
Scientific Programming 10 (2002) 55–65 55
IOS Press

SKaMPI: a comprehensive benchmark for

public benchmarking of MPI

Ralf Reussnera,∗, Peter Sandersb and Jesper Larsson Träffc
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Abstract: The main objective of the MPI communication library is to enable portable parallel programming with high performance

within the message-passing paradigm. Since the MPI standard has no associated performance model, and makes no performance

guarantees, comprehensive, detailed and accurate performance figures for different hardware platforms and MPI implementations

are important for the application programmer, both for understanding and possibly improving the behavior of a given program on

a given platform, as well as for assuring a degree of predictable behavior when switching to another hardware platform and/or MPI

implementation. We term this latter goal performance portability, and address the problem of attaining performance portability

by benchmarking. We describe the SKaMPI benchmark which covers a large fraction of MPI, and incorporates well-accepted

mechanisms for ensuring accuracy and reliability. SKaMPI is distinguished among other MPI benchmarks by an effort to maintain

a public performance database with performance data from different hardware platforms and MPI implementations.

1. Introduction

The Message-Passing Interface (MPI) [6,15,29] is

arguably the most widespread communication inter-

face for writing dedicated parallel applications on (pri-

marily) distributed memory machines.1 The program-

ming model of MPI is a distributed memory model

with explicit message-passing communication among

processes, coupled with powerful collective operations

over sets of processes. MPI ensures portability of ap-

plication programs to the same extent that the supported

application programming languages C, C++, and For-

tran are portable, and is carefully designed to be effi-

∗The work described in this paper was done while this author

was at Lehrstuhl Informatik für Ingenieure und Naturwissenschaftler,

Universität Karlsruhe, Germany
1Throughout this paper MPI denotes the message-passing core of

the interface, MPI-1 [29]. We expressly say so when addressing

MPI-2 extensions.

ciently implementable on a wide variety of hardware
platforms. Indeed, many high-quality vendor imple-
mentations achieve MPI communication performance
close to that of their native communication subsystem.

Apart from basic semantic properties (liveness etc.)
there are no performance model or performance guar-
antees associated with MPI, and the MPI standard stip-
ulates no performance requirements for a valid MPI
implementation. Without empirical performance data
it is therefore not possible to predict/analyze the perfor-
mance of a parallel application using MPI, much less
to predict and obtain good performance when moving
to another platform and/or MPI implementation. Reli-
able figures for performance characteristics of MPI im-
plementations for as many different platforms as pos-
sible are indispensable to guide the design of efficient
and performance portable parallel applications with
MPI. Performance characteristics include the “raw”
performance of MPI communication primitives, both
for message-passing and collective communication for

ISSN 1058-9244/02/$8.00  2002 – IOS Press. All rights reserved



56 R. Reussner et al. / SKaMPI: a comprehensive benchmark for public benchmarking of MPI

varying parameters (message lengths, number of pro-

cesses), performance under “load” (e.g. bisection band-

width) or with typical communication patterns (e.g.

master-slave, ring), as well as comparative measure-

ments of different realizations of collective operations.

Such information allows the application programmer to

tune his application for a specific platform by choosing

the appropriate communication primitives, and to tune

for good performance across different platforms.

There are several benchmarks for MPI which partly

address these issues. In this paper we describe the Spe-

cial Karlsruher MPI benchmark, SKaMPI, which in

particular addresses the issue of cross platform perfor-

mance portability by maintaining a public performance

database of performance measurements for different

platforms. Some main features of SKaMPI are:

– Coverage of (almost) all of the MPI standard,

including collective operations and user-defined

datatypes.

– Assessment of performance under different com-

munication patterns, e.g. ping-pong and master-

slave.

– Automatic parameter refinement for accuracy, re-

liability and speed of benchmarking.

– Operation controlled by configuration files, which

allow for detailed and flexible planning of experi-

ments; the benchmark comes with a default set of

measurement suites.

– A report generator, which allows for automatic

preparation of measurements into a readable form.

– Last but not least a public performance database

available on the WWW, which allows for inter-

active comparison of MPI performance character-

istics across different implementations and plat-

forms.

The SKaMPI project was initiated by Ralf Reussner,

Peter Sanders, Lutz Prechelt and Matthias Müller at

the University of Karlsruhe in 1996-97 [23,25,28], and

has since then developed with new features and broader

MPI coverage [26]. The interactive WWW-database

was implemented by Gunnar Hunzelmann [11,24].

URL of the SKaMPI-project:

http://liinwww.ira.uka.de/˜skampi/

1.1. Related work

Benchmarking has always played an important role

in high-performance computing. For MPI, several

benchmarks exist which differ in philosophy, goals, and

level of ambition. In this section we briefly review
some other well-known MPI benchmarks in relation to
SKaMPI; the discussion is not meant to be exhaustive.
A general discussion of problems and pitfalls in (MPI)
benchmarking can be found in [7] and [10]; SKaMPI
adheres to the sound advice of these papers.

Benchmarking of application kernels [1,2,18] is tra-
ditionally used to get an idea of the overall performance
of a given machine, but such benchmarks measure com-
munication in a specific, complex context and can only
indirectly be used to guide the development of efficient
programs.

A widely used MPI benchmark is the mpptest

shipped with the MPICH implementation of MPI [8,
16]; it measures nearly all MPI operations, but is
less flexible than SKaMPI and has limited coverage
of user-defined datatypes. The low-level part of the
PARKBENCH benchmarks [18] measures communi-
cation performance and provides a result database,
but does not give much information about the perfor-
mance of individual MPI operations. The MPI part of
P.J. Mucci’s Low-Level Characterization Benchmarks

(LLCbench) [13], mpbench, pursues similar goals to
SKaMPI, but it covers only a part of MPI and makes
rather rough measurements assuming a “dead” ma-
chine. The Pallas MPI Benchmark (PMB) [17] is easy
to use and has a simple, well-defined measurement pro-
cedure, but covers relatively few functions, and offers
no graphical evaluation. PMB is one of the few MPI
benchmarks that covers MPI-2 functionality (one-sided
communications, some MPI-I/O). Rolf Rabenseifner’s
effective bandwidth benchmark [4] attempts to give a
realistic picture of the achievable communication band-
width. Bandwidth is measured by a ring pattern over
all processes, which is implemented using both simple
send and receive operations, as well as by a collective
MPI_Alltoallv operation. Results from a number
of high-performance platforms are publicly available.
The effective bandwidth benchmark has recently been
complemented by a similar I/O benchmark [20,21].

A comparison of SKaMPI, PMB, mpptest and
mpbench benchmarks is given in [14] for benchmark-
ing MPI on an SGI Origin2000. The benchmarks give
roughly similar results, but differ in finer details due to
different assumptions on use of cache, and placement
and size of communication buffers. The mpbench

is confirmed to be sensitive to other activities on the
machine.

Many studies measure selected functions in more
detail [5,19,22] but the codes are often not publicly
available, not user configurable, and not designed for
ease of use, portability, and robust measurements.
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2. Performance considerations

MPI is an extensive interface and communication can

be expressed in many different ways. MPI offers two

basic types of communication: point-to-pointmessage-

passing where information is passed explicitly between

a sending and a receiving process, and collective com-

munication where a set of processes jointly performs a

communication operation, possibly involving compu-

tation as in MPI_Reduce. For the applications pro-

grammer this raises a number of questions to be an-

swered in order to get the best possible performance on

a given platform/MPI implementation, as well as for

being able to obtain and/or predict performance when

moving to a different platform/MPI implementation.

Selection of communication mode: MPI differenti-

ates between blocking and non-blocking point-to-point

communication, which can be further adapted by dif-

ferent communication modes: standard, synchronous,

ready and buffered. There also exist specialized com-

pound operations like MPI_Sendrecv for simulta-

neous sending and receiving of data. It is possible to

receive non-deterministically by using wildcards like

MPI_ANY_TAG and/or MPI_ANY_SOURCE. The per-

formance of point-to-point communication thus de-

pends on the application context, the MPI implemen-

tation, and hardware capabilities that may allow espe-

cially efficient implementations of some of these prim-

itives in special contexts.

Use of collective operations: A number of collective

operations are available, but are not always used, either

because they are not sufficiently known, or because

their implementation is distrusted by some users. The

question is whether an available MPI library provides

good implementations. Do the implementations com-

pare favorably to simple(r), ad hoc point-to-point based

implementations?

Use of compound collectives: The MPI standard of-

fers certain compound collective operations (MPI_

Allreduce, MPI_Allgather, and others) that

can easily be expressed in terms of more primitive

collectives (e.g. MPI_Reduce, MPI_Gather, and

MPI_Bcast). These compound operations are in-

cluded in MPI since better algorithms than simple con-

catenation of more primitive collectives exist. Is this

exploited in a given MPI implementation?

MPI user-defined datatypes: MPI has a powerful

mechanism for working with user-structured, possibly

non-consecutive data, but not all MPI implementations

support user-defined datatypes equally well [9,30,26].

Is the best performance achieved by maintaining non-

consecutive data “manually” or by relying on the MPI

mechanism?

3. The SKaMPI benchmark

The SKaMPI benchmark package consists of three

parts: the skampi.c benchmarking program itself,

an optional post-processing program (also a C pro-

gram), and a report generation tool (a Perl script). It

is complemented by an interactive public database of

benchmark results, accessible through the WWW. A

run of SKaMPI is controlled by a configuration file,

.skampi, which can be modified for more selective

or detailed benchmarking. A default configuration file

defines a standard run of the benchmark, and the re-

sults from such a run can be reported to the SKaMPI

database.

The configuration file starts with a preamble identi-

fying the benchmarker, the MPI implementation, and

the machine and network used. It defines output and

logfiles, and sets various default values. For the stan-

dard configuration file only the @MACHINE, @NODE,

@NETWORK, @MPIVERSION and @USER fields have

to be modified. The @MEMORY field controls the to-

tal size of communication buffers per processor (in

KBytes). Figure 1 shows a sample configuration file.

We refer to this example in the following.

The benchmark program produces an ASCII text file

skampi.out (selected by @OUTFILE) in a docu-

mented format [27]; it can be further processed for var-

ious purposes. The post-processing program is only

needed when the benchmark is run several times (see

Section 4.3). Post-processing can also be done by

SKaMPI itself by setting @POSTPROC to yes. The

report generator reads the output file and generates a

postscript file containing a graphical representation of

the results. This includes comparisons of selected mea-

surements. The report generator can also be customized

via a parameter file. Reports (actually: output files) are

collected in the SKaMPI result database in Karlsruhe,

which can be queried for both textual and graphical

presentation of results (including downloadable encap-

sulated postscript figures).

The @MEASUREMENT keyword starts the descrip-

tion of the actual experiments to be performed. This is



58 R. Reussner et al. / SKaMPI: a comprehensive benchmark for public benchmarking of MPI

@MACHINE IBM SP

@NODE thin

@NETWORK hpf-switch3

@MPIVERSION aix-mpi library

@USER R. Reussner

@MEMORY 8192

@OUTFILE skampi.out

@LOGFILE skampi.log

...

@POSTPROC no

@CACHEWARMUP 5

@BASETYPE1 MPI_INT

@MEASUREMENTS

MPI_Send-MPI_Recv-dynamicVector1

{

Type = 1;

Basetype_Number = 1;

Send_Datatype_Number = 50;

Receive_Datatype_Number = 50;

Variation = Length;

Scale = Dynamic_log;

Max_Repetition = Default_Value;

Min_Repetition = Default_Value;

Multiple_of = Default_Value;

Time_Measurement = Invalid_Value;

Time_Suite = Invalid_Value;

Node_Times = yes;

Cut_Quantile = Default_Value;

Default_Chunks = 0;

Default_Message_length = 256;

Start_Argument = 0;

End_Argument = Max_Value;

Stepwidth = 1.414213562;

Max_Steps = Default_Value;

Min_Distance = 2;

Max_Distance = 512;

Standard_error = Default_Value;

}

Fig. 1. A .skampi configuration file with a one-measurement suite.

a list of named measurement suites, each of which con-

trols a set of measurements to be performed. The con-

figuration file in Fig. 1 lists only the single suite named

MPI_Send-MPI_Recv-dynamicVector1. Each

suite has a Type which identifies the pattern used to

control and time the execution of the MPI operations to

be benchmarked. More precisely a type is an instance

of one of the four SKaMPI patterns to a specific combi-

nation of MPI functions. Individual measurements with

given parameters are repeated a number of times deter-

mined by default value settings (Max_Repetition,

Min_Repetition) and by SKaMPI’s adaptive pa-

rameter refinement mechanism. The set of measure-

ments to be performed by a suite is furthermore deter-

mined by the selected dimension to be varied along,

which can be either message length, number of pro-

cesses, or number of chunks (for the master-worker

Pattern Type MPI operations

Ping- 1 MPI_Send – MPI_Recv
pong 2 MPI_Send –

MPI_Recv(MPI_ANY_TAG)
3 MPI_Send – MPI_Irecv
4 MPI_Send –

MPI_Iprobe – MPI_Recv
5 MPI_Ssend – MPI_Recv
6 MPI_Isend – MPI_Recv
7 MPI_Bsend – MPI_Recv
8 MPI_Sendrecv

9 MPI_Sendrecv_replace

34 MPI_Issend

Collective 17 MPI_Bcast

18 MPI_Barrier

19 MPI_Reduce

20 MPI_Alltoall

21 MPI_Scan

22 MPI_Comm_split

23 memcpy

33 MPI_Gather

35 MPI_Scatter

36 MPI_Allreduce

37 MPI_Reduce – MPI_Bcast
38 MPI_Reduce_scatter

39 MPI_Allgather

40 MPI_Scatterv

41 MPI_Gatherv

42 MPI_Allgatherv

43 MPI_Alltoallv

44 MPI_Reduce –
MPI_Scatterv

45 Gatherv by
MPI_Send – MPI_Recv

46 Gatherv by MPI_Isend
MPI_Irecv – MPI_Waitall

Master- 10 MPI_Waitsome

Worker 11 MPI_Waitany

12 MPI_Recv(MPI_ANY_SOURCE)
13 MPI_Send

14 MPI_Ssend

15 MPI_Isend

16 MPI_Bsend

Simple 24 MPI_Wtime

25 MPI_Comm_rank

26 MPI_Comm_size

27 MPI_Iprobe (unsuccessful)
28 MPI_Buffer_attach

Fig. 2. The instances (column Type) of the SKaMPI patterns.

pattern). For variation along message length, inter-

val and stepwidth must be given (Start_Argument,

End_Argument, and Stepwidth). The overall

time which should be spend measuring this suite can

be set in Time_Suite. Table 2 lists the currently

existing types of suites and the patterns to which they

belong. A SKaMPI run is the results for the whole list

of suites.

3.1. The patterns

The way execution times are measured and reported,

and the way a set of measurements is coordinated is de-

termined by a so-called pattern, of which SKaMPI cur-

rently has four. These predefined measurement strate-
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gies make it easy to extend SKaMPI with new pattern

instances to cover new MPI functions and/or MPI func-

tions in new contexts. Only a small core function with

the proper MPI calls has to be written; the measurement

infrastructure of the pattern is automatically reused. All

current pattern instances are listed in Table 2.

The ping-pong pattern coordinates point-to-point

communication between a pair of processors. The ping-

pong exchange is between two processors with maxi-

mum ping-pong latency; this in order to avoid mislead-

ing results on clusters of SMP machines. SKaMPI au-

tomatically selects such a pair based on measurements.

Time is measured for one of the processes. Parame-

ter variation is on message Length. There are cur-

rently 9 instances of the ping-pong pattern, correspond-

ing to (some of) the possible combinations of blocking

and non-blocking communication calls under different

modalities.

The collective pattern measures operations that are

collective in the sense that all processors play a

symmetric role. Processors are synchronized with

MPI_Barrier. Execution time is measured on pro-

cess 0 (the root), and the running time of the barrier

synchronization is subtracted. Parameter variation can

be either on message Length or number of Nodes.

There are instances of the collective pattern for all col-

lective MPI communication operations, for collective

bookkeeping operations like MPI_Comm_split, and

for some collectives implemented with point-to-point

communication (e.g. gather-functions). There is also

an instance of the collective pattern for measuring the

performance of thememcpy function. This can be used

to compare memory bandwidth with communication

performance.

Master-worker pattern: Certain performance-relevant

aspects such as the contention arising when one proces-

sor simultaneously communicates with several other

processors cannot be captured by the ping-pong pat-

tern. To compensate for this a master-worker-pattern is

introduced. A master process partitions a problem into

smaller chunks and dispatches them to several worker

processes. These workers send their results back to the

master which assembles them into a complete solution.

Time is measured at the master process. Variation on

message Length, number of Chunks, and number

of Nodes is possible. Currently 7 instances of this

pattern are implemented.

The simple pattern measures MPI-operations with

local completion semantics such as MPI_Wtime,

MPI_Comm_rank, and unsuccessful MPI_Iprobe.

No parameter variation is possible.

3.2. User-defined datatypes

The MPI user-defined datatypes is a mechanism for

describing the layout of user data in memory to the

MPI implementation. All MPI communication oper-

ations can operate with complex data described by a

user-defined datatype. Communication performance is

usually dependent on the datatype, and the extent to

which different MPI implementations work well with

user-defined datatypes is known to vary. To be able to

assess the quality of the datatype handling, SKaMPI in-

corporates a set of datatype patterns that is orthogonal

to the communication pattern instances.

In SKaMPI the data used in a measurement suite are

structured according to either a base type or a datatype

pattern over a base type. Base types are defined in

the preamble (@BASETYPE1, . . . ), and can be ei-

ther a built-in MPI type (e.g. MPI_INT, MPI_CHAR,

MPI_DOUBLE), or a simple structure given by a se-

quence of triples (ci, oi, ti) each consisting of repeti-

tion count, offset, and an built-in MPI type. As the unit

of communication either a base type or a type pattern

over a base type is selected (Basetype_Number,

Send_Datatype_Number, andRecv_Datatype

_Number). SKaMPI contains a number of fixed type

patterns, including instances of all MPI type construc-

tors, as well as various nested types. Type patterns can

be further customized in the preamble. All type patterns

are constructed to have the same size, i.e. encompass

the same amount of data. Therefore send and receive

type can be chosen independently, and can be different

type patterns. This gives rich possibilities to gauge the

handling of user-defined datatypes of a given MPI im-

plementation. The datatype patterns are described in

more detail in [26].

4. Measurement mechanisms

We now describe SKaMPI’s approach to efficiently

measure execution times to a given relative accuracy

ǫ. The standard error is set in each suite by the

Standard_error parameter.
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4.1. A single parameter setting

Each SKaMPI result is eventually derived from mul-

tiple measurements of single calls to particular MPI

functions as determined by the pattern instances, e.g. in

the corresponding ping-pong pattern instance measure-

ments of an MPI_Send followed by an MPI_Recv

call for given message lengths. For each measurement,

the number n of repetitions needed to achieve the re-

quired accuracy with the minimum effort is determined

individually. We need to control both the systematic

and the statistical error.

A systematic error occurs due to the measurement

overhead including the call of MPI_Wtime. It is usu-

ally small and can be corrected by subtracting the time

for an empty measurement. Additionally, the user can

choose to “warm up” the cache by setting the number

of dummy@CACHEWARMUP calls to the MPI functions

before actual measuring is started.

Individual measurements are repeated in order to

control three sources of statistical error: finite clock

resolution, execution time fluctuations from various

sources, and outliers. The total time for all repetitions

must be at least MPI WTick/ǫ in order to adapt to the

finite resolution of the clock. Execution time fluctua-

tions are controlled by monitoring the standard error

σx̄ := σ/
√

n where n is the number of measurements,

σ =
√

∑

n

i=1
(xi − x̄)2/n is the measured standard de-

viation, and x̄ =
∑n

i=1
xi/n is the average execution

time. The repetition is stopped as soon as σx̄/x̄ < ǫ.

Additionally, upper and lower bounds on the number

of repetitions are imposed, Min_Repetition and

Max_Repetition. Under some operating condi-

tions one will observe huge outliers due to external de-

lays such as operating system interrupts or other jobs.

These can make x̄ highly inaccurate. Therefore, we ig-

nore the slowest and fastest run times before computing

the average, as determined by Cut_Quantile. Note

that we cannot just use the median of the measured val-

ues, because its accuracy is limited by the resolution of

the clock.

4.2. Adaptive parameter refinement

In general we would like to know the behavior of a

communication routine over a range of possible values

for the message length m and the number P of proces-

sors involved. SKaMPI varies only one of these param-

eters at a time. Two-dimensional measurements must

be written as an explicit sequence of one-dimensional

measurements.

∆ 1
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Fig. 3. Deciding on the refinement of a segment (mb, tb)−(mc , tc).

Let us focus on the case were we want to find the ex-

ecution time tP (m) for a fixed P and message lengths

in [mmin, mmax].
First, we measure at mmax and at mminγ

k for all k
such that mminγ

k < mmax, with γ > 1. On a logarith-

mic scale these values are equidistant. Now the idea is

to adaptively subdivide those segments where a linear

interpolation would be most inaccurate. Since nonlin-

ear behavior of tP (m) between two measurements can

be overlooked, the initial stepwidth γ should not be too

large (γ =
√

2 or γ = 2 are typical values). Figure 3

shows a line segment between measured points (mb, tb)
and (mc, tc) and its two surrounding segments. Ei-

ther of the surrounding segments can be extrapolated

to “predict” the opposite point of the middle segment.

Let ∆1 and ∆2 denote the prediction errors. We use

min(|∆1| /tb, |∆2| /tc, (mc −mb)/mb) as an estimate

for the error incurred by not subdividing the middle

segment. The reason for the last term in the minimum is

to avoid superfluous measurements near sharp jumps in

running times which often occur where an MPI imple-

mentation switches to a different communication pro-

tocol. We keep all segments in a priority queue. If mb

and mc are the abscissae of the segment with largest

error, we subdivide it at
√

mbmc. We stop when the

maximum error drops below ǫ or the upper bound on

the number of measurements is exceeded. In the latter

case, the priority queue will ensure that the maximum

error is minimized given the available computational

resources.

4.3. Multiple runs

If a measurement run crashed, the user can simply

start the benchmark again. SKaMPI will identify the

measurement which caused the crash, try all suites not

measured yet, and will finally retry the suite which led

to the crash. This process can be repeated.
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Fig. 4. The WWW interface for querying the result database.

If no crash occurred, all measurements are repeated

yielding another output file. Multiple output files can

be fed to a post-processor which generates an output

file containing the medians of the individual measure-

ments. In this way the remaining outliers can be filtered

out which may have been caused by jobs competing

for resources or system interrupts taking exceptionally

long.

4.4. Cache behavior

Whether data is sent from cache or not can make

a large difference in communication performance. A

benchmark that is used for program design should

therefore state its assumptions regarding the cache con-

tent during communication. In SKaMPI the assump-

tion is that code, MPI internal data, and user data will

as far as possible reside in cache. SKaMPI therefore
provides the simple means of “warming up” the cache
outlined above. The main reason for “warming up” is

that this avoids the effect that the first single measure-
ment takes much longer than later repetitions so that
the variance of the measured times is increased. Com-
munication of data outside the cache can be measured

by choosing message lengths that are larger than the
size of the cache. A different caching assumption is
made by mpptest, which makes an effort to ensure

that the user data sent is not in the cache [7].

5. The result database

The SKaMPI result database has two WWW user-
interfaces. One is for downloading detailed reports of

the various runs on all machines. The other interface
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Fig. 5. Performance of compound send-receive for the Hitachi SR 8000, Cray T3E and NEC SX-5.

enables interactive comparison of measurements for

different pattern instances/machines. A snapshot of

this interface is shown in Fig. 4. Querying the database

takes three steps:

1. Choosing a run. The user selects one or more

machine(s) of interest. On some machines sev-

eral runs may have been performed, for example

with different number of MPI processes, and it

is possible to choose among these. Selection of

runs is done in the upper left part of the browser

window.

2. Choosing the suites. After selecting the runs the

database is queried for the suites of these runs.

The available suites for each selected run are pre-

sented at the upper right part of the browser-

window. For each run the suites of interest are

selected; results from different runs can be com-

bined.

3. Finally the database is queried for the selected

measurements, and a single plot for all selected

suites is created. The plot is shown in the lower

half of the browser window,and can also be down-

loaded as an encapsulated postscript file. It is also

possible to zoom into the plot.

The detailed design of the database is described

in [11].

6. Examples

The public database currently has results for the de-

fault set of suites for Fujitsu VPP 300, Hitachi SR 8000,

IBM RS 6000, NEC SX-5, SGI Origin 2000, Cray T3E.

All results are supplied by users, who have run SKaMPI

on their machine. We give three examples of the use of

the benchmark database.

In Fig. 5 the performance of the MPI_Sendrecv

primitive as measured with ping-pong pattern instance

8 on the Hitachi SR8000, the Cray T3E, and the NEC

SX-5 is given. The suite varies on message length, and

shows many cases of adaptive parameter refinement

(high concentration of measurements). The shapes of

the curves are sufficiently similar that Sendrecvwill

probably not pose problems when porting applications

among these machines.

In Fig. 6 we compared four different ping-pong pat-

tern instances on the Hitachi SR 8000, namely block-

ing send-recv, non-blocking either send or receive, and

compound send-receive. It is worth noticing that the

compound send-receive is clearly better than the other

alternatives, about a factor 2 for short messages up

to 1 KBytes. For this machine it thus seems advis-

able to use MPI_Sendrecv wherever possible. Sim-

ilar, or even more complicated pictures appear for the

other machines; in particular, the advice to always use

MPI_Sendrecv is not universally true. The user may
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Fig. 7. Two implementations of a gather operation on the IBM RS 6000 SP. Variation over number of processors, message length 256 bytes.

Measurements performed on the machine installed in Karlsruhe, February 2000.

gain performance on a particular machine by looking
more closely in this direction.

Our last example investigates the implementation
of the MPI_Gather collective on the IBM RS 6000
SP [28,24]. SKaMPI has a corresponding collective

pattern instance, as well as two pattern instances which
measure “hand-written” implementations of the gather
functionality using point-to-point communication (see
Table 2). Figure 7 compares the vendor implemented
MPI_Gather-operation to an implementation with
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blocking send and receive operations for fixed, short

messages of 256 bytes, varied over number of pro-

cessors. For short messages the hand-written, naive

implementation performs significantly better than the

MPI_Gather implementation of the vendor MPI li-

brary. Findings like this may discourage users from

relying on the MPI collectives, but should rather incite

vendors to improve their library.

7. Future extensions

Although many aspects of MPI are covered by

SKaMPI, there is still room for improvements in vari-

ous directions. Of immediate concern are more collec-

tive pattern instances, e.g. for ring-communication (as

in the effective bandwidth benchmark [4]), for “bisec-

tion bandwidth” where half the processes simultane-

ously communicate with the other half, and for more al-

ternative implementations of collective operations, ei-

ther in terms of point-to-point communication or in

terms of other MPI collectives.

The benchmarking of the “irregular” (or vector)

variants of MPI collectives like MPI_Alltoallv is

rather rudimentary, in particular there is no room for

individually varying the amount of data communicated

between each pair of processes. In future versions of

SKaMPI it should be made possible to select among

different distributions and vary more flexibly over mes-

sage lengths. Also more accurate measurement mech-

anisms for collective operations should be considered,

see [3].

Another natural extension is towards MPI-2 func-

tionality [6]. Particularly relevant, but also easy to

incorporate in the existing patterns is the one-sided

communications, but perhaps also I/O should be cov-

ered by the benchmark; for some thoughts on MPI-IO

benchmarking, see [12,17,20,21]. More flexible con-

trol over cache utilization may be required for realistic

I/O benchmarking.

8. Summary

In the absence of an analytical performance model

for MPI, accurate, reliable, and realistic benchmark

data are necessary to guide the development and tuning

of application programs. We described the SKaMPI

benchmark which performs such detailed benchmark-

ing of a large fraction of MPI, both in isolation and in

more complex (master-worker) patterns. Not covered

are the construction of datatypes and the construction
and use of user-defined topologies. Complemented by
application kernels benchmark, SKaMPI can give a re-
alistic picture of the performance of a given MPI im-
plementation on a given machine. The SKaMPI project
is distinguished from other MPI benchmarks by a di-
rected effort to collect results from a standard run into
a public performance database. This public database
can be a powerful aid to users who want to port their
application to a machine to which they do not yet have
access.

The most obvious problem with maintaining a public
result database is that results get obsolete; this is espe-
cially so since benchmark results are supplied voluntar-
ily by users. To keep up with the technical progress in
MPI implementations and changes of machine details,
support by vendors would be welcome.
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