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Abstract

This paper introduces Sizzle, the first fully-implemented

end-to-end security architecture for highly constrained em-

bedded devices. According to popular perception, public-

key cryptography is beyond the capabilities of such devices.

We show that elliptic curve cryptography (ECC) not only

makes public-key cryptography feasible on these devices, it

allows one to create a complete secure web server stack

including SSL, HTTP and user application that runs effi-

ciently within very tight resource constraints. Our small

footprint HTTPS stack needs less than 4KB of RAM and

interoperates with an ECC-enabled version of the Mozilla

web browser. We have implemented Sizzle on the 8-bit

Berkeley/Crossbow Mica2 ”mote” platform where it can

complete a full SSL handshake in less than 4 seconds (ses-

sion reuse takes under 2 seconds) and transfer 450 bytes of

application data over SSL in about 1 second. We present

additional optimizations that can further improve perfor-

mance. To the best of our knowledge, this is the world’s

smallest secure web server (in terms of both physical di-

mensions and resources consumed) and significantly lowers

the barrier for connecting a variety of interesting new de-

vices (e.g. home appliances, personal medical devices) to

the Internet without sacrificing end-to-end security.

1. Introduction

In the last several years, the Internet has grown rapidly

beyond servers, desktops and laptops to include handheld

devices like PDAs and smart phones. There is now a grow-

ing realization that this trend will continue as increasing

∗This work was performed while the authors were on a student intern-

ship from the Univ. of Waterloo, Canada.

numbers of even simpler, more constrained devices (sen-

sors, home appliances, personal medical devices) get con-

nected to the Internet. The term “embedded Internet” is

often used to refer to the phase in the Internet’s evolution

when it is invisibly and tightly woven into our daily lives.

Embedded devices with sensing and communication capa-

bilities will enable the application of computing technolo-

gies in settings where they are unusual today: habitat mon-

itoring [26], medical emergency response [31], battlefield

management and home automation.

Many of these applications have security requirements.

For example, health information must only be made avail-

able to authorized personnel (authentication) and be pro-

tected from modification (data integrity) or disclosure (con-

fidentiality) in transit. Even seemingly innocuous data such

as temperature and pressure readings may need to be se-

cured. Consider the case of a chemical plant where sensors

are used to continuously monitor the reactions used in man-

ufacturing the final product. Without adequate security, an

attacker could feed highly abnormal readings into the mon-

itoring system and trigger catastrophic reactions.

Secure Sockets Layer (SSL)1 [10] is the most popu-

lar security protocol on the Internet today. It is built into

many popular applications, including all well known web

browsers, and is widely trusted to secure sensitive trans-

actions including on-line banking, stock trading, and e-

commerce. This paper describes our investigation into us-

ing the same protocol to secure the embedded Internet.

SSL combines public-key cryptography for key-

distribution/authentication with symmetric-key cryptogra-

phy for data encryption and integrity. Public-key cryptog-

raphy is widely believed to be beyond the capabilities of

embedded devices. This perception is primarily driven by

1Throughout this paper, we use SSL to refer to all versions of this pro-

tocol including version 3.1 aka Transport Layer Security (TLSv1.0) [8].



experiments involving RSA, today’s dominant public-key

cryptosystem [5].

First proposed by Victor Miller [19] and independently

by Neal Koblitz [17] in the mid-1980s, Elliptic Curve Cryp-

tography (ECC) is emerging as an attractive alternative to

RSA for resource-constrained environments. Recent work

in our research group has shown that it is possible to develop

an efficient software implementation of ECC for 8-bit CPUs

and bring the advantages of public-key cryptography to con-

strained devices where traditional alternatives like RSA are

impractical [14].

On top of this ECC implementation, we have built a

small-footprint secure web server stack (including HTTP

and SSL), called Sizzle2, that runs efficiently under tight re-

source constraints and interoperates with an ECC-enabled

version of the Mozilla web browser [11]. The main contri-

butions of this paper are:

• We describe the first fully-implemented, end-to-end

security architecture for embedded devices.

• We describe the challenges posed by tight resource

constraints on these devices and design choices we

made to overcome them.

• We measure the performance and resource utilization

of various subcomponents as well as the complete sys-

tem and show that they are reasonable for their in-

tended application scenarios.

The remainder of this paper is organized as follows: Sec-

tion 2 reviews related work. Section 3 provides an overview

of Elliptic Curve Cryptography. Section 4 discusses the

SSL protocol and its use of ECC. Section 5 describes Siz-

zle including its main features and the overall architecture.

We present performance results and resource consumption

statistics for Sizzle in Section 6. Finally, Section 7 summa-

rizes our conclusions.

2. Related Work

Secure web servers for small devices have been built by

PeerSec Networks [22] and Zingg [32]. However, none of

these efforts has produced an implementation suitable for

highly constrained embedded platforms such as the 8-bit

Berkeley/Crossbow Mica2 motes shown in Figure 1. The

“mote” is particularly interesting because it is emerging as

the preferred platform for much of sensor related research

in academia and industry [28].

The Mini Web Server with SSL [32] targets the

IPC@CHIP platform which has a 20MHz, 16-bit Intel

80186 processor, 512KB of Flash, 512KB of RAM and a

built-in Ethernet connection. The SSL code size is around

2This name derives from ”Slim SSL” (SSSL).

Figure 1. The Berkeley/Crossbow family of

"mote" devices [7] (left to right): (a) develop
ment board/base station, (b) Mica2dot mote,

and (c) Mica2 mote.

100KB. MatrixSSL [22] has a smaller footprint (around 50-

70KB), but still targets 32-bit and 64-bit CPUs, e.g. ARM7,

MIPS, PowerPC, i386 and x86-64. Both only support RSA-

based key exchange. Even on the more capable 16-bit CPU

inside IPC@CHIP, RSA decryption takes nearly 45 seconds

[32].

In contrast, Sizzle runs efficiently on both the Mica2 and

Mica2dot motes: wireless, battery-powered devices with an

8-bit Atmel ATmega128L processor, 128KB of instruction

memory, 4KB of EEPROM, 4KB of SRAM and a Chipcon

CC1000 radio transceiver with a rated bandwidth of 19.2

kbits/s.

Prior security proposals for such devices have deemed

public-key cryptography to be ”too expensive” and ”im-

practical” and relied on symmetric-key algorithms with

manual pre-distribution of keys [9, 16, 23, 24]. Unfortu-

nately, these schemes do not scale, offer only link-level

(rather than end-to-end) security and risk the security of the

entire network on an attacker’s ability to compromise a few

devices. Sizzle addresses these shortcomings by utilizing

public-key cryptography in the form of ECC.

3. Elliptic Curve Cryptography

At the foundation of every public-key cryptosystem is

a hard mathematical problem that is computationally in-

tractable. The relative difficulty of solving that problem

determines the security strength of the corresponding sys-

tem. Since the best known algorithms to attack ECC have

fully exponential run times but the best known algorithms

to attack RSA have sub-exponential run times [30], ECC

can offer equivalent security with substantially smaller key



sizes [18, 21], e.g. a 160-bit ECC key provides the same

level of security as a 1024-bit RSA key and 224-bit ECC

is equivalent to 2048-bit RSA. Smaller keys result in faster

computations, lower power consumption as well as memory

and bandwidth savings making ECC especially appealing

for resource-constrained environments. More importantly,

the performance advantage of ECC over RSA increases as

security needs increase over time. According to Gura et

al. [14], 160-bit ECDH operations are 13 times faster than

1024-bit RSA decryption operations on the mote, but 224-

bit ECDH operations are almost 38 times faster than 2048-

bit RSA decryption operations.

ECC operates on a group of points on an elliptic curve

defined over a finite field. Its main cryptographic operation

is scalar point multiplication, which computes Q = kP (a

point P on an elliptic curve multiplied by an integer k re-

sulting in another point Q on the curve). Scalar multiplica-

tion is performed through a combination of point additions

and point doublings. For example, 11P can be expressed as

11P = (2((2(2P )) + P )) + P . The security of ECC relies

on the difficulty of solving the Elliptic Curve Discrete Log-

arithm Problem (ECDLP), which states that given P and

Q = kP , it is hard to find k. Besides the curve equation,

an important elliptic curve parameter is the base point, G,

which is fixed for each curve. In ECC, a large random in-

teger k acts as a private key, while the result of multiplying

the private key k with the curve’s base point G serves as the

corresponding public key.

The Elliptic Curve Diffie Hellman (ECDH) key ex-

change [1] and the Elliptic Curve Digital Signature Algo-

rithm (ECDSA) [2] are elliptic curve counterparts of the

well-known Diffie-Hellman and DSA algorithms, respec-

tively. In ECDH key agreement, two communicating par-

ties A and B agree to use the same curve parameters. They

generate their private keys kA and kB , and corresponding

public keys QA = kAG and QB = kBG. The parties ex-

change their public keys and each party multiplies its private

key and the other’s public key to arrive at a common shared

secret kAQB = kBQA = kAkBG. While a description of

ECDSA is not provided here, it similarly parallels DSA.

Recently, NIST approved ECC for use by the U.S. gov-

ernment [29]. Several standards organizations, such as

IEEE, ANSI, OMA (Open Mobile Alliance) and the IETF,

have ongoing efforts to include ECC as a required or rec-

ommended security mechanism.

4. Overview of the SSL Protocol

SSL offers encryption, source authentication and in-

tegrity protection for data and is flexible enough to accom-

modate different cryptographic algorithms for key agree-

ment, encryption and hashing. Particular combinations of

these algorithms are called cipher suites, e.g. the cipher

suite TLS RSA WITH RC4 128 SHA uses RSA for key ex-

change, 128-bit RC4 for bulk encryption, and SHA for

hashing.
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Figure 2. An ECCbased SSL handshake.

The two main components of SSL are the Handshake

protocol and the Record Layer protocol. The Handshake

protocol allows an SSL client and server to negotiate a

common cipher suite, authenticate each other, and establish

a shared master secret using public-key algorithms. The

Record Layer derives symmetric keys from the master se-

cret and uses them with faster symmetric-key algorithms for

bulk encryption and authentication of application data.

Since public-key operations are computationally expen-

sive, the protocol’s designers added the ability for a client

and server to reuse a previously established master secret.

This feature is also known as “session resumption”, “ses-

sion reuse” or “session caching”. The resulting abbrevi-

ated handshake does not involve any public-key cryptogra-

phy, requires fewer, shorter messages and can be completed

more quickly than a full handshake.

4.1. ECCbased Full Handshake

The general operation of an ECDH-ECDSA handshake,

as specified in [12], is shown in Figure 2.3 The client and

server first exchange random values (used for replay protec-

tion) and negotiate a cipher suite using the ClientHello and

ServerHello messages. The ServerCertificate message con-

tains the server’s ECDH public key signed by a certificate

authority using ECDSA. After validating the ECDSA sig-

nature, the client conveys its ECDH public key to the server

in the ClientKeyExchange message. Next, each entity uses

3Messages marked with an asterisk are optional and only sent in certain

protocol variants.
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Figure 3. Abbreviated SSL handshake.

its own ECDH private key and the other’s public key to per-

form an ECDH operation and arrive at a shared premaster

secret. Both end points then use the premaster secret to cre-

ate a master secret which, along with previously exchanged

random values, is used to derive the cipher keys, initializa-

tion vectors and MAC (Message Authentication Code) keys

for bulk encryption and authentication by the Record Layer.

The use of ECDH and ECDSA in SSL mimics the use of

DH and DSA, respectively. The SSL specification already

defines cipher suites based on DH and DSA so the incorpo-

ration of ECC is not a large change. Our research team has

added support for ECC cipher suites in both OpenSSL and

Mozilla [13].

4.2. Abbreviated Handshake

The abbreviated handshake protocol is shown in Fig-

ure 3. Here, the ClientHello message includes the non-zero

ID of a previously negotiated session. If the server still has

that session information cached and is willing to reuse the

corresponding master secret, it echoes the session ID in the

ServerHello message.4 Otherwise, it returns a new session

ID thereby signaling the client to engage in a full hand-

shake. The derivation of symmetric keys from the master

secret is identical to the full handshake scenario.

5. Sizzle

While SSL has been identified as a good solution for se-

curing Internet communications, it has been considered too

”heavy-weight” for highly constrained embedded devices

like the mote due to its reliance on public-key cryptogra-

phy [16]. ECC makes public-key cryptography feasible on

these devices, and Sizzle is our small footprint implementa-

tion of an HTTPS stack, built around ECC, that brings the

well established security properties of SSL to the embedded

Internet.

Sizzle allows one to embed a secure web server in tiny

devices (e.g. utility meters) for the purpose of remote moni-

4The likelihood of a cache hit depends on the server’s configuration and

its current workload.

toring and control. Figure 4 shows the architecture we have

implemented that is applicable to these scenarios. The intro-

duction of a gateway between the monitoring/control station

and the devices being monitored/controlled provides several

benefits:

• The gateway serves as a bridge between the embed-

ded devices and the rest of the Internet. It connects

to the Internet using a high-speed link (e.g. Ethernet)

and communicates with one or more embedded de-

vices using a lower-speed wireless link (such as IEEE

802.15.4) optimized for power consumption.

• The gateway provides a single choke point for control-

ling access to the embedded devices. It can implement

various mechanisms including address-based filtering

to enforce selective access from across the Internet.

The gateway is also the ideal place to log all interac-

tions with the embedded devices.

• The gateway can serve as a performance-enhancing

proxy. In particular, the TCP protocol over which

much of the Internet traffic (including both HTTP and

HTTPS) flows interprets packet loss as an indication

of congestion. This causes TCP to perform poorly

when the connection involves a wireless hop [4]. A

well-known approach for alleviating this performance

degradation splits the end-to-end path at the wireless

link boundary [3]; precisely where the gateway is sit-

uated. Terminating TCP at the gateway and using a

special purpose reliable protocol between the gateway

and the embedded devices has several benefits:

– the special purpose protocol can be made simpler

because it need not support end-to-end conges-

tion control across multiple, possibly heteroge-

neous, links

– it can be tailored for the special loss character-

istics of the single link (e.g. a NACK-based

scheme may be used if most of the packets sent

are delivered successfully)

– local packet loss recovery improves overall per-

formance

There is an important difference between this security

architecture and other gateway-based architectures for con-

necting small devices, most notably WAP 1.0 [27], where

the gateway sees all traffic in the clear — decrypting in-

coming data and re-encrypting it before passing it along.

In those architectures, the gateway needs to be trusted

and compromising it compromises all connections passing

through it. With our approach, the security provided by SSL

extends end-to-end. All data stays encrypted as it crosses

the gateway so even if the latter is compromised, an attacker

is unable to view or alter any data.



Figure 4. Gatewaybased architecture for making embedded devices accessible across the Internet

SSL is a versatile protocol supporting many crypto-

graphic algorithms and several variations in authenticating

the entities involved. We chose a subset of these features to

meet tight resource constraints while addressing the secu-

rity needs for a wide array of usage scenarios. Here we list

some of the bandwidth, memory and computation saving

features of Sizzle:

1. Sizzle uses ECC, which is more resource-efficient

than RSA, for key exchange. In an effort to con-

serve program and data memory, only a single ver-

sion (3.0) of the SSL protocol, a single cipher suite

(ECDH-ECDSA-RC4-SHA) and a single elliptic curve

(secp160r1) is enabled.

2. The cipher suite enabled in Sizzle does not entail send-

ing the ServerKeyExchange message and the server’s

ECC public key is sent in a certificate. ECC keys are

already smaller than RSA keys, but additional effort

has been made to keep the certificate small. In particu-

lar, the subject and issuer names have been deliberately

chosen to be brief and optional certificate extensions

have been omitted resulting in a 222-byte certificate

(the corresponding RSA certificate is over 400 bytes).

3. Sizzle uses 4-byte session identifier values rather than

the 32-byte values used in Apache and other servers

with much larger scalability requirements. In partic-

ular, tight memory constraints preclude the possibil-

ity of storing information for more than a few con-

nections in the session cache and a four-byte identifier

is more than sufficient to identify each cached session

uniquely.

4. Sizzle does not send out the CertificateRequest mes-

sage which automatically eliminates the client’s Cer-

tificate and CertificateVerify messages. This obviates

the need to have any certificate parsing code in Sizzle

but does not preclude authentication of the client us-

ing passwords (one-time or otherwise) over SSL as is

commonly done for on-line banking, stock trading and

e-commerce.5

5We have implemented this feature in a watch that can be used to mon-

5. Static information such as the private key and corre-

sponding certificate for the SSL server are stored in

program memory, rather than data memory, to reduce

SRAM usage (the mote has only 4KB of SRAM). The

ATmega128 used on the mote allows the programmer

to specify protected memory areas that cannot be ac-

cessed from the outside unless they are erased prior to

the operation.

We have implemented the architecture shown in Fig-

ure 4 using mote devices for sensors/actuators and an ECC-

enabled version of the Mozilla browser as the monitor-

ing/controlling application. Multiple devices can be con-

nected via a single gateway and the secure web server

within each device is mapped to a distinct TCP port at the

gateway. Figure 5 shows some of the wireless devices built

in our labs. We embedded a Mica2 mote with the Tiny OS

operating system [28] running Sizzle inside a wireless ther-

mostat whose settings can be read and modified using the

Mozilla browser. Figure 6 shows a screenshot of Mozilla

communicating with the thermostat. The closed lock icon

in the browser’s lower right corner indicates that the com-

munication is protected by SSL and the connection details

show that the certificate contains an ECC public key.

The SSL protocol was designed to be layered atop a reli-

able, bi-directional, byte-stream service, typically provided

by TCP. Unfortunately, Tiny OS does not include a reliable

data transfer mechanism and a significant portion of our im-

plementation effort went into designing such a mechanism.

We conducted experiments to study packet loss characteris-

tics of the wireless link between the gateway and the mote.

In one experiment, we transmitted 25000 packets and dis-

covered that with Tiny OS 1.1.0, on average, 1 packet in

25 was lost/damaged. Radio transmission was considerably

better in Tiny OS 1.1.6 where, on average, just 1 packet in

3125 had a transmission error. Even the (unreliable) data

transmission rate was better with Tiny OS 1.1.6 (28 pkts/s)

relative to Tiny OS 1.1.0 (10 pkts/s).6 The improved data

itor the wearer’s body temperature and pulse rate. This information is re-

vealed only to authorized entities.
6In both instances, however, the observed rate was significantly lower

than the theoretical peak of 53 pkts/s for Tiny OS 1.1.6 and 42 pkts/s for



Figure 5. ECCenabled wireless devices built

at Sun Labs: (a) thermostat, (b) health
monitoring watch (c) magnetic stripe reader.

rate and reliability of Tiny OS 1.1.6 can be attributed to a

number of improvements in the radio stack including a re-

duced preamble and tweaks to the backoff timer [25]. Our

first prototype of a reliable data transfer scheme used a sim-

ple stop-and-go ACK-based protocol. However, since Tiny

OS uses fixed-size packets, sending one ACK packet per

data packet halved the effective throughput. Our current

prototype transmits the first and last packets in a data block

with explicit ACKs. All other packets in between use a

NACK-based scheme where only lost packets are explicitly

signaled. In addition, three other control packets are used:

(i) NEWCONNECTION indicates that the gateway has ac-

cepted a new TCP connection (ii) DISCONNECT tells the

gateway to terminate a TCP connection after an HTTPS re-

quest has been fulfilled, and (iii) READY indicates a mote’s

readiness to receive the next SSL record from the gateway.

All three are sent with explicit ACKs.

SSL records are fragmented into Tiny OS packets and

sent across the wireless link without the overhead of TCP or

IP headers. Each Tiny OS packet has a payload of 29 bytes,

but our reliable transmission scheme uses 6 of those bytes

for housekeeping chores like sequence numbers and return

addresses.7 Therefore, an exemplary 286-byte record con-

taining the ServerHello, Certificate and ServerHelloDone

messages is fragmented into ⌈286/23⌉=13 Tiny OS pack-

ets. However, when this record is transmitted on the wired

link, it is sent along with a 20-byte TCP header (TCP op-

tions increase the header size) and a 20-byte IP header. Al-

though the gateway terminates the TCP/IP connection (see

Figure 4), the security offered by SSL is end-to-end.

Tiny OS 1.1.0.
7There is considerable room for optimization here.

Figure 6. A screenshot of an ECCenabled
Mozilla browser communicating with Sizzle
embedded inside a wireless thermostat. Im-

ages linked to the HTML page are served from another location,

i.e. to conserve memory, these images are not stored inside Sizzle.

6. Experimental Results

Running the objdump utility on the Sizzle binary com-

piled for the ATmega128 shows that we use about 60KB

of program memory (out of the available 128KB) and con-

sume nearly 3150 out of the 4096 bytes of SRAM for global

or static objects.8 These numbers include resources used by

Tiny OS, our reliable transmission mechanism, SSL with

ECDH, RC4, SHA1 and MD5, and the HTTP/application

layer. On a Linux x86 platform, the size of the stripped Siz-

zle binary is under 27KB. This includes code/data used by

the MD5, SHA1 and RC4 algorithms, the SSL and HTTP

layers and a simple web page. It does not include ECDH

for which we currently do not have an x86 assembly imple-

mentation.9 The ECDH code in optimized AVR assembly

takes up 3682 bytes and we estimate the x86 assembly size

to be well under 4KB. Thus the estimated x86 binary size

of our complete secure web server is below 31KB. In com-

parison, the x86 binary size of MatrixSSL (only SSL and

cryptographic algorithms) is around 50KB [22].

We used tcpdump to monitor network traffic between a

Mozilla browser and Sizzle and used packet timestamps to

calculate the total time in fulfilling an HTTPS request (in-

cluding TCP connection setup, SSL handshake, HTTP re-

quest/response and TCP teardown). We performed these

experiments on two platforms (Mica2 and Mica2dot10),

with and without session reuse while transferring differ-

8Dynamic memory usage is slightly higher due to stack structures.
9Our MD5, SHA1 and RC4 implementations are written in C.

10The quarter-sized Mica2dot runs at 4MHz while the slightly larger

Mica2 runs at 7.37MHz.



Figure 7. Tiny OS packet exchange for transferring 450 bytes of data over HTTPS using (a) Full, and
(b) Abbreviated handshakes. The first two pulses depict NEWCONNECTION/ACK and the last two show DISCONNECT/ACK.

ent amounts of application data (˜450 bytes and ˜1350

bytes).11 Our results are shown in Table 1. The num-

bers in parentheses indicate SSL handshake latency as mea-

sured between the ClientHello and the last Finished mes-

sage. On the Mica2, a full handshake takes less than 4

seconds and an abbreviated handshake takes less than 1.2

seconds. The handshake overhead can be reduced further

by using persistent HTTP connections that enable multiple

request/response transactions within a single TCP connec-

tion (and handshake). On a Mica2dot, whose CPU runs 1.8

times slower, a full handshake takes around 5.6 seconds and

an abbreviated handshake around 1.6 seconds. This indi-

cates that data transmission is a fairly significant compo-

nent of the overall latency and reducing CPU time will have

a limited impact.

Table 1. Time (in seconds) for a complete

HTTPS transaction. SSL handshake time is
in parentheses.

Application data size (request + response)

450 bytes 1350 bytes

Full Abbrev. Full Abbrev.

Mica2 4.9 (3.8) 3.3 (1.2) 6.6 (3.9) 4.8 (1.1)

Mica2dot 7.0 (5.6) 3.7 (1.5) 8.8 (5.6) 5.6 (1.4)

Figure 7 shows the timing of Tiny OS packets in HTTPS

11More than 400 of these bytes are from the default Mozilla HTTP re-

quest header and this highlights the benefits of using a customized (or cus-

tomizable) SSL client for communicating with embedded devices.

transactions based on filtered measurements from the re-

ceive signal strength indicator (RSSI) pin of the CC1000

transceiver at the gateway. Each short pulse corresponds

to a Tiny OS packet sent from Sizzle to the gateway and

each tall pulse represents a packet in the other direction.

These figures illustrate the reliable transmission scheme de-

scribed earlier (including the use of NEWCONNECTION,

DISCONNECT, READY and ACK packets12). Gaps with-

out pulses represent periods when Sizzle is busy computing

or waiting for data, e.g. the largest gap in Figure 7(a) cor-

responds to Sizzle processing the ClientKeyExchange mes-

sage. This involves computing the premaster secret via an

ECDH operation and the derivation of symmetric keys for

use by the record layer. Figures 7(a) and (b) also show

that the time to symmetrically encrypt/decrypt application

data and compute/verify its message authentication code

is a small portion of its transmission time.13 Our reliable

transmission scheme has a fairly high overhead especially

when small data blocks are involved. For example, in a full

handshake, 21 signaling packets are sent for 26 data pack-

ets and 15 signaling packets are sent for 13 data packets

in an abbreviated handshake. Several of these can be pig-

gybacked with data or other signaling packets rather than

being sent separately. In spite of these shortcomings, the

overall performance of Sizzle is quite acceptable for the

kinds of potential applications envisioned for it: those in-

volving infrequent communication amongst a mostly static

set of entities.

The next generation of mote-like devices (MicaZ [7], Te-

12These samples do not show any NACKs.
13The gap between intervals g and h in Figure 7(a) is small compared to

the sum of those intervals.



Figure 8. Bytelevel contents of messages in a Full Handshake

los [20]) will have an IEEE 802.15.4 radio with much higher

data rates (250 kbps) such that we expect significantly lower

connection times. We are evaluating these new platforms

with respect to their wireless characteristics and a possible

redesign of our reliable transmission scheme.

We observed that data transmission consumes signifi-

cantly more energy than computation. For example, trans-

mitting 1 bit consumes as much energy as running the CPU

for over 2000 cycles. With the optimizations described in

Section 5, the total number of bytes exchanged in a full

SSL handshake is under 600 bytes. In contrast, for an RSA-

based handshake, the server’s certificate alone is typically

more than 600 bytes. Section 6.1 describes ways in which

the amount of data transmitted to establish an SSL connec-

tion can be further reduced.

6.1. Potential improvements

To decrease the latency and energy consumption associ-

ated with an SSL handshake, we propose protocol enhance-

ments that reduce the amount of data transmitted across the

wireless hop. Figures 8 and 9 show byte-level contents of

the messages exchanged between the OpenSSL s client pro-

gram and Sizzle. Large portions of these messages stay un-

changed between different connection requests to the same

server mote and need not be transmitted explicitly. Gate-

way and devices can agree upon such static information a

priori and permanently store or temporarily cache it. Static

information can either be manually pre-configured or ex-

changed in an automated discovery phase whereby the gate-

way solicits embedded devices in its vicinity to register

themselves. Only information that changes (shown shaded

in the figure) needs to be sent along with an identifier select-

ing a message ”template” (shown unshaded) for completion

of the message.

The Certificate message is an extreme example where

the entire content is fixed. Once device certificates have

been conveyed to the gateway, the Certificate message only

needs to carry a small certificate identifier (this could be

the first 4 bytes of the certificate’s MD5 hash) across the

wireless hop. The gateway would use this identifier to rein-

sert the appropriate device certificate in the Certificate mes-

sage before forwarding it on the TCP/IP connection. Sim-

ilarly, the y coordinate of the elliptic curve point (public

key) sent in the ClientKeyExchange can be deduced know-

ing the x coordinate and the curve equation. For a given

x coordinate, there can be two possible values for y so an

additional bit is needed to uniquely identify the y coordi-

nate.14 This data suppression/recreation functionality can

be implemented in special modules inserted between the

SSL record handler and the wireless transceiver at either

end of the wireless hop. As far as the layers above these

modules are concerned, the protocol is still SSL. This ap-

proach can reduce the amount of data transmitted by over

50% (from 534 bytes to 232 bytes) for a full SSL hand-

shake and almost 20% (from 251 bytes to 204 bytes) for an

abbreviated handshake (see Table 2).

Note that this scheme differs from SSL compression

which aims to reduce the amount of application rather than

handshake data. SSL compression works above the SSL

record layer and uses a generic data compression algorithm

14An elliptic curve equation has the form y2 = x3 + ax + b.



Figure 9. Bytelevel contents of messages in an Abbreviated Handshake

Uncompressed Compressed

Message(s) Representation

ClientHello (55*) ClientHelloTemplateID (1),

cipher suite len(2), cipher suite

list (12*), client random (32)

ServerHello (51), SvrHelloCertDoneTemplateID (1),

Certificate (231), server random (32), session Id (4)

ServerHelloDone (4) certificate Id (4)

ClientKeyExchange (51) ClntKeyExchTemplateID (1),

x co-ordinate (20), disambiguator

for y co-ordinate (1)

ChangeCipherSpec (6) CCSFinishedTemplateID (1),

Finished (65) encrypted payload of

Finished message (60)

(a) Full Handshake

Uncompressed Compressed

Message(s) Representation

ClientHello (58*) ClientHelloTemplateID (1),

cipher suite len(2),

cipher suite list (6*),

session Id (4),

client random (32)

ServerHello (51) SvrHelloTemplateID (1),

server random (32),

session Id (4)

ChangeCipherSpec (6) CCSFinishedTemplateID (1),

Finished (65) encrypted payload of

Finished message (60)

(b) Abbreviated Handshake

Table 2. Contents of handshake messages af

ter passing through the suppressor module.

Size in bytes shown within parentheses (*ac
tual value depends on client’s configuration).

(e.g. LZS or DEFLATE). The suppressor and recreator

modules described above sit underneath the record layer

and by using specific knowledge of the handshake messages

achieve a much higher compression ratio. Our approach

is similar to header compression schemes [6, 15] where

TCP/IP and other header portions that do not change are

not sent explicitly and small changes are conveyed by only

sending the differential; here, we extend this idea to a new

scenario (SSL connection set up) and not just to message

headers but their contents as well.

7. Conclusions

Sizzle, for the first time, brings the Internet’s dominant

security protocol (SSL) to devices with significant compu-

tational, memory and energy constraints. It uses public-

key cryptography, in the form of ECC, to offer scalable

key management and end-to-end security without sacrific-

ing efficiency. To the best of our knowledge, Sizzle running

on the Berkeley/Crossbow Mica2dot mote represents the

world’s smallest secure web server in terms of both phys-

ical dimensions and resource utilization. It is now possible

to embed a secure web server in a wide array of tiny devices

including home appliances, light fixtures, utility meters,

temperature and pressure sensors, sprinkler systems, per-

sonal medical devices and monitor/control them securely

across the Internet.
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