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Abstract

In the use of smoothing methods in data analysis, an important ques-

tion is often: which observed features are \really there?", as opposed to

being spurious sampling artifacts. An approach is described, based on scale

space ideas that were originally developed in computer vision literature. As-

sessment of SIgni�cant ZERo crossings of derivatives, results in the SiZer

map, a graphical device for display of signi�cance of features, with respect

to both location and scale. Here \scale" means \level of resolution", i.e.

\bandwidth".

1. Introduction

Smoothing for curve estimation in statistics is a useful tool for dsicovering features

in data. Some examples of this are shown in Figure 1. For many more such

examples, see e.g. the monographs Silverman (1986), Eubank (1988), H�ardle

(1990), Wahba (1991), Scott (1992), Green and Silverman (1994), Wand and

Jones (1995) and Fan and Gijbels (1996).

[put �gure 1 about here]

Figure 1: Examples of features revealed by smoothing. Figure 1a

shows kernel density estimates, with three di�erent bandwidths h, for

the 1975 Income data. Figure 1b shows a scatterplot and local linear

regression estimates, with three di�erent bandwidths h, for the Fossil

data, with the raw data shown as small circles.



Figure 1a is an example of density estimation, where the typical goal is to

present a density f which reveals structure in univariate data X

1

; :::; X

n

. The ker-

nel approach involves centering small pieces of probability mass (having a Gaus-

sian shape here) at each data point, using the formula given in (2.1) below. As

seen, the window width h controls the amount of smoothing. The data here are

n = 7211 family incomes (rescaled so that the mean is 1) for the year 1975, from

the Family Expenditure Survey in the United Kingdom. See Schmitz and Marron

(1992) for detailed discussion and analysis of this data. Note that the midrange

bandwidth, h = 0:05 shows two prominent modes, perhaps an indication of an

economic \class structure"? However, these modes can made to disappear simply

by using the larger bandwidth h = 0:2. Also many more modes, which are likely

to be spurious sampling artifacts, can be made to appear by using the smaller

bandwidth h = 0:0125. Which modes are \really there"? The detailed analysis in

Schmitz and Marron (1992) reveals that the two important modes are (perhaps

surprisingly) important features of this data set. That analysis also reveals an

interesting shift in the size of these modes over time.

Figure 1b is an example of scatterplot smoothing, also called nonparametric

regression estimation, where bivariate data (X

1

; Y

1

) ; :::; (X

n

; Y

n

) are \smoothed"

(e.g. by a moving average) to give a curve which can be viewed as an estimated

conditional mean f(x) = E (Y jX = x). The smooths actually used here are local

linear smooths, with Gaussian weights, explicitly de�ned in (2.2) below. These

have some preferable properties as summarized for example in the monographs of

Wand and Jones (1995), and Fan and Gijbels (1996). Again the window width

is crucial to the smooth, with h = 0:3 and 4:8 representing, respectively, sub-

stantial undersmoothing and oversmoothing. The data, provided by T. Bralower

of the University of North Carolina, re
ect global climate millions of years ago,

through ratios of Strontium isotopes found in fossil shells. The shells are dated

by biostratigraphic methods, see Bralower, et. al. (1997), so the Strontium ratio

can be studied as a function of time. Both the scatterplots and the smooths have

relatively high ratio for fossils less than 105 million years old, have a substantial

dip with a minimum near 115 million years ago, and then perhaps an increase for

fossils around 120 million years old. These features are shown nicely by the larger

bandwidth h = 4:8. However, at the dip, this bandwidth seems to be substan-

tially oversmoothing, so there is a good chance that it could be smoothing away

some features that are \really there". The bandwidth h = 1:2 seems closer to \a

reasonable amount of smoothing", and note that this suggests additional possible

features, such as an increase from 92 to 95 million years ago, and perhaps a dip
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around 98 million years ago. But the signi�cance of at least this last dip is quite

suspect, since a look at the data shows that it appears to be based on only two

isolated observations.

Both examples in Figure 1 illustrate a major hurdle in the practical use of

smoothing methods: which features observed in a smooth are \really there"?

Data analysts who are familiar with smoothing methods are usually very good

at answering this question (although even for them \gray areas" exist, where

quanti�cation would be helpful), when they have the time for a careful trial and

error approach. However, such analysts don't always have lots of time, and even

worse such skilled people are all too often just not available. In this paper we

propose a graphical device, the SiZer map, with two important bene�ts. First,

it speeds up the process of deciding \which features are really there" for the

experienced analyst, while at the same time quantitatively resolving \gray area"

problems. Second, it allows even inexperienced analysts to make inferences about

which features are \really there".

Our approach involves a view of smoothing, and the statistical inference prob-

lem at hand, which is radically di�erent from most of the literature. The tradi-

tional approach is to focus on a \true underlying curve", and do inference about

that. In particular, much work has been done on choosing the bandwidth from

the data, and many proposals have been made for inference based on con�dence

intervals/bands. For reasons discussed in detail in Section 6.2, such inference has

not been very useful, especially for the problem of �nding important features. The

main problem is that curve estimators su�er inherently from a bias that is hard to

deal with. This bias is not present in classical parametric statistics where one op-

erates under the assumption that a parametric model is \truth". We believe this

is why attempts to extend the classical notion of parametric con�dence intervals

to smoothing seem to have not yielded the same useful results.

Our methodology is motivated by \scale space" ideas from computer vision,

see Lindeberg (1994) for an introduction and detailed discussion. Our approach

departs from the classical in two ways. First we simultaneously study a very

wide range of bandwidths, avoiding the classical need to choose a bandwidth.

This idea is not foreign to good data analysts, who know well that \di�erent

useful information can be available at di�erent levels of smoothing". The family

approach of Marron and Chung (1997) is one way of tapping into this information,

but does not address the key question of which features are \really present".

Our second departure from the classical view, again following scale space ideas

from computer vision, is that we avoid the bias problem (in doing inference) by
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shifting the focus from the \true underlying curve" to \the true curve, viewed at

varying levels of resolution". In particular, our inference focuses on \smoothed

versions of the underlying curve", with the idea that this \contains all the infor-

mation that is available in the data" when working with that bandwidth. Detailed

discussion of this view of smoothing is given in Section 2.

In Section 3 our main inferential tool, the SiZer map, is developed. This

studies features simultaneously over both location, and \scale", i.e. bandwidth,

by using a color map, as shown in Figure 2. The idea is to highlight signi�cant

features, such as bumps, by displaying where (with respect to both location and

scale) the curve signi�cantly increases and decreases. Note that signi�cant bumps

will be at zero crossings of the derivative between regions of signi�cant increase

and decrease. The name \SiZer" is a shortening of \SIgni�cant ZERo crossings

of derivatives". The color scheme is blue (red) in locations where the curve is

signi�cantly increasing (decreasing, respectively), and the intermediate color of

purple is used where the curve cannot be concluded to be either decreasing or

increasing. Here the term \location" is used in the scale space sense of both \x-

location" and also \bandwidth location". Gray is used to indicate regions where

the data are too sparse to make statements about signi�cance, because there are

not enough points in each window, as de�ned precisely in Section 3.

[put �gure 2 about here]

Figure 2: Combination of family plots (parts a and b), and SiZer

maps (parts c and d) for the data sets in Figure 1, using level of

signi�cance � = 0:05. Figures 2a and 2c on the left are for the In-

come Data, and the important bandwidth h = 0:05 is highlighted in

both plots. Figures 2b and 2d are for the Fossil Data, and again the

important bandwidth h = 1:2 is highlighted in both plots. The dot-

ted curves in the SiZer maps show \e�ective window widths" for each

bandwidth, as intervals representing �2h (i.e. �2 standard deviations

of the Gaussian kernel).

Note that for both sets of data, the family approach (in the top panels of Figure

2), reveals potential interesting structure, in addition to lots of likely spurious

structure. Perhaps the worst spurious structure is in the Fossil data, where the

smallest bandwidth smooth actually leaves the range of the data, around 95 and

97 million years ago. This is caused by data sparsity in that region, and is an

unappealing feature of the local linear smoother. See Hall and Marron (1997) for
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detailed discussion, and access to the literature on various �xes that have been

proposed. The SiZer maps (in the bottom panels of Figure 2) for each, make it

clear which structure seen in the family plots is \statistically signi�cant", and

which cannot be separated from the natural variability.

For the Income data (Figure 2c), at very coarse levels of resolution (i.e. large

bandwidths), the smooths are signi�cantly increasing (shaded blue), and then sig-

ni�cantly decreasing (shaded red), meaning that these features are \really there"

at this level of resolution. For bandwidths near log

10

(h) = �1:3, the two modes

become apparent, and these are both seen to be statistically signi�cant, because

the shading changes from blue (") to red (#) to blue (") to red (#). Hence, SiZer

gives the same answer as was known to be correct from the separate analysis dis-

cussed above. SiZer furthermore suggests that the other features that can be seen

in the family of smooths (including the three small bumps near the broader peak

in the smooth with the thickest width in Figure 2a) are just sampling artifacts

because the color is purple in these regions. The gray areas in each lower corner

are where the data are too sparse for SiZer to be e�ective, as described in detail

in Section 3.

For the Fossil data (Figure 2d), at the coarsest levels of resolution (largest

bandwidths), the smooth is not far from a simple least squares �t line (since the

window is extremely large), although not the same, because SiZer shows signi�cant

decrease up to around 105 million years ago, and then no signi�cant change. For

bandwidths that are less grossly oversmoothed, e.g. the bandwidth h = 4:8 (note

that log

10

(4:8) = 0:68) shown in Figure 1b, the estimate has no signi�cant slope

on the left, is signi�cantly decreasing in the center, and signi�cantly increases

on the right. When one looks at �ner levels of resolution (smaller bandwidths)

the curve is seen to be signi�cantly increasing at around 93 million years ago.

However, the dip in the thick curve of Figure 2b, about 97 million years ago, is

shown to be spurious, because this feature is in the gray area, where there is not

enough data to conclude that this dip is \really there".

These examples demonstrate the great potential of SiZer as a tool for data

analysis. More examples to this e�ect, that also illustrate potential pitfalls are

given in Section 4.

Our main ideas can easily be adapted to many di�erent types of smoothing

methods, such as smoothing splines, regression splines, or wavelets. But in this

paper we concentrate on kernel - local polynomial smoothers, because of their

simplicity and interpretability, and because of their very direct connection to the

scale space ideas from computer vision. There are a variety of other types of

5



extensions of this methodology, that are probably worth pointing out. These are

discussed in Section 5.

Other approaches to inference of this type are discussed in Section 6. An

important competitor is formal mode tests, reviewed in Section 6.1.

2. Scale space viewpoint

In this section we introduce precise notation, and give some discussion of the scale

space view of smoothing. For much more on this, see Chaudhuri and Marron

(1997).

Kernel density estimation uses a random sample X

1

; :::; X

n

from a smooth

probability density f(x), to estimate f through

b

f

h

(x) =

1

n

n

X

i=1

K

h

(x�X

i

) ; (2.1)

where h is the \bandwidth", i.e. smoothing parameter, andK

h

is the \h-rescaling"

of the kernel function K, K

h

(�) =

1

h

K

�

�

h

�

. The main idea is to \put probability

mass �

1

n

near each X

i

". As shown in Figure 1a, the bandwidth controls the

amount of smoothing,

b

f

h

(x) is wiggly when h is small, and very 
at when h is

large. See for example Silverman (1986), Scott (1992) and Wand and Jones (1995)

for discussion of many important properties and aspects of this estimator.

The local linear regression estimate uses a random sample (X

1

; Y

1

); :::; (X

n

; Y

n

)

to estimate the conditional expected value, i.e. the regression function,

f(x) = E (Y

i

jX

i

= x) ;

through

b

f

h

(x) =argmin

a

n

X

i=1

[Y

i

� (a + b(X

i

� x))]

2

K

h

(x�X

i

) ; (2.2)

where argmin

a

is interpreted to mean \minimize jointly over a and b, but use the

a value". The main idea is that for each x, a line is �tted to the data, using K

h

-

weighted least squares. Again the bandwidth controls the amount of smoothness

of

b

f

h

(x), as shown in Figure 1b. See e.g. the monographs of Wand and Jones

(1996) and Fan and Gijbels (1995) for discussion of many properties and important

aspects of this estimator.
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Scale space ideas from computer vision provide a viewpoint on kernel smooth-

ing that is new to statisticians. The \scale space surface", which is the family

of all kernel smooths indexed by the bandwidth h, is a model used in computer

vision. The essential idea is that large h models \macroscopic (distant) vision"

where \only large scale features can be resolved", and small h models \micro-

scopic (zoomed in) resolution of small scale features". In particular, for a given

function f (i.e. underlying signal) various amounts of \blurring of the signal" (at

least some is present in any real visual system) are represented by the convolution

f �K

h

for di�erent values of h. In fact this family of convolutions becomes the

focus of the analysis, with the idea that this is all that is available from a �nite

amount of data in the presence of noise. See Lindeberg (1994) for details, and

a large amount of interesting discussion. This is very di�erent from the classical

statistical approach, where the focus is f .

Examples of \features" in curve estimation, include peaks and valleys. These

can be characterized in several ways. In this paper we focus on zero crossings of

the derivative. We say a zero crossing is \signi�cant" when the derivative estimate

is signi�cantly di�erent from zero on both sides, with opposite signs, e.g. as shown

by blue and red areas in Figures 2c and 2d.

When these zero crossings of the smooth derivative estimates are studied across

a range of bandwidths, the Gaussian kernel K(x) =

1

p

2�

e

�x

2

=2

has an important

advantage over other kernels. In particular, for convolution smoothers, the num-

ber of zero crossings of the derivative smooth is always a decreasing function of

h (not true for any other kernel used for kernel smoothing). In other words, only

Gaussian blurring has monotonicity of features with respect to the amount of

smoothing. Several ways to see this are given in Lindeberg(1994). Interesting re-

lated references in the statistical literature include Silverman (1981) and Minnotte

and Scott (1993). Hence, only the Gaussian kernel is used in this paper.

The main point of this paper is the development of color maps as shown in

Figures 2c and d, called \SiZer maps", which can be used for exploratory data

analysis, that show regions in scale space (i.e. with respect to both x and h)

where the derivative is signi�cantly increasing and decreasing. As discussed in

Section 6.2, classical approaches to signi�cance of features, based on con�dence

bands, either are much too conservative for useful inference, or else are grossly

invalid, because of bias problems. In this paper we take a novel approach to this

old bias problem, by adopting the scale space point of view. In particular, instead

of seeking con�dence intervals for f

0

(x), we seek con�dence intervals for the scale

space version f

0

h

(x)

4

= E

b

f

0

h

(x) (for regression we take this E to be conditional on

7



X

1

; :::; X

n

). The center point of such intervals is automatically \correct", and the

variance is estimated simply and e�ectively, as detailed below. From this point of

view \signi�cance" of any feature depends on the scale of resolution (i.e. on h),

and must be interpreted in that way. E.g. in Figure 2c, we see that the bimodal

structure is present at some levels of resolution, but disappears at coarser levels

(i.e. there is only one mode at large bandwidths).

Note that this approach is rather di�erent from traditional mode testing. In

particular, the SiZer map not only counts the number of signi�cant modes, at

di�erent levels of resolution, but also gives information about mode locations.

There is a trade o� though, in that the SiZer map tends to be more conservative

than mode tests which speci�cally target the number of modes, see Section 4.

3. Development of SiZer

Our approach to the visual assessment signi�cance of features such as peaks and

valleys in a family of smooths

n

b

f

h

(x) : h 2 [h

min

; h

max

]

o

, is based on con�dence

limits for the derivative in scale space, f

0

h

(x) (choice of h

min

and h

max

is discussed

in section 3.1). Behavior at x and h locations is presented via the SiZer color

map where blue (black in versions where only black and white are available)

indicates locations where

b

f

0

h

(x) is signi�cantly positive, red (white in black-white

versions) shows where

b

f

0

h

(x) is signi�cantly negative, and purple (gray in black-

white versions) indicates where

b

f

0

h

(x) is not signi�cantly di�erent from zero.

Because repeated calculation of smoothers is required for such color maps,

fast computational methods are very important. Binned (also called \WARPed")

methods are natural for this, because the data need only be binned once. See

Fan and Marron (1994) for detailed discussion of this, and other fast computation

methods. The main idea is that calculation of

b

f

0

h

(x) becomes a rapidly computed

discrete convolution when the data are approximated by bin counts on an equally

spaced grid, which can result in speed savings of factors of 100 (for larger sample

sizes). For the reasons discussed in Fan and Marron (1994) we use g = 401 grid

points for most examples in this paper, although in some situations other values

can be desirable as discussed below.

Con�dence limits for f

0

h

(x) are of the form

b

f

0

h

(x)� q �

c

sd

�

b

f

0

h

(x)

�

; (3.1)

where q is an appropriate quantile, and the standard deviation is estimated as

discussed in section 3.1. An (x; h) location (in scale space) is called signi�cantly
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increasing, decreasing, or not signi�cant, when zero is below, above or within these

con�dence limits, respectively.

Candidates for calculation of the quantile q include:

1. Pointwise, Gaussian quantiles: q

1

(h) = q

1

= �

�1

�

1�

�

2

�

.

2. Approximate simultaneous over x, Gaussian quantiles: based on \number

of independent blocks", de�ned as q

2

below.

3. Bootstrap simultaneous over x, de�ned as q

3

below.

4. Bootstrap simultaneous over x and h, de�ned as q

4

below.

While Gaussian approximations worked quite well (because smoothers are local

averages), the pointwise quantiles q

1

are not recommended. This is because this

version of the SiZer map suggests that too many features are \signi�cant", as

shown in Figure 3.

[put �gure 3 about here]

Figure 3: For a simulated data set, of size n = 100, from the Marron-

Wand density #3: Figure 3a shows the family approach, overlaid with

the true underlying density (thick yellow curve); Figure 3b shows point-

wise SiZer; Figure 3c shows simultaneous SiZer with no gray shading

for sparse data regions; Figure 3d shows approximate simultaneous

SiZer with sparse data regions shown in gray.

Each panel in Figure 3 is for the same simulated data set of size n = 100 from

the density #3 of Marron and Wand (1992). This density is shown as the heavy

yellow curve in Figure 3a. It is a mixture of eight normals, intended to re
ect

much of the structure present in the log normal distribution: a single large peak,

with a very long right tail. As shown in the family of smooths, based on the single

data set, in Figure 3a, this density is challenging to estimate. In particular, small

window widths are most appropriate near the peak to avoid smoothing that down

to too low a level, but large bandwidths are more sensible in the tail to smooth

out the spurious clusters that arise just by chance. The pointwise SiZer map,

shown in Figure 3b, incorrectly indicates that some of these spurious clusters

are \signi�cant", e.g. the peaks near x = �1:7, �1:4 and 0:6. The problem

is understood via the classical frequentist interpretation of Con�dence Intervals:
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looking at many replications should result in roughly proportion � intervals which

do not \cover the true value". A natural solution to the problem is to adjust the

length of the intervals to do \simultaneous inference", which is the goal of the

other approaches to q mentioned above, which are discussed in detail below. The

approximate simultaneous approach is shown in Figure 3c, where these spurious

modes are now shaded correctly as purple. However, this version has a curious

red stripe in the lower left corner, that we have not fully understood. We have

not carefully analyzed this, because it is in a region in scale space where the data

are very sparse. Both because of e�ects like this, and also because we don't trust

con�dence intervals that are based on too few points, regions in scale space where

the data are too sparse for meaningful inference are grayed out. Based on the

classical rule of thumb, a location gray is shaded gray when the \e�ective sample

size in the window" (de�ned below) is less than 5. This gives the map shown in

Figure 3d.

Our �rst suggestion, q

2

, for approximate simultaneous con�dence limits is

based on the fact that when x and x

0

are su�ciently far apart, so that the kernel

windows centered at x and x

0

are essentially disjoint, the estimates

b

f

0

h

(x) and

b

f

0

h

(x

0

) are essentially independent, but when x and x

0

are close together, the es-

timates are highly correlated. The simultaneous con�dence limit problem is then

approximated by m independent con�dence interval problems, where m re
ects

the \number of independent blocks". We estimated m through an \estimated

e�ective sample size", de�ned for each (x; h) as

ESS(x; h) =

P

n

i=1

K

h

(x�X

i

)

K

h

(0)

:

Note that when K is a uniform (i.e. boxcar) kernel, ESS(x; h) is the number of

data points in the kernel window centered at x. For other kernel shapes, points

are downweighted according to the height of the kernel function, just as they are

in the averages represented by the kernel estimators. Next we choose m to be

essentially the number of \independent blocks of average size available from our

data set of size n",

m(h) =

n

avg

x

ESS(x; h)

:

Now assuming independence of these m(h) blocks of data, the approximate simul-

taneous quantile is

q

2

= q

2

(h) = �

�1

 

1 + (1� �)

1=m

2

!

:
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The quantity ESS is also useful to highlight regions where the normal approx-

imation implicit in (3.1) could be inadequate. This plays a role similar to np in

the Gaussian approximation to the Binomial. So regions where ESS(x; h) < n

0

(we have followed the standard practice of n

0

= 5 at all points here) are shaded

gray, to rule out spurious features, and also to indicate regions where the smooth

is essentially based on sparse data as shown in Figure 3d. The above calculation

of the block size m(h) is modi�ed to avoid problems with small ESS as

m(h) =

n

avg

x2D

h

ESS(x; h)

;

where D

h

is the set of x locations where the data are \dense",

D

h

= fx : ESS(x; h) � n

0

g

These approximate simultaneous con�dence limits are somewhat crude, and

also are only simultaneous over x, not h. To improve them, we explored several

classical multivariate normal simultaneous con�dence sets (both elliptical and

rectangular). These are based on the standard principal component analysis.

Unfortunately, they tended to be far too conservative, because the orientation

of the usual con�dence sets along the eigenvector directions gave a region that

did not e�ciently project back to con�dence intervals for f

0

h

(x) for each x. The

projections, i.e. the resulting con�dence intervals, tended to be far too long to

�nd important features.

Simultaneous con�dence sets which are hypercubes, whose edges are parallel

to the axes, with lengths of the form (3.1), are much better oriented to re
ect

signi�cance of our derivative estimates. The direct calculation of the probabilities

of such rectangular sets in high dimensions is very di�cult for these highly cor-

related normal distributions. Since simulation is the only tractable approach, it

is natural to use the more direct method of the bootstrap (i.e. simulate from the

empirical distribution of the data, instead of from the approximating Gaussian).

For each bootstrap sample (i.e. random sample drawn with replacement from the

data, see Efron and Tibshirani (1993) for an introduction to bootstrap ideas),

we compute

b

f

0

h

(x)

�

(again a fast implementation is crucial), and the standardized

version

Z

�

(x; h) =

b

f

0

h

(x)

�

�

b

f

0

h

(x)

sd(

b

f

0

h

(x))

:

For each h, the bootstrap quantile q

3

= q

3

(h) that is simultaneous over x (where

the data are reasonably dense) is the empirical quantile of max

x2D

h

jZ

�

(x; h)j cal-

culated over the bootstrap replications. Similarly, the bootstrap quantile q

4

, that
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is simultaneous over both x and h is the empirical quantile of max

h

max

x2D

h

jZ

�

(x; h)j

taken over the bootstrap replications.

Study of many SiZer maps based on q

2

, q

3

and q

4

showed that in many cases

there was not a lot of di�erence between the \quick and approximate" quantile q

2

and the bootstrap quantile q

3

that is simultaneous over x. As expected, somewhat

fewer features generally appeared as signi�cant for q

4

, the bootstrap value that is

simultaneous over both x and h, although surprisingly often q

4

was quite similar

to q

2

and q

3

. The maps based on di�erent choices for q were most similar for ex-

amples that were \homogeneous in x", meaning either equally spaced regression,

or else density estimation examples where the local average height of the den-

sity is roughly homogeneous. This is because there is an implicit \homogeneity

assumption" made by q

2

that is a reasonable approximation in this case.

An example where this homogeneity is lacking (thus giving interesting di�er-

ences) is the Income data set, from Figures 2a and 2c. SiZer maps based on the

bootstrap quantiles q

3

and q

4

are shown in Figure 4.

[put Figure 4 about here]

Figure 4: SiZer maps for the Income Data. Based on 1000 bootstrap

replications. Quantiles are: q

3

pointwise over h in the top panels, and

q

4

simultaneous over h in the bottom panels. Signi�cance levels are

� = 0:05 in the left panels, � = 0:10 in the center panels and � = 0:20

in the right panels.

The SiZer map for q

3

with � = 0:05, shown in Figure 4a is fairly similar to

that for q

2

shown in Figure 2c, except the lower right red region above x = 0:4 is

quite a bit thinner. That red region actually disappears for the fully simultaneous

SiZer map based on q

4

with � = 0:05 shown in Figure 4d. This shows that the

q

4

SiZer map can be rather conservative, because it does not show that there

are two signi�cant modes here (at the level � = 0:05), although these have been

veri�ed by other means. But when the level of signi�cance is raised to � = 0:10 as

shown in Figure 4e, the red region reappears, so both modes are now statistically

signi�cant in this sense. Note that for both q

3

and q

4

, as � increases, the red and

blue regions grow, as expected.

Because the bootstrap versions of SiZer are much slower to compute, we sug-

gest using q

2

for a �rst look at the data. This version of SiZer is called SiZer1 in

our software, available from the URL:

http://hotelling.stat.unc.edu/faculty/marron/marron software.html
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But when there are any doubts (there should be more doubts in settings that are

not homogeneous in x), we recommend that q

3

and q

4

(implemented in SiZer5 in

our software) be used for veri�cation. While q

4

is our only procedure that gives a

rigorous test of signi�cance of features, it is also generally somewhat conservative,

so we recommend that features found in q

2

or q

3

SiZer maps, that don't appear

in the q

4

version, be independently investigated by a \mode testing method", see

Section 6.1. For example, the mode test of Fisher and Marron (1997) shows that

the existence of two modes in the Income data can be established with � < 0:01,

by a test which focuses explicitly on number of modes. David Scott has pointed

out that the SiZer map can be viewed as an \enhancement" of the mode tree of

Minotte and Scott (1993) .

Bootstrap theory suggests improvement by a \studentized modi�cation", see

e.g. Hall (1992), (or other methods, see e.g. Efron and Tibshirani (1993)). Such

methods have not been implemented here, because they involve recalculation of

the variance estimate for each bootstrap sample, which would entail substantial

computational cost.

3.1. Numerical Implementation

The bandwidth range [h

min

; h

max

] can be chosen in several ways. One approach

is a \broad range of smooths which should catch most interesting features", as

developed in the \family approach to smoothing" in Marron and Chung (1997).

Another approach is \a very wide range of smooths", which is determined more

by the curve estimation setting, than the data. In the examples of this paper, we

have used the latter, and we took h

min

to be the smallest bandwidth for which

there is no substantial distortion in construction of the binned implementation of

the smoother, h

min

= 2 � (binwidth), and took h

max

to be the range of the data.

3.1.1. Density Estimation Speci�cs

The main idea behind the calculation of

c

sd
in this context, is that the derivative

estimator

b

f

0

h

(x) is an average (of the derivative kernel functions), so we use the

corresponding sample standard deviation,

d

var

�

b

f

0

h

(x)

�

=

d

var
(n

�1

P

n

i=1

K

0

h

(x�X

i

))

= n

�1

s

2

(K

0

h

(x�X

1

); :::; K

0

h

(x�X

n

)) ;

where s

2

is the usual sample variance of n numbers.
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Details of the binned implementation of

b

f

0

h

(x) are similar to those given in Fan

and Marron (1994), except that the kernel is now replaced by the derivative of

the kernel. In particular, for the equally spaced grid of points fx

j

: j = 1; :::; gg,

let the corresponding bincounts (computed by some method, we have always used

the \linear binning" described in Fan and Marron (1994)) be fc

j

: j = 1; :::; gg.

Then

b

f

0

h

(x

j

) � n

�1

S

0

0

(x

j

);

where

S

0

0

(x

j

) =

g

X

j

0

=1

�

0

j�j

0

c

j

0
(3.2)

and

�

0

j�j

0

= K

0

h

(x

j

� x

j

0
): (3.3)

To similarly approximate

c

sd
, use

c

sd
(x

j

) = n

�1=2

v

u

u

t

n

�1

g

X

j

0

=1

�

�

0

j�j

0

�

2

c

j

0
�

�

b

f

0

h

(x

j

)

�

2

:

3.1.2. Regression estimation speci�cs

We prefer the local linear smoother (to a number of other sensible smoothers)

because the derivative estimate is the simple and appealing slope of the local line.

See e.g. Wand and Jones (1995) and Fan and Gijbels (1996) for further discussion.

See Fan and Marron (1994) for a fast binned implementation of the local linear

smoother.

Our proposed

c

sd
is motivated by the fact that the derivative estimator is a

weighted sum of the observed responses, and we essentially use the conditional

(given X

1

; :::; X

n

) weighted sample variances,

var

�

b

f

0

h

(x)jX

1

; :::; X

n

�

= var

 

n

�1

n

X

i=1

W

h

(x;X

i

)Y

i

jX

1

; :::; X

n

!

=

n

X

i=1

�

2

(Y

i

jX

i

) (W

h

(x

;

X

i

))

2

:

To estimate �

2

(Y

i

jX

i

) we use a simple smooth of the residuals, e.g.

b

�

2

(Y jX = x) =

P

n

i=1

b

e

2

i

K

h

(x�X

i

)

P

n

i=1

K

h

(x�X

i

)

:

where

b

e

i

= Y

i

�

b

f

h

(X

i

).
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The quotient rule form of the derivative estimate, based on di�erentiating

the local linear estimate is particularly unpleasant, so we have a strong personal

preference for the derivative estimate based on the slope of the linear �t:

b

f

0

h

(x) =argmin

b

n

X

i=1

[Y

i

� (a + b(X

i

� x))]

2

K

h

(x�X

i

) ; (3.4)

where a similar convention to that of (3.4) is used. An e�cient binned approxi-

mation of this local linear derivative estimate

b

f

0

h

(x) is

b

f

0

h

(x

j

) �

T

1

(x

j

)�
T

0

(x

j

)
X
(x

j

)

S

2

(x

j

)� 2
S

1

(x

j

)
X
(x

j

) +
S

0

(x

j

)
X
(x

j

)

2

;

where the notations

S

`

(x

j

) =

P

g

j

0

=1

�

j�j

0
c

j

0
x

`

j

0

;

T

`

(x

j

) =

P

g

j

0

=1

�

j�j

0
Y

�

j

0

x

`

j

0

;

X
(x

j

) =
S

1

(x

j

)=
S

0

(x

j

);

(3.5)

have been used together with

�

j�j

0
= K

h

(x

j

� x

j

0
): (3.6)

and Y

�

j

0

for the bin sums of the Y

i

.

A binned approximation to

b

�

2

(Y jX = x

j

), based on calculations familiar from

simple linear regression is:

b

�

2

(Y jX = x

j

) �

�

1�

b

�
(x

j

)

2

�

b

�
(x

j

)

2

;

where

b

�
(x

j

)

2

=

U

0

(x

j

)

S

0

(x

j

)

�

�

T

0

(x

j

)

S

0

(x

j

)

�

2

;

b

�
(x

j

)

2

=

�

b

f

0

h

(x

j

)

�

2

�

S

2

(x

j

)�2
S

1

(x

j

)
X
(x

j

)+
S

0

(x

j

)
X
(x

j

)

2

b�(x

j

)

2

S

0

(x

j

)

�

;

(3.7)

using the notation (3.5) and

U

0

(x

j

) =

g

X

j

0

=1

�

j�j

0
Y

2�

j

0

;

for Y

2�

j

0

denoting the bin sums of the Y

2

i

. Our binned approximation to the

conditional variance is now

var

�

b

f

0

h

(x

j

)jX

1

; :::; X

n

�

�

V

2

(x

j

)� 2
V

1

(x

j

)
X
(x

j

) +
V

0

(x

j

)
X
(x

j

)

2

�

S

2

(x

j

)� 2
S

1

(x

j

)
X
(x

j

) +
S

0

(x

j

)
X
(x

j

)

2

�

2

;
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where

V

`

(x

j

) =

g

X

j

0

=1

�

j�j

0
c

j

0
x

`

j

0

b

�

2

(Y jX = x

j

0
);

and the notations (3.5), (3.6) and (3.7) have been used. This results in

c

sd
(x

j

) =

r

var

�

b

f

0

h

(x

j

)jX

1

; :::; X

n

�

:

4. More applications and examples

In this section, additional examples illustrating both the usefulness of SiZer, and

also some potential pitfalls, are presented.

The Hidalgo Stamp data set was brought to the mode testing literature by

Izenman and Sommer (1988). This is a univariate data set consisting of the

thicknesses of stamps, issued in Mexico during the last century. These thicknesses

have a remarkable amount of variability and clustering, which suggests a number

of sources for the paper. An interesting philatelic question is to determine the

number of paper sources, which was addressed by Izenman and Sommers (1988)

via nonparametric density estimation. Figure 5 analyzes these data with the

family approach and SiZer.

[put Figure 5 about here]

Figure 5: Family plot (part a) and SiZer maps, based on 401 grid

points (part b), 81 grid points (part c), and 201 grid points (part d),

for the Hidalgo Stamp data. The Sheather Jones Plug In bandwidth is

the thick curve in the family plot, and corresponds to the highlighted

horizontal bar. The SJPI bandwidth suggests seven modes, but not all

are \signi�cant" from the SiZer point of view.

The thick curve in Figure 5a is a kernel density estimate using the Sheather

Jones Plug In bandwidth, as recommended e.g. in Jones, Marron and Sheather

(1996a,b). This suggests seven modes in the data (i.e. at least seven sources for

the paper), which agrees with the �ndings of Izenman and Sommers (1988), and

some others. The SiZer map in Figure 5b shows that the two largest modes, at

0.072 mm and 0.079 mm are indeed signi�cant, as is the mode at 0.1 mm. The

mode at 0.09 mm is less certain, as SiZer �nds a signi�cant increase on the left,

but no signi�cant decrease on the right. Similarly for the mode at 0.11 mm, where
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there is only a signi�cant decrease. SiZer completely misses the modes at 0.12

mm and 0.13 mm, but the existence of these is perhaps debatable. If one has a

priori knowledge that no paper source has a very wide variance, then one may

be able to believe these are actual modes. However if one accepts the possibility

of a heavy tailed distribution, then the family plot suggests these could be just

random clustering in such a heavy tail. Also note the thick density estimate is

heavily into the gray region of the SiZer map, which says the data are very sparse

in this region, which also casts doubt on these modes, from this point of view.

Note that at the �nest level of resolution (smallest bandwidth), the SiZer

map in Figure 5b suggests the existence of more \modes" between 0.068 and

0.083. This is caused by the data being heavily rounded, to 0.001 mm, which

results in many replicate values in regions where the data are dense. When such

rounded data are binned to 401 bins over this range, i.e. a binwidth of 0.0002,

there are a number of bins which receive no observations. When these bincounts,

which alternate between zero and very large numbers (because of the rounding)

are smoothed with a very small bandwidth, one gets a kernel estimate which

signi�cantly increases and decreases, as shown. In this sense, these feature are

\really there", although the only conclusion is that the data have been rounded.

We have seen this same phenomenon in other data sets. A natural solution is

that in Figure 5c, where the number of gridpoints is reduced to g = 81, which

makes each rounded data value a bin center. Unfortunately the heavy rounding

in the data entails a SiZer map which misses some of the most interesting levels of

smoothing, such as the Sheather Jones Plug In bandwidth. The problem is �xed

in Figure 5d, by going to g = 201. Note that this SiZer map has all the same

important features as in Figure 5b.

Next we study the performance of SiZer in some simulation settings, which

highlight the way that SiZer \displays the information available in the data".

The �rst of these is shown in Figure 6, where we study the e�ect of increasing

sample size n, i.e. increasing \information in the data", in density estimation.

[put �gure 6 about here]

Figure 6: Top panels are family plots, and bottom panels are corre-

sponding SiZer maps, for kernel density estimates, based on simulated

data, from the Marron and Wand density #9, \Trimodal", shown as

the thick yellow curve in the family plots. Sample sizes are n = 100

in parts a and c, n = 1000 in parts b and e and n = 10; 000 in parts

c and f. The thick red curve in the family plots is the Sheather Jones
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Plug In bandwidth, which is the highlighted horizontal bar in the SiZer

maps.

The family plot, in combination with the Sheather Jones Plug In bandwidth,

for n = 100 suggests no signi�cant modal structure in the data. This is also

re
ected in the SiZer map. There is just not enough data to resolve even the

two larger modes that are present in the underlying density. For n = 1000, the

situation is di�erent, and now the two large modes are clearly present in the data.

More interesting is the third central mode. It is not clear from the family plot if

this is signi�cant, the Sheather Jones Plug In bandwidth suggests this is dubious,

and the SiZer map con�rms this is not signi�cant. For n = 10; 000 the family

plot shows that we have a great deal of information about this density, and can

estimate it extremely well. The SiZer plot veri�es this, showing that all three

modes are clearly present.

There are also some interesting overall trends present, that can be expected

in general. For example, as n grows, the gray area diminishes, and tends to be

replaced by purple. The purple areas also tend to be eventually replaced by either

red or blue, both from below, and also in the boundary regions.

Increasing information in regression is investigated in Figure 7, but this time

the \information in the data increases" through decreasing the error variance,

rather than increasing sample size.

[put Figure 7 about here]

Figure 7: Top panels are family plots, and bottom panels are cor-

responding SiZer maps, for local linear regression estimates, based on

n = 200 simulated data, shown as green dots, from an equally spaced

design, and the regression curve shown as the yellow thick curve in the

top panels. Simulated errors are independent Gaussian, with standard

deviations: � = 0:02 in parts a and d, � = 0:18 in parts b and e,

and � = 0:66 in parts c and f. The thick red curve is the Ruppert,

Sheather, Wand Direct Plug In bandwidth, which is highlighted in the

corresponding SiZer maps.

For the very low noise case, � = 0:02, the data contain a lot of information

about the underlying regression curve, so the Ruppert, Sheather, Wand band-

width (see Ruppert, Sheather and Wand (1995) for detailed description) and the

undersmoothed members of the family are all essentially the same as the target

18



curve. The SiZer map shows that all features of the target curve are signi�cant,

for a wide range of di�erent resolutions (i.e. bandwidths). Even the \
at spot"

near x = 0:6, which is not easy to �nd in the smooths, shows up as purple. When

the noise level is increased substantially to � = 0:18, the family plot shows that

the estimation problem is now harder, and the SiZer map shows fewer signi�cant

features. However, the regions of increase are still signi�cant, and two regions

of decrease still appear, although at di�erent levels of resolution. Increasing the

noise still further, to � = 0:66, results in a very challenging estimation problem,

and now SiZer does not indicate any of the decreases, and only one of the two

increases as being signi�cant. The family plot shows this is reasonable, because

the noise level is so high. The Ruppert, Sheather, Wand bandwidth suggests a

decrease (although it completely misses the small valley at x = 0:8), but it is not

clear with this noise level that it is signi�cant, and SiZer shows it is not.

SiZer is also useful even in settings where the underlying target curve is not

smooth, and in fact is quite useful at highlighting \jumps". This is shown in

Figure 8, where Donoho and Johnstone's Blocks function (famous from many

papers on wavelets) is used as a regression target, but the added Gaussian noise

is larger than is typical in wavelet examples. Note that the locations of each jump

is highlighted by colored streaks (blue for up and red for down) that reach all the

way to the bottom of the SiZer map. The streaks are caused by the fact that even

at very small bandwidths, the estimates are signi�cantly changing at these points.

This phenomenon appeared in a number of other examples we have studied where

the target curve has jump discontinuities. These indicated jumps could be used

to construct a step function estimator with much better properties than the usual

wavelet estimators for this example.

[put Figure 8 about here]

Figure 8: Family plot and SiZer map, for local linear regression,

based on n = 1024 simulated data, shown as green dots, from an

equally spaced design, and the Donoho-Johnstone Blocks regression

curve shown as the yellow thick curve in Figure 8a. Simulated er-

rors are independent Gaussian, with standard deviations: � = 0:05.

The thick red curve in Figure 8a is the Ruppert, Sheather, Wand Di-

rect Plug In bandwidth, which is highlighted in the SiZer map in Figure

8b.
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5. Future research directions

In this section we discuss a number of future research directions, that are moti-

vated by SiZer.

5.1. Local likelihood

Geroge Terrell has pointed out that for density estimation, and for special types

of regression such as logistic regression, symmetric con�dence intervals such as

those proposed here can be improved upon, using context speci�c information. We

suggest a local likelihood approach to this. Local likelhood is a smoothing method

which is more e�cient than simple kernel methods in some cases, for example

discrete response variables. See Tibshirani and Hastie (1987), Staniswallis (1989),

Chaudhuri and Dewanji (1995) and Fan, Heckman and Wand (1995) for detailed

discussion and more references. We anticipate that SiZer may be extended in a

fairly straightforward way to this important smoothing context.

5.2. Handling dependency

In nonparametric regression, our current SiZer development assumes independent

errors, which is not always realistic, for example in time series contexts. But SiZer

has the potential to become an important tool in such contexts where \signi�cance

of trends" is often an important issue. We believe that such applications will

require appropriate modeling of the error structure, e.g. by some ARMA of even

long range dependent models, before useful inference can be done.

5.3. Testing other types of hypotheses

SiZer focuses on regions where the derivatives are signi�cantly increasing and

decreasing, but for some situations other aspects of the underlying curve, such as

the second derivative, of even the curve itself could be more appropriate to study

in this way. Variations of SiZer could also be used to address other problems, such

as whether or not two curves are signi�cantly di�erent.

5.4. Other estimation settings

Smoothing is useful in other settings besides just density and regression estima-

tion. For example, SiZer can be extended to estimation of the hazard function,
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and other functions appearing in survival analysis. Another interesting extension

would be to various censored data contexts.

5.5. Local bandwidth selection

A separate potential application of SiZer is to the old �eld of location varying

bandwidth selection. The need for this is demonstrated in Figure 9, where the

family approach shows that one would prefer a smaller bandwidth on the right,

where the underlying density has �ner features, and a larger bandwidth on the left,

where the density has less curvature. The Sheather Jones Plug In bandwidth does

a reasonable job with the fatter peaks, but could be much improved on the smaller

peaks. In particular, SiZer shows that the smaller peaks really are signi�cant, but

only at a �ner level of resolution (smaller bandwidth). However, while the need for

it has been clearly understood, data based local bandwidth selection has proven

to be a very challenging problem. In particular the simulation study of Farmen

(1996) and Farmen and Marron (1997) shows that most of the available methods

do not fare much better overall than the simple global bandwidth chosen by the

Sheather Jones Plug In method. A likely intuitive explanation for this is that local

bandwidth selectors essentially require knowledge of the local curvature, which is

very hard to estimate.

[put Figure 9 about here]

Figure 9: Family plot and SiZer map for kernel density estimates,

based on n = 1000 simulated data, from the Marron and Wand density

#15, \Discrete Comb", shown as the thick yellow curve in the family

plots. The thick red curve in the family plots is the Sheather Jones

Plug In bandwidth, which is the highlighted horizontal bar in the SiZer

maps.

Note that the SiZer map gives some interesting visual cues as to how one might

choose a local bandwidth function, which is described as a curve running across

the map. For example, the Sheather Jones Plug In bandwidth could be used for

x 2 (�3; 2), then the bandwidth curve could move down to around log

10

(h) = �1:4

for x 2 (2:3; 3). An interactive approach to local bandwidth selection could be

based on tracing a \bandwidth curve" with a mouse on the SiZer map. The

resulting local bandwidth smooth could be shown in another window. If the family

has already been computed, computation of the local bandwidth smooth would
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be very fast, since it only needs interpolation among the family members. See

Marron and Udina (1997) for a di�erent approach to local bandwidth selection.

A natural question is: with SiZer, why do we need local bandwidth smooth-

ing? The answer is that for presenting conclusions to non-experts (who are not

interested in details behind the conclusions), a single location varying smooth will

be very simple and attractive.

5.6. Higher dimensions

The problem of \which features are really present?" is also very important in

smoothing settings of more than one dimension. In particular, the two dimensional

case is \image analysis", which has a very large literature. An important problem

with extending SiZer to higher dimensions is how to present the \map". The

very simplest two dimensional version one might try is to study the magnitude

of the gradient, and highlight scale space regions where this is signi�cantly above

zero. But now the \map" would be shaded regions in 3 dimensions, which is fairly

challenging to visualize.

Other applications would likely result in the need to visualize even higher di-

mensional maps. For example, one could replace the magnitude of the gradient by

directional derivatives. Another example is that in some cases it could be desirable

to sue di�erent bandwidths in di�erent directions. Even with a two dimensional

image, implementation of both ideas would result in a 6 or 7 dimensional map.

6. Other Approaches

6.1. Mode Testing

An older approach to analyzing which features in a smooth is mode testing. Here

one formulates a null hypothesis of \few modes" (e.g. one), and then constructs

a test which seeks strong evidence of the alternative of \more modes" (e.g. two).

This approach goes back at least to Good and Gaskins (1980), and later references

include Silverman (1981), Hartigan and Hartigan (1985), Donoho (1988), M�uller

and Sawitzki (1991), Hartigan and Mohanty (1992), Mammen, Marron and Fisher

(1992), Minnotte and Scott (1993), Fisher, Mammen and Marron (1994), Cheng

and Hall (1997) and Fisher and Marron (1997).

Such tests have an important place, even now that SiZer has been developed,

because they are likely to have greater power than the inferences available from

SiZer. This is because they focus directly on the question of modality, and also
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they are not hampered by trying to be simultaneous over all of scale space. How-

ever most available mode tests have the weakness that they only determine how

many modes are present, and don't say where the modes are, or even which fea-

tures in the smooth are \the modes". See Minnotte (1997) and Mammen, Marron

and Udina (1997) for some interesting exceptions to this. The strength of SiZer

is that it gives a much faster way of addressing the question of which modes are

signi�cant, and which are not. We believe that SiZer should be used mostly as an

exploratory tool, with follow up analysis by explicit mode tests recommended in

border line cases.

6.2. Why not conventional Con�dence Bands?

In classical parametric statistics, a time honored approach to displaying variability

is the con�dence interval. Many attempts have been made to extend this idea to

nonparametric curve estimation. There are two major hurdles to the e�ective use

of this technique:

� Instead of a single real valued parameter, the quantity being estimated is

now an entire curve. Furthermore inference about features will involves

aspects of simultaneous inference.

� Unlike conventional parameter estimation, curve estimation necessarily in-

volves an important bias component.

There is a large literature on attempts to address these problems in the context

of smoothing. Good access is provided through the monograph Hall (1992).

A quick and simple approach has been suggested e.g. by Hastie and Tibshirani

(1990), where one ignores both of the issues 1 and 2, and simply writes down

standard con�dence intervals which captures only the variability part of the error.

This can only give a rather crude indications of which features are really present,

because the intervals are both too short for valid inference, and also o� center,

because the bias is ignored.

A time honored approach to handling bias is to make it negligible by \un-

dersmoothing", i.e. using a very small bandwidth. There are many papers that

do this simply by assuming that asymptotically as the sample size grows, the

bandwidth tends to zero faster than the optimal, which causes the bias to tend

to zero at a faster rate. This still leaves open the problem of how the bandwidth

should be chosen, and the fact that for any �xed set of data, any bandwidth is
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going to have at least a little bias. But even ignoring these problems, con�dence

intervals based on such bandwidths are not intuitively appealing, since they may

be expected to be unnecessarily long, i.e. signi�cant features can be missed.

Another approach is to try to estimate the bias, and adjust accordingly. An

attempt at this presented in H�ardle and Marron (1991) was \asymptotically suc-

cessful", but gave incorrect coverage in simulations, as discussed in their Section 3.

They also showed that the reason for the error was because the bias estimate was

ine�cient. Nychka provided an intuitive explanation of this with the statement

\if you could estimate bias e�ectively, then you could get an improved estimate".

Nice insight into the failure of bias correction methods was developed in sev-

eral papers by Hall, that is well summarized in Section 4.4 of Hall (1991). The

approach taken there is to choose the bandwidth to make coverage probabilities

as close as possible to the desired values. Asymptotic theory is developed for op-

timal bandwidths according to this criterion, and it is shown that when optimal

bandwidths are used, simple undersmoothed bandwidths give shorter con�dence

intervals than if one attempts any type of bias correction.

This motivates a more careful look at undersmoothed bandwidths, and a nat-

ural question is: how long are the coverage optimal con�dence intervals? Figure

10 shows an example addressing this point, using the explicit representation given

just after (3.5) in Hall (1991).

[put Figure 10 about here]

Figure 10: Underlying normal mixture density f in Figure 10a.

SiZer map for a simulated data set of size n = 500 in Figure 10c.

100 replicates of kernel density estimates, using the coverage optimal

bandwidth in Figure 10b, and the bandwidth that is MSE optimal at

x = 0:8 in Figure 10d. These two bandwidths are highlighted in the

SiZer map as a solid line for the MSE optimal, and a dashed line for

the coverage optimal.

The true underlying density shown in Figure 10a is the Gaussian Mixture

density

0:425 �N (0:35; 0:0144) + 0:425 �N (0:575; 0:0144) + 0:15 �N (0:8; 0:0009) :

Here we study its estimation when n = 500 data points are used, and focus on

the thinner peak, i.e. on estimation at x = 0:8. The practical e�ect of the
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coverage optimal bandwidth is shown in Figure 10b, where overlays of kernel

density estimates for 100 independent replicates (i.e. regeneration of the n = 500

pseudo data points) are shown. The envelope of curves suggests that at this level of

smoothing, there is not enough information in the data to establish the statistical

signi�cance of the thinner peak, since the top of the envelope near the valley point

x = 0:72 is well above the bottom of the envelope at the peak, x = 0:8. Figure

10d investigates whether or not there is enough information in the data to resolve

the second peak, by again overlaying 100 realizations of the density estimate, but

this time with the bandwidth chosen to minimize the MSE = E

h

b

f

h

(x)� f(x)

i

2

(approximated by simulation) at the peak x = 0:8. This envelope of curves shows

that at this level of resolution, their seems to be plenty of information in the data,

and the second mode should be a signi�cant feature. The SiZer map in Figure 10c

�nds both of the modes, and thus is using the information available in the data

more e�ectively than con�dence intervals with the coverage optimal bandwidth

can do.

Note that even if it were possible to get e�ective classical con�dence bands

(seems doubtful in view of the above discussion), SiZer would still be a more

powerful data analytic tool. This is because con�dence bands need to focus on a

single bandwidth, which (even when it can be well chosen from the data) can still

miss features that appear at other levels of resolution.
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