, it is somewhat surprising that there has been no discus-

sion on the global structure of the Procrustes form space.

Because the form space is a shape tangent space augmented

by log-transformed centroid size as an additional dimension,

the tangent space confers to it a strong relation to Kendall’s

shape space (Fig. 9). The tangent space touches Kendall’s

shape space at the location of the mean shape. The line from

the center of the shape space to the location of the mean shape

is by definition perpendicular to the tangent space and is also

the main axis of the form space. In principle, there is no upper

or lower limit for log-transformed centroid size and the form

space can therefore extend in both directions along this axis

without limit. The geometry of the cross section of the form

space corresponds to the projection of the shape space onto the

tangent space. For the shape space of triangles, this is a circle,

so that the overall structure of form spaces for triangles is that

of a cylinder (Fig. 9a). The diameter of the cylinder can be

debated, depending on whether the projection to the tangent

space is from the shape space (corresponding to a full

Procrustes fit) or from the sphere of aligned preshapes (corre-

sponding to a partial Procrustes fit). In practice, the details of

the boundaries of the form space matter little, because both

shapes and centroid sizes have quite limited ranges in actual

biological data (Fig. 9b): size ranges very rarely cover more

than two or three orders of magnitude, usually much less, and

even comparisons at very large phylogenetic scales tend to

occupy only quite small regions of the total shape spaces

(Marcus et al. 2000; Sallan and Friedman 2012; Klingenberg

and Marugán-Lobón 2013).

Residual

Centroid size

S
h

a
p

e
 r

e
s
id

u
a

ls

(a)

(b)

Predicted

Residual

Centroid size

S
h

a
p

e
 v

a
ri
a

b
le

Fig. 8 Allometric regression and size correction for multiple groups. a

Computation of the predicted and residual components of variation. If

deviations from the grand mean for size and shape (hollow dot) and the

slope from a pooled within-group regression of shape on size are used,

group differences are partitioned into the correct predicted and residual

components. b Size correction using residuals from pooled within-group

regression. The shape residuals are uncorrelated to size within groups, but

overall, there may be correlations with size depending on the size and

shape differences among groups
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Because each Procrustes form space depends on a tangent

space, its optimal properties are limited to landmark configu-

rations with shapes that are reasonably close to the shape at the

tangent point. For configurations with very different shapes,

the distortions of the tangent projection will result in corre-

sponding distortions in the Procrustes form space. In this way,

Procrustes form spaces are fundamentally different from

Kendall’s shape or size-and-shape spaces (Kendall 1989;

Kendall et al. 1999), which can accommodate all configura-

tions with the same number of landmarks and in the same

dimensionality, no matter how different the arrangement of

the landmarks may be.

Why is log-transformed centroid size used as the extra di-

mension to add to the shape tangent space for constructing the

Procrustes form space? This question, about the scaling of the

size axis relative to the other axes of the form space, is impor-

tant because it can affect all further analyses performed in that

space. The justification relies on the null model that the data

are generated by isotropic variation of landmark positions

around an average configuration, which means that variation

is equal in every direction and at every landmark, and that the

scale of variation is small (the deviations of landmarks from

the respective average positions are small relative to the dis-

tances among landmarks in the average configuration). Under

this model, it can be shown that natural log-transformed cen-

troid size is on the same scale as the variables of the shape

tangent space (Mitteroecker et al. 2004, Appendix). The iso-

tropic null model, however, is biologically highly unrealistic

and the question therefore arises whether natural log-

transformed centroid size is still scaling properly in relation

to the shape variables when the assumption of isotropic vari-

ation is abandoned. This question is not easily answered, be-

cause the condition that variation is small and isotropic plays a

key role in the justification for using the natural logarithm

transformation of centroid size. This caveat, whether the scal-

ing of log-centroid size against the remaining dimensions of

Procrustes form space is really appropriate for biological data

that deviate strongly from the isotropic model, has been raised

before (Cardini and Polly 2013; O’Higgins and Milne 2013).

The log-transformation as such is likely to be sensible in many

circumstances—if there are large amounts size variation, it

will compensate for the tendency that most shape changes

occur at relatively small sizes for most organisms and, if there

is very little shape variation, the log-transformation will not

make much of a difference. The choice of the basis for the

logarithms, and thus the relative scaling of variation in log-

centroid size versus the variation in shape, is more difficult to

justify without referring to the isotropic model. Some results

of analyses in Procrustes form space are more affected by this

possible uncertainty than others.

Because Procrustes form space includes log-transformed

centroid size, the regression approach used to characterize

allometry in shape space is not applicable, nor is the general

logic of the Gould–Mosimann school that defines allometry as

an association between size and shape. Instead, the analysis of

allometry needs to follow the tradition of the Huxley–

Jolicoeur school, which focuses on the covariation among

variables within a morphological space and attempts to find

a line of best fit to the data as an estimate of the allometric

trajectory. Because the variation of log-transformed centroid

size is far greater than for any of the shape variables in most

morphometric datasets, the PC1 of the Procrustes form data

usually is associated closely with the axis of log-centroid size.
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Fig. 9 Procrustes form space. a The relation of the Procrustes form space

to Kendall’s shape space for triangles. The Procrustes form space is

shown in part, cut transversely through the plane of the shape tangent

space to show Kendall’s shape sphere and through a parallel plane at the

top of the diagram. The entire Procrustes form space is a cylinder that

completely envelops the shape space and extends without limit in both

directions along the axis of log-transformed centroid size (dotted lines). b

Schematic cross-section of the Procrustes form space, shape tangent

space, shape space, and sphere of aligned preshapes for triangles. The

black dots indicate data points as they might occur in a biological dataset:

size variation is clearly exceeding the shape variation. The shape

corresponding to the mean form (M) is the same as the mean shape in

the sample (at the tangent point T). There is a slight tendency for the data

points to be further to the right with increasing values of log-centroid size,

indicating allometry
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If there is allometry in the data, this means that there is a

tendency for shape to change with increasing size, which im-

plies that the PC1 is slightly inclined relative to the axis of log-

centroid size (Fig. 10). Note that, as for traditional morpho-

metric data, the approach using the PC1 in form space is based

on the assumption that variation in size or related to it is

dominant over variation from other origins. This is often true

in homogeneous samples and especially if the sample contains

ontogenetic variation. If the data are structured by other fac-

tors, however, such as different species, sexes, or ecomorphs,

the PC1 may fail to characterize allometry properly.

The opposite to allometry is isometry, and this is therefore a

possible null hypothesis that can be used in statistical tests for

allometry. Remarkably, there are two possible scenarios for

isometry in this case. The first is isotropic variation of the

landmark coordinate data, which has been extensively used

as a null model in geometric morphometrics, including for the

justification of how the Procrustes form space is set up

(Mitteroecker et al. 2004), but it is an unrealistic model for

biological data. Under this model, which implies equal

amounts of variation in all dimensions of the form space, the

directions of PCs are determined only by sampling error and

are therefore meaningless. In a different null model, the vari-

ation for size exceeds the variation for the shape variables, as it

is usually found for biological data, but size is independent of

shape. Under this model, the PC1 is expected to have a coef-

ficient of 1.0 for log-transformed centroid size (or equivalent-

ly −1.0, as the sign is arbitrary) and zero coefficients for all the

shape variables. In other words, under this model, the PC1 is

aligned perfectly with the axis of log-centroid size. In princi-

ple, this can be tested with the same method that Jolicoeur

(1963) proposed for testing allometry against the null hypoth-

esis of isometry for traditional morphometric data—the only

difference is the PC1 coefficients expected under that null

hypothesis. Implementations of this test using permutation

approaches are also feasible. Intriguingly, it seems that this

approach for testing allometry in Procrustes form space has

not been used so far. Instead of formal statistical tests, existing

studies using Procrustes form space have tended to present

visualizations of the changes along the PC1 axis as graphical

evidence for allometry (Mitteroecker et al. 2004, 2013;

Bulygina et al. 2006; Čápová et al. 2008; Milne et al. 2012;

Cardini and Polly 2013; Bastir et al. 2015; Drake et al. 2015;

Freidline et al. 2015).

In many morphometric datasets, the PC1 in Procrustes

form space takes up a large proportion of the total variation,

sometimes 80 % and more. This is distinctly more than the

share of the total variance for which PC1 tends to account in

PCAs in shape space, as is especially evident from analyses

containing PCAs in both types of spaces for the same datasets

(Chatzigianni and Halazonetis 2009; Freidline et al. 2012;

Mitteroecker et al. 2013). The greater amounts of variation

for which the PC1 accounts in analyses in the Procrustes form

space reflect the contribution of log-centroid size, which is

often dominant. Some studies have included plots of the

PC1 scores in the Procrustes form space versus log-centroid

size and have found a very good fit of the data to a straight line

(Singleton et al. 2011; Milne et al. 2012). It is tempting to

interpret these relations as evidence for allometry, but some

caution is needed. Under the null model of isometry where a

dominant component of variation of centroid size is indepen-

dent of shape, the PC1 of form space will be perfectly aligned

with the axis of log-centroid size and shape variation will not

contribute to this PC1 at all. As a consequence, the correlation

between the PC1 scores and log-centroid size will be perfect.

Therefore, a strong relation between the PC1 in form space

and log-centroid size indicates that size variation is a dominant

factor in the data but is not evidence for allometry.

For analyses where the specimens belong to multiple

groups such as different species, populations, or sexes, the

analyses need to take this structure of the data into account.

Several studies have compared allometric trajectories of dif-

ferent groups in Procrustes form space by visualizing 2D or

3D scatters of PCA scores to explore the trajectories are ar-

ranged relative to each other (Mitteroecker et al. 2004, 2005;

Freidline et al. 2012; Cardini and Polly 2013; Drake et al.

2015). In principle, such comparisons can use the same tools

as they have long been used for comparing allometric trajec-

tories in traditional morphometrics (Klingenberg 1996b), in-

cluding angles between PC1 vectors (Pimentel 1979;

Cheverud 1982; Klingenberg and Zimmermann 1992a) or or-

dinations of the PC1 vectors (Klingenberg and Froese 1991;
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Fig. 10 Analysis of allometry in Procrustes form space. This is a close-

up view of just that part of the Procrustes form space that is actually

occupied by data points (cf. Fig. 9b). If there is allometry, the PC1 is

inclined relative to the axis of log-centroid size. As a consequence, the

plane perpendicular to the PC1 is also inclined, which implies that some

variation for log-centroid size remains in the form data even after size

correction
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Klingenberg and Spence 1993; Gerber et al. 2008;Wilson and

Sánchez-Villagra 2010). Also, for obtaining simultaneous es-

timates of within-group allometry in multiple groups, there are

methods that have long been used in traditional morphomet-

rics, such as multigroup PCA (Pimentel 1979; Thorpe 1983)

or common principal components (Airoldi and Flury 1988;

Flury 1988; Klingenberg 1996b), which can be used for data

in the Procrustes form space with minor modifications. Both

these techniques provide a joint estimate of allometry within

all the groups and are thus similar in purpose to pooled within-

group regression (Fig. 7), but they are based firmly in the

Huxley–Jolicoeur framework of allometry.

For size correction of data in Procrustes form space, it is

possible to project the data points onto the subspace perpen-

dicular to the PC1. This is the classical approach of the

Huxley–Jolicoeur framework (Fig. 3) and is applicable in this

case. The projection (Fig. 10) separates a component of size

variation and size-related shape variation, in the direction of

the PC1, from variation that is unrelated to it. In the absence of

allometry, if variation is isometric so that the PC1 corresponds

entirely to the dominant variation in log-centroid size indepen-

dent of the variation of the shape variables, the result of such a

size correction is simply the separation of log-centroid size

and the shape tangent space. If there is allometry, however,

the PC1 axis is somewhat oblique relative to the axis of log-

centroid size (Fig. 10). As a consequence, the subspace per-

pendicular to the PC1 also is slightly inclined relative to the

shape tangent space. This means that some points in this space

are higher and others are lower along the axis of log-centroid

size; in other words, there is some variation of log-centroid

size remaining even after size correction! This paradoxical

situation results from the nature of the Procrustes form space:

it clearly belongs within the Huxley–Jolicoeur framework of

allometry because it contains size as an intrinsic component,

and consequently, the PC1 as a best-fitting line is the only

logical choice for characterizing allometry, but from its con-

struction, form space also inherits the distinction between size

and shape that is the hallmark of the Gould–Mosimann

school. The paradox arises because the concepts from the

two frameworks clash—most notably size in this instance.

Allometry in conformation space

A different strategy for applying the Huxley–Mosimann ap-

proach in the context of geometric morphometrics is to use a

Procrustes superimposition without the scaling step, minimiz-

ing squared differences of landmark positions only over trans-

positions and rotations. Instead of first separating and then

combining shape and size again, as in the approach of

Procrustes form space, this method never separates shape

and size in the first place. This approach and the associated

space have been known for a long time under a bewildering

variety of different names (see also Table 1) including Bsize-

and-shape^ (Kendall 1989; Le 1995; Dryden and Mardia

1998) or also Bform^ (Goodall 1991; Goodall and Mardia

1991), Bfigure^ (Ziezold 1977), or Ballometry space^

(Langlade et al. 2005). The name Bsize-and-shape^ is the most

established, but it is also confusing because it would be a

better description for the Procrustes form space, for which size

and shape are first separated and then combined again, where-

as in this approach, size and shape are never distinguished or

separated from each other. Other terms such as Bform^ and

Bfigure^ have different meanings (sometimes more than one)

that are well established in statistical shape analysis or in geo-

metric morphometrics (Goodall 1991; Rohlf 1996;

Mitteroecker et al. 2013). Therefore, reluctantly, I appropriate

a new word for this purpose: Bconformation.^ The conforma-

tion of an object encompasses all its geometric features except

its position and orientation. Theword Bconformation^ is there-

fore a synonym to Bform,^ but it is introduced specifically to

distinguish it from the use of Bform^ in the approach based on

the Procrustes form space. Every conformation (or form) has

its shape and size, but these are usually not quantified on their

own in the course of an analysis of conformations. The new use

of the term Bconformation^ is fully consistent with its

established use in structural biology: the absolute scale is an

inherent component of the conformation of a molecule, and no

steps are taken to separate size from shape in the analysis of

conformations of proteins and other macromolecules.

The distance between two conformations is the square root

of the sum of squared coordinate differences after a superim-

position in which this sum of squared coordinate differences is

minimized (Ziezold 1977; Le 1995; Dryden and Mardia

1998). The translation for the optimal superimposition brings

the centroids of the landmark configurations to the same point,

and the optimal rotation can be computed in the same way as

the rotation for the ordinary Procrustes superimposition

(Dryden and Mardia 1998). Note that the sizes of the land-

mark configurations matter for the computation of the dis-

tance, because the same shape difference will produce a larger

squared distance between two larger conformations (for a

formula based on centroid sizes and the Procrustes distance,

see Dryden andMardia 1998, p. 177). For the superimposition

of multiple conformations, an iterative procedure analogous to

generalized Procrustes superimposition, but without a scaling

step, can be used (Ziezold 1994; Le 1995). Therefore, this

superimposition can be described as a Procrustes superimpo-

sition without scaling (Goswami 2006a, b; Bensmihen et al.

2008; Feng et al. 2009; Milne and O’Higgins 2012;

O’Higgins and Milne 2013; Mydlová et al. 2015).

The average conformation resulting from the superimposi-

tion procedure generally is not just a scaled version of the

average shape for the same set of landmark configurations.

If there is allometry, an association of size and shape, the

shape of the mean conformation may differ from the mean
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shape (points M and T in Fig. 11). The reason for this is that

larger configurations carry a greater weight in the calculations

of the mean conformation because rotation of a larger config-

uration is more costly in terms of squared deviations between

landmark positions than is the rotation of a smaller configura-

tion. (Note: each landmark of each configuration carries the

same weight per se, but the stronger weighting of bigger con-

figurations results because the landmark coordinates of bigger

configurations, after centering, tend to have greater values

than those of smaller configurations.) The observation that

the shape of the average conformation may differ from the

average shape might be seen as a weakness of the method,

but such criticism would ignore the fact that the average shape

does not figure at all in the morphometric approach using

conformation space (the point is not to separate size and

shape).

Conformation space is fairly difficult to visualize. It is use-

ful to start with the example of triangles (Fig. 11), because it is

particularly familiar in terms of its shape space. When super-

imposition is based on translation and rotation, the points

representing the landmark configurations in conformation

space are at variable distances from the origin of the coordi-

nate system (point O in Fig. 11) and those distances are equal

to the centroid sizes of the respective landmark configurations.

The hemisphere of Procrustes-aligned preshapes is a special

subspace in this space, as preshapes are defined as configura-

tions that have been scaled to centroid size 1.0 (and from

which variation in position has also been removed).

Conformations with centroid sizes greater than 1.0 are outside

this sphere, smaller configurations are inside the sphere.

Because there is no scaling, the coordinates in conformation

space are in the same units as the landmark coordinates, such

as millimeters, centimeters, or inches. So what are the effects

of changing the (arbitrary) choice of those units? The effect

will be a change in scaling of the axes by a factor according to

the change of units (10 for a change between centimeters and

millimeters, 25.4 between inches and millimeters, etc.). In

addition, such a change of units will also affect how the

preshape sphere appears in relation to any data points in

graphs such as Fig. 11. Because preshapes do not play any

role in the analyses of conformations, however, this has no

effect on the results of any analyses. Conformations with the

same shape but different centroid sizes are on straight lines

radiating from the origin (dotted lines originating from point

O in Fig. 11). The origin also corresponds to the location of the

totally degenerate configuration whose landmarks are all in

the same point and which therefore has centroid size zero.

Because the lines for different shapes converge in this single

point, the overall structure of the conformation space is that of

a cone, with sections corresponding to scaled copies of

Kendall’s shape space for the appropriate number of land-

marks and dimensions (Kendall 1989; Dryden and Mardia

1998). This global structure cannot be visualized directly for

all triangles, but it can be shown for the subspace of collinear

triangles (Fig. 12). In the traditional orientation of Kendall’s

shape space for triangles that uses the two equilateral triangles

as the poles, as in Fig. 5a, this subspace is the equator. Each

section of the cone in Fig. 12 is a circle that contains all
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Fig. 11 Conformation space for triangles and its relation to shape space

and the sphere of aligned preshapes. The diagram shows a section

through the multidimensional space of configurations aligned using

translation and rotation, but with no scaling. Landmark configurations

with centroid size 1.0 will be on the preshape sphere, those with greater

centroid size will be outside of it (e.g., the configurations indicated by

black dots). The dotted lines indicate the lines of constant shape. Note that

the average shape (T) and the shape of the average conformation (M)may

differ

A B

C

A

B
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A B C A B

C
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B CA BC

Fig. 12 A partial view of the conformation space for collinear triangles.

The edge at the top of the cone corresponds to the shape space of collinear

triangles (the Bequator^ of Kendall’s shape space when viewed as in

Fig. 5a). The cone extends down to the point that corresponds to a

triangle of size zero (the totally degenerate triangle where all three

corners are in the same point). The conformation space also extends

further upwards as the continuation of the part of the cone shown in the

diagram, for collinear triangles with greater centroid sizes
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collinear triangles of a certain centroid size, corresponding to

the distance from the apex of the cone. For each point on the

section, the straight line from the vertex (and also extending

beyond the current section to larger centroid sizes) contains all

the conformations that have the same shape. In practice, as for

the shape and form spaces, the global structure of the confor-

mation space is less important because the focus is on a rela-

tively small part of the whole space that is occupied by the

landmark configurations in a given dataset.

For characterizing allometry in conformation space, it is

very clear that the Huxley–Jolicoeur approach must be used.

Just as for length measurements in traditional morphometrics,

the landmark coordinates that characterize the conformations

contain the complete morphological variation without a sepa-

ration of size and shape. And just as for traditional morpho-

metrics, for most biological datasets, size and size-related al-

lometric variation is usually the dominant component of

within-group variation in conformation space. The PC1 in

the conformation space is an estimate of a linear allometric

trajectory, optimal according to a least-squares criterion

(Fig. 13). Empirical studies have found that the PC1s

accounted for large proportions of the total variance (some-

times around 70 % or more), reflecting the substantial contri-

bution of size and size-related variation (Langlade et al. 2005;

Bensmihen et al. 2008; Rosas et al. 2012). This dominance of

the PC1 is reminiscent of the results of traditional morphomet-

ric studies using length measurements.

For statistical tests of allometry, an important question is

how to implement the null hypothesis of isometry. There are

two straightforward choices: first, the model of isotropic var-

iation of the landmark positions and, second, the model where

centroid size can vary more than shape, but is uncorrelated to

it. Under the isotropic model, there are equal amounts of var-

iation in every dimension of the conformation space, and the

direction of the PC1 is therefore determined by sampling error.

In principle, tests of sphericity can be applied (Mardia et al.

1979; Pimentel 1979), but this null model is biologically very

implausible. For the other null model of isometry, the PC1 is

defined by a dominant component of size variation that is

uncorrelated with shape variation. This implies that the PC1

coincides with the line from the mean conformation to the

apex of the conformation space (rather than being at an angle

to this line, as in Fig. 13). Therefore, the PC1 coefficients

expected under this model of isometry are a scaled version

of the mean conformation (because PC coefficients are scaled

so that their squares sum up to unity, the PC coefficients hap-

pen to represent the shape of the mean conformation, which is

the same as the mean shape under this model). These coeffi-

cients can be used as the expectation in a test that otherwise

corresponds to the classical test of multivariate allometry

(Jolicoeur 1963; Pimentel 1979).

Because variation in size is such a dominant contribution to

variation in conformation space for many biological datasets,

the issue of size correction is as important in this context as it

has been in traditional morphometrics (Burnaby 1966;

Klingenberg 1996b). Because size is inherent in the confor-

mation space, projection onto the subspace orthogonal to the

PC1 is the logical and appropriate method of size correction

(Fig. 13). This correction removes the dimension that contains

size and size-related variation. Size corrections of this kind

have been used in empirical analyses (Goswami 2006b,

2007). If the data include multiple groups of specimens, the

estimation of the allometric vector should take this into ac-

count. The same techniques that have been used in the context

of multivariate allometry in the tradition of the Huxley–

Jolicoeur school can be used, as discussed above for

Procrustes form space, both for finding simultaneous esti-

mates of allometry within multiple groups and for comparing

allometric patterns among groups (i.e., methods such as mul-

tigroup PCA, CPCA, etc.).

Comparison of approaches

How do these three approaches to allometry compare to each

other? All three methods are mathematically correct and log-

ical implementations that share core concepts such as allome-

try and isometry. For data where allometric relations fit per-

fectly (without residuals, etc.), all three methods provide pre-

cisely compatible results; with statistical noise added to allo-

metric relations, the agreement may not be perfect, but no

fundamental differences are to be expected. The greatest dif-

ference is that between the regression approach, which is firm-

ly in the tradition of the Gould–Mosimann school of allome-

try, and the other two methods, which belong to the Huxley–

Jolicoeur school. The difference between the two latter

T

Preshape

sphere

PC1

Size-free

axis

O

Fig. 13 Allometry and size correction in conformation space. The data

points display a trend in shape (orientation from the apex of the

conformation space, point O) with increasing size (distance from the

apex). The PC1 is a line of best fit to the data points in conformation

space and reflects this trend. Size correction can be carried out by

projecting the data points onto the subspace perpendicular to the PC1
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methods is more subtle, and inmany ways, they are equivalent

and expected to give similar results in practice.

The first question facing an investigator, therefore, is

whether to treat size and shape as logically separate properties

of a landmark configuration or whether to drop this distinction

and consider the morphological variation as one. This is, in

different words, the question whether to choose the Gould–

Mosimann or Huxley–Jolicoeur framework for studies of al-

lometry. In geometric morphometrics, the Gould–Mosimann

framework has been much more prevalent and has long been

the only approach available, whereas the vast majority of tra-

ditional morphometric studies of multivariate allometry have

used the Huxley–Jolicoeur approach. Yet, the distinction is not

entirely clear-cut, because many studies that were based on the

Huxley–Jolicoeur framework have made more or less infor-

mal distinctions between size and shape (for discussion, see

Bookstein 1989; Klingenberg 1996b). Now, as conceptually

and mathematically solid implementations of both frame-

works are available, the decisive factor should be whether

the focus of interest is on shape per se or on the total morpho-

logical variation without a distinction of shape and size (for a

similar recommendation, see also Mitteroecker et al. 2013).

There is one situation where the two frameworks may dif-

fer markedly: in the effects of size correction when there is

little variation in size or size-related variation. If there is little

variation in size, the multivariate regression of shape on size

yields a vector of regression coefficients that are all close to

zero. Using this vector to compute residuals makes very little

difference to the data: because the regression coefficients are

very small, the predicted component of variation is also small

and therefore the residual variation is nearly the same as the

total variation. Performing a size correction, not really neces-

sary in this situation, has little or no effect on the data. By

contrast, using the PC1 (within groups, if appropriate) as an

estimate of allometry and projecting the data onto the sub-

space orthogonal to the PC1 does have an effect in this situa-

tion. With little variation of size or size-related variation, the

PC1 reflects variation from other origins, but still is associated

with the dominant feature of variation. If that dominant feature

of variation is not related to allometry, Bsize correction^ based

on eliminating variation in the direction of the PC1 removes

some different aspect of the data. Removing an entire dimen-

sion inevitably does affect the data, particularly so because the

direction of the PC1 (possibly within groups) is a major com-

ponent of variation. For that reason, before any size correction

is carried out with the methods of the Huxley–Jolicoeur

school, it is important to double-check whether the PC1 is

indeed a component of size and size-related variation and

whether there is a substantial amount of size variation. This

assumption is met in many or perhaps even most biological

datasets, but there is no guarantee for this to be true in general.

The two main frameworks for studying allometry differ in

how size and shape are treated: the Gould–Mosimann school

focuses on a phenotypic space containing only shape and uses

size as an external factor, whereas the methods of the Huxley–

Jolicoeur school use a phenotypic space including both size

and shape. Therefore, the phenotypic spaces in the Huxley–

Jolicoeur framework contain an additional dimension, con-

taining information on size in some manner. If a size correc-

tion is performed, however, this extra dimension is removed

and the difference between the phenotypic spaces is dimin-

ished. The remaining differences depend on how strong al-

lometry is: for weak allometry, where size accounts only for

a minor proportion of the total shape variation, the difference

between the two approaches usually is fairly subtle. For the

limiting case of isometry (with a dominant component of size

variation independent of shape), the phenotype space after

size correction reduces to the shape tangent space, precisely

for the Procrustes form space and approximately for confor-

mation space. For many biological datasets, therefore, the

analyses of allometry using the different methods should pro-

vide results that are mutually consistent.

For the Huxley–Jolicoeur framework, a further question is

how the Procrustes form space and conformation space differ

from each other and whether one of them is to be preferred

over the other. The biggest difference between these two

methods, which has not been discussed before, is the global

structure of the two spaces. Because Procrustes form spaces

require a shape tangent space, each of them can cover only a

limited range of shapes surrounding the tangent point, usually

the mean shape of an empirical dataset. By contrast, the con-

formation space accommodates all possible conformations

with a given number of landmarks and dimensionality. In

practice, however, biological datasets cover only limited

ranges of forms, so that it is unlikely that the difference in

global structure of spaces makes a substantial difference to

empirical studies. For the null model of a small amount of

isotropic variation of landmark positions (i.e., with the amount

of variation around the mean of each landmark much smaller

than the distances among landmarks), which has been widely

used in morphometrics, the two spaces are equivalent up to

scaling by the mean centroid size. For the Procrustes form

space, variation is still isotropic and the shape variables are

scaled to unit centroid size because they are derived from the

shape tangent space, whereas the use of log-centroid size is

equivalent to dividing by mean size (Mitteroecker et al. 2004,

Appendix). Likewise, the model of small isotropic variation

also yields isotropic variation in conformation space (Le

1994), but at the original scale of the landmark coordinates.

Under that null model, both methods therefore behave in an

appropriate and equivalent manner.

Overall, therefore, all three methods are broadly compati-

ble and should provide results that are comparable in empiri-

cal studies. The tree approaches differ in the style of how they

characterize morphological variation and allometry. This

should be useful for researchers who prefer one way of
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thinking or the other. Nevertheless, because the methods gen-

erally are compatible, the results from analyses should be in-

terpretable across the spectrum of approaches, encouraging

exchange of empirical findings among allometric analyses.

Allometry has long been an important focus for studies of

evolution and development, and the methods now available

in geometric morphometrics are flexible and powerful tools

for investigating the evolution of morphological structures

and its developmental and genetic basis (Klingenberg 2010).
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