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1. Introduction 

The prefix problem consists ‘of computing all the products of x,x, . . . x, (j = 0, 

. . . ) N - 1 ), given a sequence x = (x0, xl, . . . , XN-r) of elements in a semigroup. 
Prefix computations occur in the solution of several significant problems such as 
carry-look-ahead addition [7,2 I], the evolution of finite-state machines [ 191, linear 
recurrences [ 181, digital filtering [5], various graph problems [17], sorting in bit- 
models of computation [3, 111, scheduling [ 131, and others. 

The prefix problem has been extensively investigated in the circuit model, where 
the computation is carried out by an acyclic network of gates. Various complexity 
measures such as size, depth, width, and their trade-offs have been studied in [ 151, 
[ 191, and [22] for circuits whose gates are semigroup multipliers, and in [8] and [9] 
for circuits of Boolean gates. Algorithms for the EREW-PRAM model have been 
proposed in [ 171. Implementations on a tree-connected network are discussed 
in [13]. 

In this paper we study the complexity of computing prefixes with Booleun 
networks, which are synchronized interconnections of Boolean gates and one-bit 
storage devices. Relevant measures are computation time T and size S, defined as 
the total number of components (combinational and sequential) in the network. 
Our model of computation is essentially the same as the aggregate of [ 141, from 
which it differs only in the input/output conventions. Both models afford the study 
of the role of sequential logic in circuits, and allow the consideration of circuits of 
size sublinear in the input size. Results in Boolean networks have also interesting 
implications for other models of parallel computation such as fixed interconnec- 
tions of processors and VLSI circuits [23]. 

We have found that the size-time complexity of the prefix problem is determined 
by two properties of the underlying semigroup, which we call cycle-freedom and 
memory-induciveness. We call a semigroup cycle-free if its Cayley graph has no 
cycle of length greater than one and non-cycle-free otherwise. We call a semigroup 
memory-inducive if products of arbitrary length are true functions of all their 
factors, and non-memory-inducive otherwise. Our results, which completely char- 
acterize the size-time complexity of the prefix problem, are encompassed by the 
following theorem, which summarizes Theorems 4 to 9. 

THEOREM 1. The size-time complexity of the prefix problem on a Boolean 
network is S = @(N/T)log(N/T)),f or memory-inducive non-cycle-free semigroups, 
and is S = e(N/T), for all other semigroups. The bounds holdfor T E [n(log N), 
O(N)] for all semigroups, with the exception of those whose recurrent subsemigroup 
is a right-zero semigroup, for which T E [Q(l), O(N)]. 

For memory-inducive non-cycle-free semigroups, the upper bound can be 
achieved by known constructions based on binary-tree networks [ 131, or twisted- 
reflected-tree networks [3, 7, 19, 211, whereas the lower bound (Sect. 3.4, 
Theorem 4) is less obvious, and is based on arguments of computational friction 
[4]. We also give a nontrivial characterization of non-memory-inducive semigroups 
(Sect. 3.3, Theorem 3). 

For the remaining semigroups, the lower bound is based on a trivial input/output 
argument, while the upper bound is achieved by nontrivial algorithms (Section 4, 
Theorems 7 and 9) executed by tree-connected networks. 

It may be interesting to contrast Theorem 1 with the result of [8] that there are 
constant-depth, polynomial-size (unbounded fan-in) Boolean circuits to compute 
prefixes for a semigroup, if and only if the semigroup is group-free, an attribute 
weaker than cycle-free. 



364 G. BILARDI AND F. P. PREPARATA 

In Section 5, we extend our results to the area-time complexity of the prefix 
problem in the VLSI model of computation [23]. 

We conclude in Section 6 by considering some open problems. 

2. Definitions and Problem Statement 

A finite semigroup is a pair (A, . ) where A = {a,, a2, . . . , a,) is a set of size s 
and . is an associative binary operation on A, which we call product. We denote 
by xy the product of elements x, y E A. Afinite monoid is a finite semigroup with 
a distinguished element e, called the identity, such that xe = ex = x, for all x E A. 
Any semigroup can be easily transformed into a monoid by the addition of an 
element with the properties of the identity. Perhaps surprisingly, the addition of 
the identity may increase the complexity of computing prefixes. 

For a sequence x = (x0, xl, . . . , x,+, ) E AN, the sequence of prefixes of x is 
definedasy=(yo,y,,...,y,+,),withyj=xOxl ... xj . The prefix problem consists 
in computing y from x. 

In the study of the complexity of the prefix problem, an important role is played 
by the Cayley graph G(A) = (A, E) of A, containing for each ordered pair (x, y) an 
arc of the form (x, xy), labeled by y. It is easy to see that each node of G(A) has 
out-degree s, that the labels of the self-loops of a given node form a subsemigroup 
of A, and that G(A) is transitively closed. 

An element a of A is said to be recurrent if G(A) contains a self-loop at a, that 
is, if there is an element b of A, not necessarily distinct from a, such that ab = a. 
We call recur(A) the set of recurrent elements of A. It is easy to see that recur(A) 
is a subsemigroup. 

Two elements a and b of A are equivalent, if either a = b or there exist elements 
c and d such that ac = 6, and bd = a. We observe that the relation “equivalent” is 
a true equivalence, and that its equivalence classes are the strongly connected 
components of G(A). 

We call a semigroup cycle-free (GY’) if the only cycles in its Cayley graph are 
self-loops, and non-cycle-free (NCR’), otherwise. We shall see that cycle-freedom is 
a crucial property of a semigroup in determining the complexity of the prefix 
problem. 

It is well known (and also easy to prove) that for each element a in a finite 
semigroup there are two positive integers k and p such that a, a2, . . . , aktp-’ are 
all distinct, and al‘+” = a”. Moreover, if the period p of a is larger than 1, then (ak, 
aktl k+p-’ 1 from a group. If p = 1 for all the elements, then the semigroup 
is cailk&‘grZktp-/rre [20]. 

We now give examples of semigroups that belong to the various classes intro- 
duced above. If any element x E A different from the identity has an inverse x-’ 
such that xx-’ = e, then (e, x, e) forms a nontrivial cycle in G(A) and A is NCF. 
As a corollary, all groups are NCF, and cycle-freedom implies group-freedom. 

An example of CF semigroup is the left-zero semigroup (L,,, o), where L,, = 
VI, 12, . . . , 1,)) and 1; 0 4 = l,, for all 1, and 1,. An example of semigroup that is NCF 
but group-free is the right-zero semigroup (R,, * ), where R, = {r, , r2, . . . , rq} and 
q 2 2, and r, * rJ = r,, for all r, and r,. This semigroup with q = 2, and with the 
adjunction of the identity, becomes the monoid that models the function “carry” 
in binary addition (the identity representing carry propagation and the two zeros 
representing carry setting and carry resetting, respectively). 

Among CF semigroups, of particular interest are insertion semigroups, charac- 
terized by the following property: For all x, y, z, w E A, 

xyz = xy * xwyz = xwy. (1) 
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All abelian CF semigroups are also insertion semigroups. An instance of abelian 
CF semigroup is given by a set A = {O, 1, . . . , s - 1) with respect to the operation 
threshold-@ - 1) addition defined as xy = min(x f y, s - 1). The prefix operation 
on this semigroup represents the cumulative sum of the sequence x with the value 
(s - 1) replacing each larger value. 

Further examples of insertion semigroups are all semilattices, where the semi- 
group operation is commutative and idempotent. Examples of semilattices are the 
set of the O-l vectors of length y1 with respect to component-wise OR (AND), and 
the set of the first s nonnegative integers with the MINIMUM (MAXIMUM) 
operation. 

An interesting insertion semigroup that is not abelian is the set of the rankings 
of n items with respect to the operation of rank concatenation. The computation 
of prefixes in this semigroup is used in the construction of optimal VLSI-sorting 
circuits [3, 4, 1 I]. Identifying the n items with the integers from 1 to n, a 
ranking is an ordered partition of the set ( 1, 2, . . . , II 1, that is, a sequence of 
disjoint sets whose union equals (1, 2, . . . , n). Intuitively, all the elements in a 
given set have the same rank, and have rank higher than those in the next set. 
The concatenation of two rankings u = (u,, u2, . . . , up) and v = (v,, ~2, . . . , v,) 
is uv = (w,, w2, . . . . w,) with Wj equal to the subsequence of the nonempty 
terms Of (Uj fl VI, Uj n V2, . . . , Uj fl V,). 

3. Lower Bounds 

3.1 MODEL. A Boolean network is a directed graph with the following types of 
nodes: (1) input nodes, with in-degree zero and out-degree one; (2) output nodes, 
with in-degree one and out-degree zero; (3) combinational nodes, each labeled by 
a Boolean function of one- or two-input variables, with in-degree equal to the 
number of input variables, and out-degree one or two (to allow fan-out); (4) one- 
bit storage nodes, with in-degree one and out-degree one or two. 

The notions of computation of, and of function computed by, a Boolean network 
can be formalized as done in [ 141. Here we appeal to the intuitive meaning of these 
notions, and just discuss the input/output protocol, since it differs slightly from 
that of [ 141. We assume that each input (output) variable of the problem is assigned 
one input (output) node and one input (output) time. Two variables can be assigned 
the same node, but only at different times. Only one node and one time are 
assigned to a given variable (unilocal, semellective protocol), and this node and 
time are independent of the input value (place-determinate, time-determinate 
protocol). 

Clearly, when solving the prefix problem by a Boolean network, a specific binary 
encoding of the semigroup elements must be chosen. Since our present aim is to 
study the dependence of the complexity of the prefix problem upon the length N 
of the input sequence, and not its dependence on semigroup size or representation, 
we assume that the bits that encode a given semigroup variable are input (output) 
all at the same time. We call an input/output protocol with this property word- 
instantaneous, in analogy with the term word-local introduced in [23]. 

3.2 COMPUTATIONAL FRICTION. Our lower bound for the prefix problem is 
based on the mechanism of computational friction developed in [4] as a generali- 
zation of arguments previously applied to binary addition in [I] and [ 161. Com- 
putational friction, so denoted in the context of a fluidodynamic analogy for VLSI 
computations, is a phenomenon that slows down the flow of information from 
input to output nodes below the rate allowed by the number of I/O nodes, and 
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therefore, when present, yields lower bounds stronger than the trivial ST = Q(N) 
bound. As noted in [4], computational friction rests crucially on the property that 
both fan-in and fan-out of logical elements are bounded, and it can be analyzed- 
in perfectly symmetrical ways-with respect to either fan-in or fan-out. With 
respect to fan-in, two phenomena contribute to the appearance of friction: (i) A 
substantial fraction of the information carried by each wavefront of input variables 
is transferred to the output variables, and (ii) this information must be stored 
within the network for a time logarithmic in the input wavefront size hence, for 
bounded fan-in, functional dependence imposes a delay between reading the input 
and computing an output depending upon that input. Symmetrically (with respect 
to fan-out), we have: (i) each wavefront of output variables carries a substantial 
fraction of the information contained in the input variables, and (ii) this informa- 
tion must be stored within the network for a time logarithmic in the output 
wavefront size since, for bounded fan-out, functional dependence imposes a delay 
between reading an input and computing the outputs depending upon it. For the 
sake of the ensuing discussion, we precisely analyze the latter phenomenon (fan- 
out constraint) in Theorem 2 below, an earlier version of which is proved in [4]. 

We begin with the following definition of functional dependence: 

Definition 1. Let X= {x0, . . . , xn-,) and Y = (yO, . . . , y,+,] be sets of input 
and output variables, respectively; each variable ranges over a finite alphabet. All 
elements of X and Y are encoded in binary, and the binary encoding of a variable 
willbereferredtoasaword.Letx=(Xo,...,x,-,)andy=(y,,...,y,-,)denote 
vectors and let f: x H y be a function. We say that yj is functionally dependent 
upon Xi (and that xi functionally affects yj) if there exist two vectors x’ and x” that 
differ only in their x,-component and such that f(x’) and f(x”) differ in their 
yj-CompOnent. 

Next, we introduce the notion of friction set, which formally captures the features 
of computational friction intuitively described above. 

Definition 2. Let f; X, and Y be as introduced in Definition 1. Let (Y and p be 
nondecreasing functions. Set U C Y is called an (a, @)-friction set forfif for any 
subset W of U there exists a subset V of X with the two following properties: 

( 1) Each variable of V functionally affects at least (Y ( ] W ] ) variables of IV. 
(2) There is an assignment of values to the variables of X - V such that, in the 

resulting restriction off; the variables in W assume at least 28(‘w’) distinct 
configurations. 

The significance of friction sets rests on the following theorem. 

THEOREM 2. Letf; X, and Y be as introduced in Definition 1, and let U !G Y be 
an ((Y, p)-friction set for f: Then for any time-determinate, semellective, word- 
instantaneous Boolean network computingf size S and time T satisfy the bound 

s = n(pp log @))). (2) 

In the proof of Theorem 2 we shall use the simple combinatorial lemma stated 
below without proof. 

LEMMA 1. Let (ul, uZ, . . . , uT) be a sequence of integers, and let m = (u, + u2 
+ . . . + ur)/T be their average. Then, for every integer r E [ 1, T], there are r 
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consecutive terms of the sequence whose average is at least m/2. More formally, 
there is an integer to E [ 1, T - r + l] such that (u,, + u,,+, + . . . + u,,+,-~)/~ 2 
m/2. 

PROOF OF THEOREM 2. Let C be a Boolean network that computesJ; and let 
the origin of time be chosen so that the computation takes place in the interval 
[ 1, T]. Since C is word-instantaneous, we can define the set U, of the variables 
in U that are output exactly at time t E [ 1, T]. (U, may be empty for some t.) 
Since C is time-determinate, U, is independent of the input values, and since C is 
semellective (in the output), the U, ‘s are pair-wise disjoint. Finally, the union of the 
U,‘s equals U. 

From Lemma 1, with U, = ] U, 1, and m = ) U 1 /T, we have that, for any 7 E 
[ 1, T], there is a to E [ 1, T - 7 + l] such that (1 U,, I + I U,,,, ) + . . . + 
] U,,+r-, ( ) 2 T I U I /(2T). Then, the set W B U:O=:,‘-’ U, satisfies the bound 

Since W is a subset of a friction set, there is by hypothesis a subset I/of X satisfying 
properties (1) and (2) of Definition 2. 

We claim that any choice 7 5 log a( ] U ) /2T) guarantees the separation of the 
time interval [to, to + 7 - l] (during which W is output) and the time interval 
during which the set V of the variables affecting Wis input. 

Indeed, noting that 7 2 1, that (Y is nondecreasing, and that 1 WI satisfies (3) we 
can write 

All variables of Ware output no earlier than to, and no later than to + 7 - 1. Since, 
by Property 1, each variable of V functionally affects at least a( I WI ) variables of 
W, no variable of V can be input later than (to + 7 - 1) - log o(( I WI ) 5 to - 1. 
This establishes the claim. 

We therefore choose T = Llog cu( ( UI /2T)J. In order to use Property 2 of 
Definition 1, the values of X - V are held fixed. This implies that the variables of 
W become function solely of the variables in I/. By the claim just established, the 
values of the variables of W must be encoded in the network at time to - 1. 
Property 2 ensures that the assignment of X - Vcan be chosen so that Wassumes 
at least 28(1”“1) distinct configurations by varying the values of I? Thus, the number 
of binary storage devices in the network is at least p( ( W ( ). We conclude that 

The latter bound implies (2). 0 

COROLLARY 1. If; in Theorem 2, al(n) = R(n), andP(n) = n(n), then 

s = Q((qlog(q)). (4) 

The above discussion indicates that the two crucial ingredients of computational 
friction are functional dependence of the output upon the input and the transfer 
of information from input to output (I/O transfer). In the next section we shall 
investigate the dependence of semigroup products upon their factors. 
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3.3 FUNCTIONAL DEPENDENCE IN SEMIGROUP PRODUCTS. We now specialize 
the set X and Y introduced above so that each of their elements is a variable 
ranging over a finite alphabet A, where (A, . ) is a semigroup. Moreover, the 
elements of Y are defined as semigroup products of elements of A, that is: 

y,=xox, **. xj j=O, 1, . . . . N- 1. 

The term xJzctor denotes the value of the (i + 1)st term of product (5). 
It is convenient to introduce the following notion. 

(5) 

Definition 3. A semigroup is called memory-inducive (MI) if, for every j 1 0, 
and for every 0 d i 5 j, y, = x0x, . . . Xj is functionally dependent upon xi. A 
semigroup is called non-memory-inducive (N&U) otherwise. 

We shall see that most semigroups are MI, and we shall give an exact character- 
ization of those that are NMI. All proofs of memory-induciveness consider the 
generic product y, and, for each i in [0, j], exhibit two distinct selections of factors 
differing exactly for their x,-factor and producing different values for yj. First we 
need to define one important class of semigroups: 

Definition 4. Let .( L,,, 0) be a left-zero semigroup and let, (R,, * ) be a right- 
zero semigroup, as defined in Section 2. Define Z,,.y = (L,, X R,, . ) as the direct- 
product semigroup [lo] of L,, and R,, that is, (l,,, rk) . (I,,,, rk,) = (I,,, Q). 

From this definition, it follows that (I,,,, rk,) . (ii,,, rk,) . s . (1+ Q,) = (1,,,, 5). 
Thus, y, = x0x, . . . Xj = XoXj depends only on the first and last factor, SO that Z,,,, 
is NMI. The significance of the semigroups Z& ‘s rests on the role they play in the 
following theorem. 

THEOREM 3. A semigroup (A, . ) is NMI if and only if the subsemigroup 
(recur(A), . ) is isomorphic to ZP,q, for some positive p and q. 

Theorem 3 is crucial for obtaining a complete classification of semigroups based 
on the complexity of the prefix problem. The proof is somewhat lengthy and 
technical, and is given in the Appendix. 

Theorem 3 has the following interesting consequence, which could also be derived 
directly from the argument used to prove Claim 2 (see the Appendix). 

COROLLARY 2. An NMI semigroup is monoid-free (none of its subsemigroups 
is a monoid with at least two elements) and, a fortiori, group-free. 

3.4 I/O INFORMATION TRANSFER IN PREFIX COMPUTATIONS. We now apply 
the general results embodied by Theorems 2 and 3 to the set of MI-NCF semigroups. 

THEOREM 4. For any time-determinate, semellective, word-instantaneous 
Boolean network that solves the prefix problem of size N for a MI-NCF semi- 
group (A, . ), size and time satisfy the bound 

s = q$),og($)). (6) 

PROOF. We show that Theorem 2 can be applied, with X = (x0, xl, . . . , xN-! 1, 
y = I Yo, Yl, . f . 2 y,-, j, and function f defined by (5). We select U = 1 y,, y3, . . . , 
.YZiCl, . . . 1 C Y and claim that U is an (a, P)-friction set forf; with a(n) = Q(n) 
and /3(n) = Q(n). Indeed, let W be an arbitrary set of U, and let J be such 
that W = 1 yj:j E J). Let I be the set of the L 1 IV1 /21 smallest indices in J, and 
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select V as the set {xi, x,+, : i E I]. We now observe: 

(1) Since (A, . ) is MI, each variable of V affects each yj with j E (J - Z), that is, 
at least L 1 W 1/2J variables of IV. (This means that (Y( 1 W 1) > L I W ( /2 J.) 

(2) Since (A, . ) is NCF, then its Cayley diagram has a cycle of length 22, and 
hence a cycle of length exactly 2, that is, there are four elements a, b, c, d E A 
(not necessarily all distinct, but with a # b), such that ac = b and bd = a. 
Consider the input sequences for which x0 = a, and x, = (cd) for xi E (X - P’) 
and i # 0 (this is the fixed assignment of the variables in X - I’). For any 
partition I = (I,, Z2) of Z, selecting the variables in P’ as x; = x;+~ = (cd), for 
i E I,, and xi = c and x,+] = d, for i E Z2, results in y, = a for i E I,, and 
yj = b for i E Z2. Therefore, there are at least 2 1” = 2” M’1’2J output configura- 
tions for the variables of IV. (This means that p( 1 WI ) I L I WI /2J.) 

Since both conditions of Definition 2 are met, Theorem 2 applies; moreover, 
since both a and p are linear functions, Corollary 2 applies with 1 U 1 = LN/21, 
thereby establishing (6). 0 

The previous argument cannot be extended to cover either CF or NMI-NCF 
semigroups; in fact, in the next section we shall describe networks for prefix 
computation for such semigroups that violate bound (6). To gain some intuition 
on this phenomenon, we observe that a cycle in the Cayley diagram-as illustrated 
in the proof of Theorem 4-is the machinery necessary for sustained information 
transfer, while memory-induciveness forces temporary storage of this information 
in the network. The absence of cycles drastically reduces the information that can 
be transferred: Indeed the (generally nonsimple) path of G(A) corresponding to a 
sequence y = ( yo, . . . , y,,-, ) of prefixes can be described with @log N) bits, rather 
than the R(N) necessary for NCF semigroups. On the other hand, the absence of 
memory-induciveness means that the semigroup (A, . ) satisfies the condition in 
the statement of Theorem 3. This means that the path corresponding to y reaches 
recur(A) in at most mA steps, and thereafter each output variable becomes a 
function of a fixed state and of a constant number of input variables, thus requiring 
no essential temporary storage in the network. 

Thus, Theorem 4 precisely partitions the semigroups into two classes: the MI- 
NCF semigroups, briefly referred to as friction semigroups, form one class, while 
the CF and the NMI-NCF form the other, correspondingly referred to as frictionless 
semigroups. 

3.5 COMPUTATION TIME. Based on the results of Section 3.4, we derive the 
following lower bound on computation time of prefix networks. 

THEOREM 5. Let (A, +) be a semigroup such that recur(A) is not a right-zero 
semigroup. Then, the computation time of any Boolean network that solves the 
prefix problem of size N satisfies the bound T = Q(log N). 

PROOF. A simple consequence of bounded fan-out is that, if a given input 
variable functionally affects N output variables, then T = Q(log N). 

If recur(A) is not a right-zero semigroup, then either (A, + ) is MI, or recur(A) is 
isomorphic to some Z,,:(,, with p > 2. We claim that in either case x0 functionally 
affects yo, y,, . . . , yN-, . If (A, . ) is MI, the claim is an obvious consequence of 
Definition 3. If, on the other hand, recur(A) has at least two strongly connected 
components, there are two elements a and b that belong to different components. 
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To see that xo affects y, , for all j 2 0, we need only to consider that b = bb’ # ab j, 
since abJ belongs to the same component as a. 0 

4. Upper Bounds 

In this section we present size-time optimal network implementations of prefix 
algorithms. A network for general semigroups, with size S = @(N/T log(N/T)), is 
considered in Section 4.1. This network is optimal for MI-NCF (friction) semi- 
groups. More efficient networks, with size S = @(N/T), are possible for both CF 
and NM1 semigroups. 

For CF semigroups, the reduction in size is achieved by reducing the amount of 
information relative to the input that the network stores while computing the 
output. The details of the design are presented in Section 4.2. In the same section 
we present an alternative scheme suited for CF insertion semigroups, which 
represents a simplification of the network for general semigroups. 

For NMI semigroups, the reduction in size is achieved by reducing the delay 
between the input time of a variable xi, and the output time of the corresponding 
output y,. The network for NM1 semigroups is illustrated in Section 4.3. 

The constructions of both Section 4.2 and Section 4.3 apply to NMI-CF semi- 
groups. Indeed, the prefix problem for these semigroups degenerates: for j 2 YM~, 
output yj is guaranteed to be constant with j, and equal to some left-zero of A. 

4.1 GENERAL SEMIGROUPS. The algorithms are executed by a network having 
the structure of a binary tree K with w leaves. Tree realizations of prefix circuits 
were reported earlier in [ 131, and can be viewed as emulations of the well-known 
prefix network described in [5], [7], [ 191, and [21] and called twisted-reflected-tree 
in [5]. 

In tree K, leaf nodes perform input/output operations, while internal nodes 
perform data processing. Each node is bidirectionally connected to its parent and 
its offsprings. 

The input sequence x = (x0, . . . , x+,) is segmented into N/w wavefronts of 
width w, where 1 5 w 5 N/log N (for ease of discussion, we assume that N is a 
power of two). The ith wavefront is denoted xi = (x,,,, x;,<+, , . . . , x,,, Ij,V-l), where 
i=O, 1, . . . . N/w - 1. The wavefronts are sequentially fed to the network, with 
X,,c+j input at the j th leaf (see Figure 1). A fixed wavefront is processed by the 
network in two phases: an ascending phase (consisting of one input step and log w 
processing steps), when information flows from leaves to root, and a descending 
phase (consisting of log w processing steps and one output step), when the direction 
of the flow is reversed. 

Let the level of a node V, denoted level(V), be the number of edges on the path 
between V and the root of K. For each of the algorithms described below, a step 
takes time 0( 1) (independent of N). Moreover, a given step on a given wavefront 
is carried out by a single level of nodes, so that the network can be pipelined at a 
constant rate. Clearly, processing of the N-term sequence is completed in N/w + 2 
log MJ + 2 steps, and hence in T = @N/w). 

More subtle is the use of storage at each node, which determines the global size 
of the network. A fixed wavefront is processed by a given level twice: once during 
the ascending phase, and then again-2 /evel( V) + 1 steps later-during the 
descending phase. (For uniformity of presentation, we assume that the root too 
processes a wavefront in two (contiguous) steps, although these actions are ob- 
viously combinable into a single step.) In the interval of time between the two steps 
(one in the ascending phase, the other in the descending phase) performed by nodes 
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FIG. 1. Input protocol for prefix computation on a binary-tree network. 

of a given level on the same wavefront, some information relative to that wavefront 
must be stored at the nodes. 

A given internal node V of K determines a segmentation of the input sequence 
xasx=~O/30~,PI .a. a,+/,-, pN/,v-, Qiy/w where PO p, e . . is a subsequence of x that 
is input by the successive wavefronts to the leaves of the subtree rooted at V (CQ 
and aN/,t, may be empty). For a given sequence x, let x denote the product of its 
terms. Each pj is further segmented as P, = &/3,?, where p,! and P,II are input at the 
left and right subtrees of V, respectively. For convenience, we adjoin to (A, . ) an 
identity e, if (A, . ) is not a monoid. This is simply a technical device to initialize 
the states of the processing modules, and in no way affects the input/output 
transformation. 

Referring to the jth wavefront, during the ascending phase internal node V 
computes p, = fl,‘p,!’ from the values P,’ and p,! received from its offsprings. In 
addition, the root (for which all the CY’S are empty) maintains a state u initialized 
to e (the identity introduced above) and updated as u : = UP/. During the descending 
phase, nonroot node V must receive from its parent the prefix y = (Y~ PI . . . 
aj-1 pj-, aj ; if V has stored p,!, then it can provide the correct prefixes y and r@,’ 
to its offsprings. 

Below we describe in detail the actions of each node. We use a comma to 
separate concurrently executable actions, and a semicolon to separate actions to 
be sequentially executed. The ascending phase substep below is thought 
of as preceding the descending phase substep, although various degrees of 
concurrency are realizable. Note that, for correct synchronization, each internal 
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node V uses a queue (called 0 ‘-queue) capable of storing 2 level( I’) + 1 semigroup 
elements (the P,’ ). In addition, each nonroot node has cells to store the elements 
to be forwarded in the next step; note that, for the root, one of these elements, pj, 
is “forwarded” to the root itself. The content of all cells are initialized to the 
identity e. In summary, the generic step runs as follows: 

Generic Step 

ASCENDING PHASE 
begin forward p to parent, [root: u := u/3] 

p ’ : = term received from left child, 
(3 U : = term received from right child; 
insert p ’ into 0 ‘-queue; 
p := p’p”; 

end 

DESCENDING PHASE 
begin forward y to left child and yS ’ to right child; 

y : = term received from parent; [root: y : = u;] 
extract 6 ’ from p ‘-queue; 
compute y6 ’ ; 

end 

The algorithm is readily implemented by endowing the module of a node with 
a semigroup multiplier and a queue capable to store (2_level(V) + 1) = O(log w) 
semigroup elements. Thus, the total size of the network is S = 0( w log w) (ignoring 
the dependence upon the semigroup size and operation). Therefore we have: 

THEOREM 6. The size-time complexity of the prefix problem on a Boolean 
network is S = O((N/T)/og(N/T)),for T E [fl(log N), O(N)]. 

For friction semigroups the bound of Theorem 6 is optimal, as shown by 
Theorem 4. Since the recurrent subsemigroup of a friction semigroup is not a right- 
zero semigroup, by Theorem 5 we have T = 9(log N). For T = 0(N), the obvious 
S = Q( 1) lower bound is achieved. 

4.2 CYCLE-FREE SEMIGROUPS. As we have already noted in the concluding 
remarks of Section 3.4, the information content of a sequence of prefixes in a CF 
semigroup is only logarithmic in the length of the sequence. This fact indicates the 
possibility of reducing the amount of information relative to a given wavefront 
that the network must process. 

We shall represent a sequence y = ( yo, yl , . . . , JJ~,-~) E A”p of semigroup 
elements by the sequence of pairs ((a,, ml), (az, mz), . . . , (a,, m,,)) that is uniquely 
determined by the conditions: ai # a,+, , (i = 1, . . . , p - 1); Yj = a,, for 0 sj < ml 
and yj = ai for m,-, 5 j < mi, (i = 2, . . . , p). This representation is particularly 
efficient when y is a prefix sequence for a CF semigroup since p 5 IA, where IA is 
the length of the longest simple path in the Cayley graph G(A). 

We then consider a recursive scheme for the prefix problem whereby: 

(1) The input sequence (whose length N is assumed to be a power of two) is split 
into a left and a right half of identical size. 

(2) The prefix sequences of the two halves are recursively computed (in parallel), 
and 

(3) The results are combined to form the prefix sequence of the entire input. 
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With the selected representation, let the two sequences computed by Step (2) be 

and 

where both p and q are no greater than 1,. The representation of the output 
sequence to be produced by Step (3) is obtained by first forming the sequence of 
pairs 

((al, ml>, . . . , (a,,, m,,), (a,h, m,, + ml>, . . . , (a,& m,, + m,>>, 

and by subsequently deleting all but the last pair from any maximal run of pairs 
with identical first term. At the bottom of the recursion, an individual element 
x E A is represented as the pair (x, 1). 

The outlined scheme is naturally implemented by a tree-connected network K 
whose generic node is designed to perform the concatenation of two prefix se- 
quences. Such node will be equipped with a storage array of 21,, cells, a semigroup 
multiplier, and some other simple logic. A cell of the array will be used to store a 
pair of type (ai, nap). To determine the bit capacity of a cell, we note that: 

(i) The term a, can always be encoded by flog sl bits, (where s = 1 A 1). 
(ii) For a node V of K with w leaves, the term m, has value at most w/2”““‘(“), so 

that log w - level(V) + 1 bits are sufficient to represent it. Thus, the capacity 
of a cell at node V is flog sl + log w - /eve/(V) + 1. 

The basic operation of node I’ consists of loading into the first and last 1,r cells 
of the array the representations of the prefix sequences produced by the left and 
right children, respectively (some of the cells may actually be unused). The steps 
required to concatenate the two representations are fairly straightforward if the 
rows of the array are organized as shift registers. The update of the second term of 
each pair is done by appending a single bit, which is 0 for the pairs originating 
from the left child and 1 for those originating from the right child, since m,, is a 
power of 2. Notice that, since Hog sl + log w - /evef( V) is the number of bits for 
the pairs of the children, the array at V has the correct capacity. 

We now describe how to obtain the ordinary form of the prefix sequence from 
its representation as a sequence of pairs ((a,, ml), . . . , (a,,, m,,)). Again, a recursive 
approach is appropriate. Indeed the first and the second half of Y have respective 
representations 

( 
(a,, ml), . . . , a,, 7 

( )) 

and 

((a,‘, m,! 1, . . . , (a,, m,>), 

where i is such that m,-, < m,/2 5 m, and i ’ = i if m, # ml,/2 and i ’ = i + 1 if 
m, = m,,/2. (Note that i can be determined in time @I,,).) 

The conversion of representation is again performed by tree K, with each 
wavefront starting at the root and propagating toward the leaves. Pair (yj, j) is 
correctly delivered at leafj. 
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The preceding description indicates that, referring to a single wavefront x, tree 
K is used in an ascending phase to compute the pair representation of the prefix 
sequence y of x, and that a subsequent descending phase obtains the ordinary form 
of the latter. Note, however, that in marked contrast to the interaction between 
ascending and descending phases of the general algorithm of Section 4.1, the two 
phases are now completely decoupled. It is also simple to see that the operation of 
tree K can be pipelined by just combining at the root the results of successive 
wavefronts. 

Finally we note that K consists of log w levels, and that the 2’ modules at level j 
have each l,, x (log w - j + Uog sl) bits of storage and fixed-size Boolean circuitry. 
Thus, the total size of K is given by 0( C:o_ggl(‘-’ 2,‘(log w -j)) = O(w). Computation 
is completed after O(N/w) steps both for the input phase and the output phase, 
and again, the time used by each step is independent of N. The above construction 
yields: 

THEOREM 7. For a CF semigroup, theprefix computation for an N-term sequence 
can be done in time T and size S, with S = O(N/T), for T E [Q(/og N), O(N)]. 

Remark. The above result holds for any CF semigroup and is clearly optimal. 
However, for the very important case of insertion monoids, there exists an alter- 
native method of the same flavor as the general technique outlined in Section 4.1. 
Each internal node I/ of K still contains a semigroup multiplier, and a queue with 
21,, cells, each capable of storing a semigroup element; an additional cell stores the 
node state state(V). 

Initially, for each I/ in K, state(V) := e. Nonroot internal node V performs the 
following actions: 

Generic Step 

ASCENDING PHASE 
begin forward /3 to parent, 

/3 ’ := term received from left child, 
/3” := term received from right child; 
if .stute( V)/3 Z state(V) then 

begin state(v) : = state( V)p; 
insert (p ‘, 0”) into queue 

end; 
en{:= P’P” 

DESCENDING PHASE 
begin forward (y,., PI.) to left child and (-yR, OR) to right child; 

(7, /3) := term received from parent; 
(/3 ‘, p ” ) : = next pair in queue; 
if rj?‘, p” = y@ 

begin C-Y,., PI.) := (Y, P’), (yH, OR) := (rP’, P”); 
extract (0 ‘, p N ) from queue 

end 
else t-r,., PJ := (yR, Px) := (Y, e) 

end 

LEMMA 2. The above scheme correctly computes the prefix sequencefor insertion 
monoids. 

PROOF. We say that P, is a local transition of &fl, s . . /3j-,p, # &,/3, . . f p,-, , 
and a global transition if crop0 . . . a,@, # oc&o . . . aj. Let e denote the monoid 
identity. 
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CLAIM 1. A global transition is also a local transition. Indeed PO . . . @,-,flj = 

PO . * * @j-l impliesPoc-ul 0.. @j-lCYJ/3/=/30Ck’yI *‘a t3,-,a,eP/=Poal *a* P,-,~,e=/300cl 
I . . /3,-, aj by the insertion property (l), and therefore cvopo . . . a,yJpj = LV& . . . (Y,. 
This means that the global transitions form a subset of the pairs of the form 
(p ‘, p ” ) inserted into the queues of the nodes of the network during the ascending 
phase. 

A local transition pj is not global because we may have oco&j . . . aj/3j = 
~o~o~~~~,-,cu,,evenif~o~~~~,#~o~~~~o~,.Let~=~o~o~~~~j(~iscalledthe 
prefix associated with /3j ). 

CLAIM 2. If y,/Ij = y1 for a Ieji factor y, of y, then r/3, = y. Indeed, let y = 
y, y2. Then, y, pj = y, trivially implies y, e/3, = y, e, which in turn, by ( 1 ), implies 
y 1 y2ePj = y I w, d.vnce rP, = Y. 

Suppose now that (p,’ , p,” ) is a local transition at the head of the queue at P’. 
When V receives the pair (y, P), with /3 = fi/, we have r@ = y and r/3,: p,” = r& 
that is, (p,‘. , pi’) is correctly eliminated from the queue and the pairs (r/3,’ ) and 
(r@ I , pi’) are passed on to the left and right children of V. This is correct, since 

! 
$3, = y and r/?j fi,” = y. Thus, (Pi, P,! ) is certainly eliminated from the queue 
upon arrival of its associated prefix, but it may be eliminated sooner by a left factor 
yI of it such that ~,/3,‘/3,” = yI. This shows that a local transition is always 
eliminated before any subsequent global transition residing in the queue, which is 
correctly detected by the condition (r/3 ‘/3 0 = -r@) of the algorithm. In the majority 
of cases the action (r,., PL) = (yR, PR) := (y, e) occurs, corresponding to no 
transition, either local or global. 0 

We can therefore conclude: 

THEOREM 8. For an insertion monoid A, the prefix computation for an N-term 
sequence can be done in time T and size S with S = O(N/T) for T E [R(log N), 
O(N)]. The memory used by each nonroot module is O(.& . log s) bits, where 
s = ( A ] and I/, is the height sf the Cayley graph of A. 

PROOF. Indeed, the result S = O(N/T) follows from Theorem 7. Each nonroot 
module has a queue of 21,, cells, each with flog sl bits. 0 

4.3 NON-MEMORY-INDUCIVE SEMIGROUPS. As we noted earlier, for this class 
of semigroups we have 

y, = 
i- 

x0 * *. x/ for Orj52m,,- 1, 
x0 * *. X,u,,- I Xj-nl,,+ I . . * X) for 2m,., %ja N- 1. 

We assume, without loss of generality, that rn,.! is a power of 2 (else, we replace m,, 
with 2r’“g2’r’~11). Note, also, that for j 2 2m,, y, = x0 . . . x,,,,-, xl, . . . x, for any m,, 5 
h 5 j - m,, . 

As usual, the sequence x is supplied in N/w wavefronts each of width w, a divisor 
of N and therefore a power of 2. We assume, for simplicity, that w > m,, and leave 
to the reader the simple task of developing the details for the opposite case. 

The network consists of a binary tree K of depth log w. The lower log m,.l levels 
realize a collection of w/m., prefix trees as those described in Section 4.1, whereas 
the upper log w - log m,.I levels realize a straightforward semigroup multiplier tree. 
The root of each of the lower prefix trees, except the rightmost one, has an arc to 
the root of the adjacent tree on the right. 
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The operation of this network is as follows: The first wavefront, (x0, . . . , x1,.-,) 
is supplied in an isolated fashion and stored at the leaves, while in time O(log w) 
the tree computes the prefix y,,,,,-, and broadcasts it to all leaves, where it is stored 
(broadcast to the leaves with indices 0, . . . , 2m,, - 1 is in reality redundant). 

Once this initial step is completed, the usual pipeline operation takes place, 
starting with the first wavefront that was temporarily stored earlier. The delay 
between the first wavefront and the subsequent ones is in compliance with the 
stated I/O protocol. During this phase only the lower trees are active, and each 
nonroot node operates as described in Section 4.1. A slight modification is in 
order for the operation of the root. Referring to the Generic Step algorithm of 
Section 4.1 (ASCENDING PHASE), /3 is now passed the root of the tree ad- 
jacent to the right. The term simultaneously received from the root of the tree 
adjacent on the left is called p *, and the root state is updated as u : = p *. 

Note that this implementation actually computes prefix y, as x0 . . . 
&,,- I xc;- I )Tl?,, * . * xi,,,,- IX,,,,, * * - Xj where i = L j/mn 1, for j 2 WI,~. This is obviously 
correct since (i - l)vn,, < j - mA + 1. 

It is easily realized that K consist of O(w) modules, each independent of N, and 
that computation is completed in 2 log w + 2 log mn + N/w + 4 steps, that is, in 
time T = O(N/w). Thus we have: 

THEOREM 9. For an NA4I semigroup (A, . ), the prefix computation for an 
N-term sequence can be done in time T and size S, with S = O(N/T), for T E 

[w% WY mvl. 

Note that if recur( A, . ) is a right-zero semigroup, then for j 2 mA, Yj = 

.+,,IACI . * . x,. This shows that the broadcast of Y,~~-~ is no longer necessary and 
that the network becomes a collection of w combinational machines each comput- 
ing a product of at most ~2~ terms. In this case, the time range in Theorem 9 can 
be extended as T E [Q(l), O(N)]. 

5. Area-Time Complexity 

The results of the preceding sections have some consequences on the area-time 
complexity of synchronous VLSI circuits for the prefix problem. These conse- 
quences are summarized below by Theorem 10 for nonboundary circuits (those for 
which the position of the I/O ports is unconstrained), and by Theorem I 1 for 
boundary circuits (those for which I/O ports are constrained to lie on the boundary 
of a convex chip). 

THEOREM 10. The area-time complexity of nonboundary VLSI circuits for the 
prt$x problem is A = B((N/T)log(N/T)), fbr MI-NCF semigroups, and is A = 
@N/T), for all other semigroups. The bounds hold for T E [Q(log N), O(N)] jbr 
all semigroups, with the exception of those whose recurrent subsemigroup is a right- 
zero semigroup,,for which T E [Q(l), O(N)]. 

PROOF. A VLSI circuit is the layout of a Boolean network. Since our prefix 
networks are balanced trees, they can be laid out (according to the H-scheme [6]) 
in area proportional to the number of nodes times the area of a node, that is, in 
area proportional to their size. Thus, Theorem 10 follows from Theorem 1, and 
from the fact that size is a lower bound for area. q 

The fact that our prefix networks admit of a nonboundary layout whose area is 
proportional to the size is accidental. In general, layout area is larger than size, 
owing to the space occupied by wires. 
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We now consider boundary layouts. We begin by establishing the following 
lemma: 

LEMMA 3. Let (A, . ) be such that recur(A) is not a right-zero semigroup. Any 
boundary circuit C that solves the prefix problem of size Nfor A in time T (where 
T = 0(log N)) contains a binary tree of height O(T) with R(N/T) leaves on the 
boundary. 

PROOF. In order to generate N output symbols in time T, circuit C must contain 
w 2 (N/T) output ports. Since each output y, , 0 5 j 5 N - 1, is functionally 
dependent upon input x0 (see proof of Theorem 5), there must be a path in C from 
the input port reading x0 to each output port, The union of the w paths can be 
viewed as an undirected graph G, whose edges are wires each carrying a semigroup 
symbol. Since each output port is connected to the exterior by one such wire, we 
may correctly assume that the output port is itself on the boundary of the layout 
(by transplanting it on the boundary if necessary). Moreover, we may assume that 
each output port is a degree-l node of G; otherwise, we create one such node on 
the layout boundary and connect it to the port, with an insignificant increase in 
wire area. Let H be a minimum-height spanning tree of G rooted at the input port 
of x0. Owing to the hypothesis of bounded fan-in and fan-out, we may assume 
without loss of generality that H is a rooted binary tree. Tree H has w, that is, 
Q(N/T), leaves. Since T is the computation time of C, the height of H is O(T). Cl 

Lemma 3 establishes a crucial connection between binary trees and prefix 
circuits. Our problem is then reduced to the boundary layout of binary trees, a 
topic that has been adequately investigated [6, 12, 241. The results most relevant 
to our discussion are expressed by the following three lemmas: 

LEMMA 4 [6]. A complete binary tree with w leaves can be laid out with the 
leaves on the boundary of a rectangular region of height O(log w) and width O(w). 
The resulting 0( w log w) area is optimal. 

The constructive proof of this lemma yields a layout of a complete binary tree 
with w leaves in a rectangular region consisting of 2w - 1 vertical tracks (one per 
node) and log w + 1 horizontal tracks (one per level of nodes in the tree). More 
specifically, nodes appear from left to right according to the in-order traversal of 
the tree, and consecutive levels appear in consecutive horizontal tracks, with the 
root at the top, and the leaves at the bottom. 

LEMMA 5 [24]. Any layout of a binary tree of height h with w leaves placed on 
the boundary has area A = 0(( w log w)/log(2h/log w)). 

LEMMA 6 [12]. There exist binary trees with w leaves, height h, and boundary 
layout area A = 0(( w log w)/log(2h/log w)), which can emulate a balanced binary 
tree qfw leaves in time O(h). 

With these premises, we can now give tight area-time bounds for boundary 
prefix circuits. 

THEOREM 11. For boundary VLSI circuits for the prefix problem we have the 
jbllowing area-time complexity results. 

(1) MI-NCF Semigroups: A = e((N/T)log(N/T)), with T E [Q(log N), O(N)]; 
(2) CF Semigroups: A = @(N/T)/og(N/T)), and A = O((N/T log(N/T)) 

/log( T/log N)), with T E [ Q(log N), O(N)]; 
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(3) CF-Insertion and NMI Semigroups, Except ,for Those with Right-Zero Recur- 
rent Subsemigroup: A = e((N/T log(N/T))//og(T/log N)), with T E 

[Wg W, WW 
(4) Semigroups with Right-Zero Recurrent Subsemigroup: A = 8(N/T), with T E 

[W l), @WI. 

PROOF. First of all we note that the bounds on computation time are not 
affected by layout issues, and hence are as in Theorem 1. As regards the wire area, 
we distinguish the following four cases: 

(1) MI-NCF Semigroups. These semigroups are processed by the networks of 
Section 4.1, which are complete binary trees with w = e(N/T) leaves, where each 
node is equipped with a queue of size O(log w) and logic circuitry of constant size. 
These networks can be laid out in area A = O(w log w) according to the scheme 
provided by Lemma 4. The queue of each node can be easily accommodated in 
the vertical track of that node. In conclusion, we obtain A = O((N/T)log(N/T)). 
The area is of the same order as the optimal size, and is therefore optimal. 

(2) CF Semigroups. The upper bound for this case is obtained, as in case (l), 
by the network of Section 4.1. It turns out that the obvious layout for the network 
given in Section 4.2 for CF semigroups (a balanced binary tree with edges of 
bandwidth proportional to their height) would result in a larger area, in spite of a 
smaller size. The boundary layout of this network needs further investigation. The 
lower bound follows from Lemmas 3 and 5, with w = Q(N/T) and h = O(T). 

(3) CF-Insertion and NM Semigroups, Except for Those with Right-Zero Re- 
current Subsemigroup. These semigroups (see Remark at the end of Section 4.2 
and Section 4.3) are processed by complete binary trees with constant-size nodes 
and w = 0(N/T) leaves. The upper bounds stated in the theorem can be achieved 
by emulating the complete binary trees of our prefix networks with the trees of 
Lemma 6 with h = 8(T). The lower bound follows from Lemmas 3 and 5, with 
w = Q(N/T) and h = O(T). 

(4) Semigroups with Right-Zero Recurrent Subsemigroup. As observed in Sec- 
tion 4.3, the prefix networks for these semigroups consist of w = O(N/T) combi- 
national circuits of constant size. A simple layout having the shape of an array of 
constant height and O(w) width yields a boundary circuit of area A = O(N/T), 
which is trivially optimal. q 

6. Remarks and Open Problems 

In this paper, we have considered the computation of the prefixes of an N-term 
sequence of semigroup elements on Boolean networks. We have completely char- 
acterized the size-time and the area-time complexity of the networks as a function 
of N, under some assumptions on the network’s I/O protocol. 

A problem intimately related to the computation of prefixes is the computation 
of suffixes 2, = XjX,+, .e+ Xhr-l, forj = 0, 1, . . . , N - 1. It is readily observed that 
the suffixes for a semigroup (A, . ) are the prefixes of its reverse semigroup (A, * ), 
where x * y = y . x. It must be noted, however, that a semigroup and its reverse 
are not necessarily in the same class, as characterized in this paper. A notable case 
in point is the semigroup of the carry function in binary addition mentioned in 
Section 2, which is a friction semigroup, where its reverse semigroup (a left-zero 
two-element semigroup with adjoined identity) is frictionless because it is CF. The 
latter is easily seen to model the comparison-exchange operation of two binary 
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integers. Nevertheless, the operation of comparison-exchange exhibits computa- 
tional friction for reasons unrelated to the underlying prefix computation (see [2]). 

It would be interesting to investigate to which extent the results of this paper 
depend on the I/O protocol assumptions. 

In this direction, it is appropriate to observe that, for some semigroups, non- 
word-instantaneous circuits are more efficient than word-instantaneous ones. A 
simple example is provided by the direct product of the OR semigroup ((0, I), 
OR) (which is CF) with the right-zero semigroup of two elements R7 (which is 
NMI). It is straightforward to verify that this direct product is a friction semigroup. 
Now let C, be the network of Section 4.2 specialized for the OR semigroup, and 
let Cz be the network of Section 4.3 specialized for RI. Both C, and Cz have size S 
= @N/T). Taken as a pair, they clearly compute the direct product of their 
respective semigroups with size S = @N/T), seemingly contradicting Theorem 4. 
A closer look at C, and Cz reveals the delay between the input time of X, and the 
output time of y; is constant in the latter and is logarithmic in the former. There is 
simply no way to combine the two networks so that the protocol of the result is 
word-instantaneous both in the input and in the output. Therefore, Theorem 4 
does not apply to the pair (C,, C,), and there is no contradiction. 

The major outstanding problem is the investigation of the dependence of network 
complexity upon semigroup size and operation. For example, in Theorem 8 we 
have shown that, for the important case of insertion semigroups, the upper bounds 
of Theorem 7 can be considerably improved. However, the construction of prefix 
Boolean networks that are optimal also with reference to semigroup size remains 
an open problem. 

Appendix. Proof of Theorem 3 

SQciency. (If (recur(A), . ) is isomorphic to ZP.(,, then (A, . ) is NMI.) We 
begin by observing that every b E A has a recurrent power b’. In fact, each 
nonrecurrent element may appear at most once in the sequence b, b2, b3, . . . . 

Next, we claim that if a E recur(A), then (ab) E recur(A), for any b E A. Let i 
be such that b’ E recur(A). By the isomorphism between recur(A) and Z,,,y, ab’ 
and a belong to the same strongly connected component of G(A). Therefore, for 
some z, ab’z = a, whence (ab)(b’-‘zb) = (ab), which implies that (ab) is recurrent. 

Each nonrecurrent element may appear at most once in any sequence of prefixes 
and, by the preceding claim, if prefix yj is recurrent then Yj will also be recurrent 
for every j > i. We conclude that there is a (minimum) integer ~2~ such that (x0x, 
. . . x,, ,,-,) E recur(A) for any choice of x0, x1, . . . , x,-r. It follows that for j 2 
2vn,, - 1 both (x0 . . . -G,-~) and (x,-,?,!+r . . . x,) belong to recur(A). Since recur(A) 
is isomorphic to some Z,,y, by Definmon 4, y, = x0 . . . x,~,-~ x,-,,,+l . . . x, for any 
j 2 2m,, - 1. This shows that for j > 2mA - 1, yi does not functionally depend 
won x,,,,~, Xv,,+ I 2 . . * > Xj-,,r, > and therefore (A, . ) is NMI. 

Necessity. (If (A, . ) is NMI, then (recur(A), . ) is isomorphic to Z,],,.) This part 
of the proof is based on a number of claims stated and proved below. Let recur(A) 
be the union of strongly connected components C, , C2, . . . , C,,. 

CLAIM A 1. The components C, , C2, . . . , C, of recur(A) have no outgoing arcs 
in G(A), that is, if a E C,., then (ac) E C, for all c E A. 

PROOF OF CLAIM Al. Assume, for a contradiction, that a E C,. and that, 
for some c E A, ac E C, with s # r. Since a E recur(A), there is a b E A such 
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that ab = a. We now show that y, functionally depends upon x, for i = 0, . . . , j, 
that is, (A, . ) is MI. To see that yj depends upon x0, consider the products abj 
and (ac)b’ that differ only for the x0-factor. Clearly, ab’ = a. On the other hand, 
since ac E Cl,, then (ab)b’ 66 C,, otherwise C, and C., would not be distinct strongly 
connected components of reczlr(A); thus (ac)b’ # a. To see that Yj depends 
on xi for 1 5 i 5 j, consider the products ab’-‘bbj-’ = abJ = a and ab’-‘cbJ-’ = 
(ac)b’-’ @ C, which differ only in the xi-factor and have different values. We have 
a contradiction, which establishes Claim A 1. •i 

CLAIM A2. If (A, . ) is NMI, then each element of A has period 1. 

PROOF OF CLAIM A2. Assume, for a contradiction, that there is an element a 
with period ~2. Then (A, . ) has a subsemigroup A ’ with an identity e and at least 
another element, say a. Then, for every j 2 0, and 0 5 i 5 j, e = e’+’ = e’ee’-’ # 
e’ae ‘-’ = a. Thus (A, . ) is MI, a contradiction. Cl 

Below, we make use of the following notation: If C c A and a E A are such that, 
for u E C, ua is independent of u, then ua is denoted by Ca. 

CLAIMA3. FOrr= 1,2 ,..., p, if a and b are in C,., then ba = a. Thus, each 
Cr is a right-zero subsemigroup, and for a E C,-, we can write C,-a = a. 

PROOF OF CLAIM A3. Let u E C,.. Since (A, 1 ) is not MI, by Claim A2, u has 
period 1 and hence, for some k, u”*’ = uh. Let a = II’. Clearly, a E C,, and 
a’ = a. Thus, if C’? = {a\, then Claim A3 is established. Assume then that Cr 
contains also 6, with b # a. By definition of strongly connected component, there 
is a c E A such that ac = b. We claim that ba = a. We prove the claim by 
contradiction by showing that if ba # a, then for j 2 0 and 0 5 i 5 j, y, functionally 
depends upon x,, and therefore (A, . ) is MI. 

We consider four cases. For j = 0, y. = x0 obviously depends upon x0. For 
j = 1, y, = x0x1 depends upon both factors as shown by the inequalities ba # aa 
and aa # ac. For j I 2 and i < j, the dependence is established considering the 
products a = a’+’ = a’aa’-‘, and a’ca’-’ = aca = ba. For i = j, the dependence 
follows from the fact that aJ = a’-‘a # aJ-‘c. 

Summarizing, for every b E C,., ba = a, that is, C,.a = a. Moreover, b* = 
b(ac) = (ba)c = ac = b, so that all the elements of C,. are idempotent. Since the 
argument to show that C,-a = a is based solely on the idempotence of a, it can be 
extended to all elements of C,., yielding the desired conclusion. 0 

CLAIM A4. If a E recur(A) and b E C,, then ba is independent of b, and can be 
written as C,a. 

PROOF OF CLAIM A4. For a contradiction, let 6, and b2 be elements of C., such 
that b,a # bza. Since a E recur(A), then a” = aforanypr l.Thenforjr2and 
i < j, b,a = b’, blaJ-’ # b’, bzaj-’ = b2a, so that y, depends upon xi, and the 
semigroup is MI. q 

CLAIM A5. Let a E C,. and b E C,, with r # s. If Ga = b, then C,.b = a, andjbr 
no other c E Cr we have C.J = b. 

PROOF OF CLAIM A5. Since, by hypothesis, C,a = 6, then in particular ba = b. 
Then C,.b = C,-(ba) = (C,.b)a. But C,b E C,., and, by Claim A3, (C,-b)a = a. This 
establishes C,.b = a. Assume now, for a contradiction, that for some c E C,., c f: a, 
CJ = b. This implies C,b = c, a contradiction. 0 
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Claim A5 shows that, for any r and s in ( 1, . . . , p), there is a bijection between 
C,. and C’,. Thus, C,, G, . . . , C,, have identical cardinality q. If we let C, = 
ia,, a2, . . . , a,), then an arbitrary element of Cl, can be written in a unique way 
as Cl,ax. Therefore recur(A) = (C,a,: 1 5 h sp, 1 5 k 5 q). 

To establish that recur(A) is isomorphic to Z,,.(,, it remains to show that 
(ChaI,)(Gcak,) = CL,.. Indeed, (C,,ak,)(C,,,a,,s) = C,,(aj~C,,p)a,,p. Since al, E C,, by 
Claim Al, al,Cl,, E C,, whence, by Claim A3, (anC!I,)al,, = ax-,. q 
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