
ABSTRACT

TAFAZZOLI YAZDI, ALI. Skart: A Skewness- and Autoregression-Adjusted Batch-Means Procedure

for Simulation Analysis. (Under the direction of Professor James R. Wilson).

We discuss Skart, an automated batch-means procedure for constructing a skewness- and

autoregression-adjusted confidence interval (CI) for the steady-state mean of a simulation output pro-

cess in either discrete time (i.e., observation-based statistics) or continuous time (i.e., time-persistent

statistics). Skart is a sequential procedure designed to deliver a CI that satisfies user-specified require-

ments concerning not only the CI’s coverage probability but also the absolute or relative precision

provided by its half-length. Skart exploits separate adjustments to the half-length of the classical batch-

means CI so as to account for the effects on the distribution of the underlying Student’s t-statistic that

arise from skewness (nonnormality) and autocorrelation of the batch means. The skewness adjustment

is based on a modified Cornish-Fisher expansion for the classical batch-means Student’s t-ratio, and

the autocorrelation adjustment is based on an autoregressive approximation to the batch-means pro-

cess for sufficiently large batch sizes. Skart also delivers a point estimator for the steady-state mean

that is approximately free of initialization bias. The duration of the associated warm-up period (i.e.,

the statistics clearing time) is based on iteratively applying von Neumann’s randomness test to spaced

batch means with progressively increasing batch sizes and interbatch spacer sizes. In an experimen-

tal performance evaluation involving a wide range of test processes, Skart compared favorably with

other simulation analysis methods—namely, its predecessors ASAP3, WASSP, and SBatch as well as

ABATCH, LBATCH, the Heidelberger-Welch procedure, and the Law-Carson procedure. Specifically,

Skart exhibited competitive sampling efficiency and substantially closer conformance to the given CI

coverage probabilities than the other procedures.

Also presented is a nonsequential version of Skart, called N-Skart, in which the user supplies

a single simulation-generated series of arbitrary length and specifies a coverage probability for a CI

based on that series. In the same set of test processes previously mentioned and for a range of data-set

sizes, N-Skart also achieved close conformance to the specified CI coverage probabilities.
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Chapter 1

Introduction

Discrete-event simulation concerns the modeling of a system as it evolves over time by a nu-

merical (computer-based) representation in which the state variables change at only a countable number

of points in simulation time. This technique can be used to model a real or proposed system so that the

behavior of the system can be studied under specific conditions. Most simulations can be classified as

either finite-horizon or steady-state. Finite-horizon (terminating) simulation models are ended at a spe-

cific time or by the occurrence of a specific condition. On the other hand, steady-state (nonterminating)

simulations operate (at least conceptually) into the indefinite future; and in this case interest centers on

long-run average performance. Analysis of the outputs generated by steady-state simulation models is

the focus of this research.

Let fX1; X2; : : :g be the discrete-time stochastic process representing the output from a single

run of a nonterminating simulation. If the simulation is in steady-state operation, then the random

variables X1; X2; : : : will all have the same steady-state distribution function, FX .x/ D PrfXi � xg
for all real x and for i D 1; 2; : : :. In discrete-event stochastic simulation, we are usually interested

in constructing point and confidence-interval (CI) estimates for some parameter, or characteristic, of

the steady-state distribution function FX .x/ of a discrete- or continuous-time output process. In this

research, we are primarily interested in estimating the steady-state mean �X D EŒX� D
R C1

�1 x dFX .x/

of a selected univariate simulation output process fXi W i D 1; 2; : : :g generated by a single prolonged

simulation run; and we limit the discussion to output processes for which EŒX2i � < 1 so that the

process mean �X and the process variance �2
X
D VarŒX� D EŒ.Xi � �X /2� are well defined. Given an

output sequence of length n generated by a simulation in steady-state operation, we know that a natural



2

point estimator of �X is the sample mean

xX D xX.n/ D n�1
nX

iD1

Xi :

The inherent variability associated with this point estimator of �X leads us to the idea of estimating the

variance of xX and of constructing a CI estimator for �X . An estimator of the process variance �2X is the

sample variance,

S2 D 1

n � 1

nX

iD1

.Xi � xX/2:

When we require some indication of precision of the point estimator xX , if the Xi ’s are independent

and identically distributed (i.i.d.) according to N.�X ; �
2
X
/, a normal distribution with mean �X and

variance �2
X

, then we typically construct a valid CI for �X as follows,

xX ˙ t1�˛=2;n�1
Sp
n
; (1.1)

with a user-specified coverage probability 1 � ˛, where 0 < ˛ < 1. In the above equation, t1�˛=2;n�1

is the .1 � ˛=2/-quantile of Student’s t-distribution with n � 1 degrees of freedom. In general, an

appropriate CI for �X should satisfy two criteria: (a) it is narrow enough to be informative; and (b)

its actual probability of covering the point �X is equal (or at least sufficiently close) to the nominal

level 1 � ˛. In general we say a CI is valid for all stochastic processes satisfying certain conditions if

criterion (b) is satisfied exactly for all ˛ 2 .0; 1/ when the CI is computed from any process satisfying

those conditions. As elaborated in the rest of this dissertation, the condition that the fXig are i.i.d.

N.�X ; �
2
X
/ is rarely satisfied by a steady-state simulation output process; and the classical CI (1.1) is

frequently not valid, or even approximately valid, in steady-state simulation experiments.

1.1. Motivation and Problem Statement

Three fundamental problems arise in analyzing output from a stochastic steady-state simula-

tion [41]. The first problem is caused by a transient in the initial sequence of responses that is due to

the system’s starting condition. It is usually impossible to start a simulation in steady-state operation,

thereby making it necessary to do the following: (a) start the simulation in some convenient initial

condition that may not be typical of steady-state operation; and (b) select the duration of the warm-up

period (i.e., the data-truncation point or statistics clearing time) so that beyond the warm-up period, the



3

mean of each simulation-generated observation is sufficiently close to the steady-state mean. If obser-

vations prior to the end of the warm-up period are included in the analysis, then the resulting estimator

may be biased [41]; and such bias in the point estimator can severely degrade not only the accuracy

of the point estimator but also the probability that the associated CI will cover the steady-state mean.

In other words, initialization bias can cause not only a grossly misleading simulation-based point es-

timate of long-run system performance but also wildly optimistic indications of the inherent accuracy

and reliability of the simulation-based results, where the term accuracy refers to the magnitude of the

estimation error and the term reliability refers to the CI’s nominal (user-specified) coverage probability.

This is known as the start-up, or initialization bias, problem.

The second fundamental problem in steady-state simulation analysis is the correlation prob-

lem caused by pronounced stochastic dependencies among successive responses generated within a

single simulation run. This phenomenon complicates the construction of a CI for the steady-state mean

because standard statistical methods require i.i.d. normal observations to yield a valid CI.

The third fundamental problem in steady-state simulation analysis is closely related to the

second problem mentioned above—specifically, it is the nonnormality problem caused by pronounced

departures from normality in the simulation-generated responses.

Several methods have been proposed for solving the previously mentioned problems in the

analysis of steady-state simulation experiments. For reasons elaborated in Chapter 2, the method of

nonoverlapping batch means (NBM) is by far the most widely used and most efficient output analysis

procedure in practical applications for which initialization bias, correlation, or nonnormality are signifi-

cant effects [32]. In the NBM method, the sequence of simulation-generated outputs fXi W i D 1; : : : ng
is divided into k adjacent nonoverlapping batches, each of size m, where both k and m are sufficiently

large to ensure that the resulting batch means are at least approximately i.i.d. normal random variables.

The sample mean for the j th batch is

Yj .m/ D
1

m

mjX

iDm.j�1/C1

Xi for j D 1; : : : ; kI (1.2)

and the grand mean of the individual batch means,

xY D xY .m; k/ D 1

k

kX

jD1

Yj .m/; (1.3)

is used as the point estimator for �X . The objective is to construct a CI estimator for �X that is centered
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on a point estimator as in Equation (1.3), where in practice some initial observations (or batches) may

be deleted (truncated) to eliminate the effects of initialization bias.

We assume that the original simulation-generated process fXig is stationary (in the strict

sense) so that the joint distribution of the Xi ’s is insensitive to time shifts. We also assume the pro-

cess is weakly dependent—that is, Xi ’s widely separated from each other in the sequence are almost

independent (in sense of �-mixing; see [8]) so that the lag-q covariance,



X
.q/ � EŒ.XiCq � �X / � .Xi � �X /� for q D 0;˙1;˙2; : : : ;

satisfies 

X
.q/ ! 0 sufficiently fast as jqj ! 1. These weakly dependent processes typically obey a

Central Limit Theorem of the form

p
n
h
xX.n/ � �X

i
D�!

n!1
N.0; 


X
/; (1.4)

where



X
� lim
n!1

nVarŒ xX.n/� D
1X

qD�1



X
.q/

is the steady-state variance parameter (SSVP) (as distinguished from the process variance �2X �VarŒXi �

D 

X
.0/), and the symbol

D�!
n!1

denotes convergence in distribution. A sufficient condition for 

X

to

exist is that
P1
qD�1 j
X.q/j <1. General conditions under which (1.4) holds are given, for example,

in Theorem 20.1 of Billingsley [8].

Although some output analysis methods attempt to estimate the steady-state variance param-

eter 

X

in constructing a CI for �X , the classical NBM method does not. A key assumption of the NBM

method is that the batch size m is sufficiently large so that the batch means fYj .m/ W j D 1; : : : ; kg are

approximately i.i.d. normal variates,

fYj .m/ W j D 1; : : : ; kg
i.i.d.
� N Œ�X ; �

2
X .m/=m�; (1.5)

where the symbol
i.i.d.
� is read “is independent and identically distributed as”; and

�2X .m/ D m � VarŒYj .m/� D 
X .0/C 2
m�1X

`D1

�
1 � `

m

�


X
.`/:
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It follows that limm!1 �2
X
.m/ D 


X
and VarŒYj .m/� � 


X
=m, provided that m is sufficiently large.

Then we can apply the classical results concerning Student’s t-distribution to compute a CI for �X by

computing the sample variance of the batch means,

S2m;k D
1

k � 1

kX

jD1

ŒYj .m/ � xY .m; k/�2: (1.6)

Under the same weak dependence conditions that are sufficient to ensure (1.4) as m!1 with k fixed

so that n D mk !1, an asymptotically valid 100.1 � ˛/% CI for �X is

xY .m; k/˙ t1�˛=2;k�1

Sm;kp
k
: (1.7)

The main difficulty with conventional NBM procedures such as the Law-Carson [40] proce-

dure, ABATCH, and LBATCH [19] is the reliable determination of an adequate batch sizem so that the

batch means fYj .m/g are approximately uncorrelated and normal. For an elaboration of this issue, see

for example Steiger et al. [54].

1.2. Scope and Objectives of Research

As explained in the previous section and also by Damerdji [17] in more detail, general con-

ditions are known under which the batch-means method leads to a strongly consistent estimator of the

variance of the sample mean and to an asymptotically valid CI for the steady-state mean. However,

these conditions cannot be easily verified in practice. The principal purpose of this research is to de-

velop a practical and efficient implementation of the batch-means method that is accessible to a large

audience of potential users and that can fill the gap between theory and practice.

In this research, we develop and evaluate Skart (stands for: Skewness- and autoregression-

adjusted Student’s t analysis; skart, or scart, is also an obsolete English word that means “to gather

together carefully” [44])—a new procedure for steady-state simulation output analysis which can be

considered as an extension of the classical method of NBM. Skart addresses the start-up problem by

successively applying the randomness test of von Neumann [61] to spaced batch means with progres-

sively increasing batch sizes and interbatch spacer sizes. Skart addresses the normality problem by

a modified Cornish-Fisher expansion for the classical batch-means Student’s t-ratio that incorporates

a term due to Willink [60] accounting for any skewness in the set of truncated batch means that are
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finally delivered. Skart addresses the correlation problem by using an autoregressive approximation to

the autocorrelation function of the delivered set of truncated, adjacent batch means.

Skart takes into account not only any deterministic trends or stochastic dependencies in the

sequence of batch means but also their marginal skewness so as to determine sufficiently large values

of the data-truncation point (statistics clearing time) and the batch size m such that the truncated batch

means approximately constitute a stationary first-order autoregressive process with mean �X . In our

experience, this condition was much easier to achieve in practice than the conditions required to apply

other batch-means procedures. Beyond the data-truncation point, we compute the sample variance of k0

adjacent batch means for batch size m using Equation (1.6) with k D k0. We deliver an asymptotically

valid 100.1 � ˛/% skewness- and autoregression-adjusted CI for �X having the form

"
xY .m; k0/ �G.L/

s
AS2

m;k00

k0
; xY .m; k0/ �G.R/

s
AS2

m;k00

k0

#
; (1.8)

where

G.�/ �
3
p
1C 6ˇ.� � ˇ/ � 1

2ˇ
; with ˇ D

yBm;k00

6
p
k0

(1.9)

and S2
m;k00 and yBm;k00 are approximately unbiased estimators of the variance and skewness of the

fYj .m/g computed from k00 approximately i.i.d. spaced batch means separated by spacers having roughly

the same size as the warm-up period (see (3.14) below), and finally

L D t1�˛=2;k00�1 and R D t˛=2;k00�1: (1.10)

(Note that in Equation (1.9), the indicated cube root 3
p
1C 6ˇ.� � ˇ/ is understood to have the same

sign as the quantity 1C 6ˇ.� � ˇ/.) Thus we see that G.L/ and G.R/ are skewness-adjusted quantiles

of Student’s t-distribution for the left and right half-lengths of the proposed CI (this point is elaborated

in §3.3.4); and the autoregression (correlation) adjustment A is applied to the sample variance S2
m;k0

to compensate for any residual correlation between the batch means. The correlation adjustment A is

computed as

A D
h
1C y'

Y.m/

i.h
1 � y'

Y.m/

i
; (1.11)

where the standard estimator of the lag-one correlation of the batch means is

y'
Y.m/

D bCorr
�
Yj .m/; YjC1.m/

�
D 1

k0 � 1

k0�1X

jD1

h
Yj .m/ � xY .m; k0/

ih
YjC1.m/ � xY .m; k0/

i.
S2m;k0 :

(1.12)
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The specific objectives of this research can be summarized as follows:

� Formulate and justify algorithms to address the start-up, nonnormality, and correlation problems;

� Develop Skart, an automated sequential procedure for on-the-fly or offline simulation output

analysis that integrates all three algorithms mentioned above into a portable, robust software

package that can be easily invoked from popular general-purpose simulation platforms such as

Arena [32];

� Identify a suite of test problems to evaluate the performance of Skart, including some problems

specifically designed to “stress-test” the procedure and some problems with characteristics that

are typical of large-scale practical simulation studies;

� Design, perform, and analyze a set of experiments using the selected test problems to compare

the performance of Skart with that of other state-of-the-art procedures for steady-state simulation

analysis;

� Develop an automated nonsequential version of Skart and implement it in a portable, robust,

standalone software package that can easily be applied to a group of one or more data sets each

of arbitrary fixed size, delivering for each data set a CI for its associated steady-state mean with

a user-specified coverage probability; and finally

� Design, perform, and analyze a set of experiments using the selected set of test problems to

evaluate comprehensively the performance of the nonsequential version of Skart.

Complementing the extensive experimental performance evaluation of Skart is a rigorous theoretical

justification of the asymptotic time-series models of the batch means on which Skart is based.

1.3. Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 reviews several meth-

ods for steady-state simulation output analysis, briefly explains six well-known automated steady-state

simulation output analysis procedures, and summarizes the advantages and disadvantages of each of

these procedures. Chapter 2 also contains a discussion of three different skewness adjustments to Stu-

dent’s t-statistic for i.i.d. observations. Chapter 3 describes the design of Skart, a new batch-means
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procedure for constructing a CI on the steady-state mean of an output process; and Chapter 3 also ex-

plains the theoretical and experimental basis underlying both the sequential and nonsequential versions

of Skart. Chapter 4 contains discussion and analysis of the experimental results for both versions of

Skart when they are applied to a series of test problems, along with an empirical evaluation of Skart’s

sampling efficiency as the required relative precision of its CIs tends to zero. Finally, conclusions and

recommendations for future studies are explained in Chapter 5.

The appendices include details on technical and theoretical formulation, evaluation, and prac-

tical application of Skart. Appendix A provides a rigorous theoretical justification for the time-series

model of the batch means that is used in Skart to compute the correlation adjustment (1.11)–(1.12) to

the estimator S2
m;k00=k

0 of the variance of the grand mean xY .m; k0/ of the batch means. Appendix B

contains the derivation and numerical evaluation of the conditional moment generating function and

first two conditional moments of the waiting time in the M=M=1 queue for the first regular customer

to arrive after time zero, given a specified nonnegative number of initial, “nonregular” customers in the

system at time zero. Finally, Appendix C provides a user’s manual for Skart, including screen shots of

running the Skart and N-Skart software and the Visual Basic code for Skart and N-Skart.
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Chapter 2

Literature Review

In this chapter we will initially review different methods for steady-state simulation output

analysis. Then, we will explain six well-known automated steady-state simulation output analysis pro-

cedures, and summarize the advantages and disadvantages of each of these procedures. Finally, we will

discuss three different skewness adjustments to the Student’s t-statistic for i.i.d. observations.

2.1. Overview of Methods for Steady-State Analysis

A number of different approaches have already been developed for steady-state simulation

output analysis. The following subsections provide a brief overview of the most popular ones.

2.1.1. Replication/Deletion

The replication/deletion method is based on independent replications (runs) of the simulation,

and it consists of two phases. In the initial phase, k independent simulation-generated output processes

each of length n are recorded, where Xij denotes the i th observation within the j th replication for

i D 1; : : : ; n and j D 1; : : : ; k. The sample mean for each replication would then be computed after

removing the observations in the warm-up period of length w at the beginning of each replication as

follows:

xXj D
Pn
iDwC1 Xij

n � w for j D 1; : : : ; k;
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where xXj denotes the truncated sample mean of the j th replication. Notice that the xXj ’s are i.i.d.

random variables with mean EŒ xXj �, which may not equal �X ; and if the data-truncation point (statistics

clearing time) w and the run length n are both big enough, then from the Central Limit Theorem (1.4)

it can be claimed that f xXj g
i.i.d.
� N.�X ;Var. xXj // at least approximately, and

Var. xXj / D
1

n � w

(


X
.0/C 2

n�wX

`D0

�
1 � `

n � w

�


X
.`/

)
(2.1)

�


X

n � w as n!1: (2.2)

So a formulation similar to (1.7) based on sample means computed from truncated replications rather

than adjacent batches can be used to deliver an approximately valid CI with the grand mean of all

truncated replications,

xxX D 1

k

kX

jD1

xXj ;

as a point estimate for �X and

cVarŒ xxX� D
Pk
jD1

h
xXj � xxX

i2

k.k � 1/

as an estimate for the variance of xxX . The CI

xxX ˙ t1�˛=2;k�1

q
cVarŒ xxX� (2.3)

is approximately valid as n!1 if the deletion phase appropriately removes the potential transients in

each replication.

In the replication/deletion method, the warm-up period occurs k times, whereas in the single-

run methods such as NBM the warm-up period occurs only once. The observations in each replication

are not usually started in the steady-state phase due to the simulation’s initial condition; and hence the

resulting sample mean can be biased if the transients are not properly removed. In particular, if the

truncation point w is not large enough to delete all the observations contaminated by significant ini-

tialization bias or if n is not large enough to swamp (overwhelm) any residual initialization bias that

persists beyond the truncation point and if we take k too large, then we run the risk of a narrow CI cen-

tered on a biased estimator of �X . For some general conditions under which (2.3) is an asymptotically

valid CI for �X as the run length n ! 1, the warm-up period duration w ! 1, and the replication

count k !1, see Theorem 6.4 Fishman [20].
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Welch [59] developed a graphical method for determining the truncation point w which in-

volves running k0 pilot runs. In this method Welch takes averages across the k0 i.i.d. occurrences of the

observation with the “time” index i as follows,

y�i D
1

k0

k0X

jD1

Xij for i D 1; : : : ; n:

Thus fy�i W i D 1; : : : ; ng is an estimate of the transient mean function EŒXij jX0j D x0� for i D
1; : : : ; n, where we use the same initial condition X0j D x0 on each replication (run) j for j D
1; : : : ; k0. Then, the M-point moving average, y�i .M/, of these y�i ’s is plotted at various values of

M > 0; and the truncation point w is chosen to be the value of i beyond which the plot of the fy�i .M/ W
i D 1; 2; : : :g seems to converge.

The replication/deletion method is very appealing because of its simplicity and because it can

provide truly independent observations f xXj W 1 � j � kg. This method also has strong theoretical

support. On the other hand, this method is not very computationally efficient, considering that we are

throwing away wk observations. Furthermore, there is no definitive, readily automatable approach to

determine the sample size n and the truncation point w for each replication. Overall, this method is

more attractive to those who do not have the statistical background necessary to use some of the more

complicated analysis approaches. Unfortunately many of the users of the replication/deletion method

fail to appreciate fully the risks of obtaining grossly misleading results by naive application of the

procedure.

2.1.2. Regenerative Method

The regenerative method of output analysis can be applied to processes which exhibit a

renewal-reward type of probabilistic behavior, meaning that at an increasing sequence of random times

T1; T2; : : :, called regeneration times, the process starts afresh probabilistically independent of the past,

resulting in i.i.d. blocks of data [16]. An example of a regenerative process is the sequence of queue

waiting times for the G=G=1 queue, where a new block of data begins each time a new customer arrives

at an empty-and-idle system, thus terminating the server’s current idle period and starting a new busy

period independently of all previous busy-idle cycles.

Consider a simulation-generated regenerative process fXig and let fX` W Tj � ` < TjC1g
denote the j th regeneration cycle for j D 1; 2; : : :. The following conditions are assumed to hold for
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such a process [28]:

(a) PrŒT1 < 1� D 1 and PrŒ0 < �j < 1� D 1, where �j is defined as the length of the j th

regenerative cycle �j � TjC1 � Tj for j � 1;

(b) the sequence fX` W 0 � ` < T1g is independent of fX` W ` � T1g; and

(c) the sequence fX` W Tj � ` < TjC1g is an i.i.d. replicate of the sequence fX` W T1 � ` < T2g.

Letting

Yj D
TjC1�1X

iDTj

Xi

denote the accumulated “reward” on the j th regenerative cycle, we see that

f.Yj ; �j /; j � 1g

is an i.i.d. sequence of two-dimensional random vectors. If E ŒjY1j� < 1 and EŒ�1� < 1, then by the

renewal-reward theorem [47], the steady-state mean of fXig is

�X D
EŒY1�

EŒ�1�
:

To construct an asymptotically valid CI for �X using a regenerative approach, we simulate, in

one long run, k complete regenerative cycles and obtain k observations of the bivariate random vector

.Yj ; �j /. If we run the simulation until we have accumulated k complete regenerative cycles, then the

total sample size is

n.k/ D
kX

jD1

�j

individual observations. The point estimate for �X using this method is

y�X D
xY
x� ; (2.4)

where

xY D 1

k

kX

jD1

Yj

and

x� D 1

k

kX

jD1

�j :
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To formulate an asymptotically valid CI for �X centered on the regenerative point estimator

(2.4), we must have EŒY 2j � <1 and EŒ�2j � <1; then to obtain an unbiased estimator for the variance

of y�X , we define

Vj D Yj � �X�j for j D 1; : : : ; k; (2.5)

and

xV D xY � �Xx�:

Notice that EŒVj � D 0 and

�2V D VarŒVj � D EŒ.Yj � �X�j /2� D EŒY 2j � � 2�XEŒ�jYj �C �2XEŒ�2j �: (2.6)

Although the Vj ’s in (2.5) are not observable quantities because they involve the unknown parameter

�X that we are trying to estimate, the Vj ’s are functions of i.i.d. random vectors; therefore, the Vj ’s are

also i.i.d. The Cauchy-Schwarz inequality yields

EŒj�jYj j� �
q

EŒ�2j �EŒY
2
j � <1I (2.7)

and thus from (2.6) and (2.7), we see that �2
V
< 1. Applying the Central Limit Theorem to the fVj g,

we have
p
k xV
�V

D�!
k!1

N.0; 1/: (2.8)

To estimate �2V , we compute the following sample estimates from k complete regenerative

cycles,

S2Y D
1

k � 1

kX

jD1

.Yj � xY /2;

S2� D
1

k � 1

kX

jD1

.�j � x�/2;

and

SY � D
1

k � 1

kX

jD1

.Yj � xY /.�j � x�/:

Using these sample estimates and equation (2.4), we obtain a strongly consistent estimate for �2V ,

y�2V D S2Y � 2y�XSY � C y�2XS2� D
1

k � 1

kX

jD1

�
Yj � y�X�j

�2
:
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Now, substituting y�2
V

into equation (2.8) and applying Slutsky’s theorem [7], we have
p
k.y�X � �X /
y�V =x�

D�!
k!1

N.0; 1/I

and for k sufficiently large, an asymptotically valid 100.1 � ˛/% CI for the steady-state mean �X is

y�X ˙ z1�˛=2
y�Vp
k x�
; (2.9)

where z1�˛=2 is the .1 � ˛=2/-quantile of the standard normal distribution.

The regenerative method is appealing for several reasons: it is simple to understand and

implement in practice; the initial bias problem is no longer an issue; and the technique provides truly

i.i.d. observations. However, the regenerative method is not in widespread use because of the following

disadvantages: (a) identifying regeneration times fTj g is extremely difficult in general; and (b) even

if regeneration times can be identified, the corresponding expected cycle length EŒ�j � is usually so

large that we require an excessively long simulation run in order to get a sufficiently large number of

regenerative cycles. Because the regenerative point estimator (2.4) and CI estimator (2.9) both involve

ratio estimators whose stochastic behavior is highly erratic for small values of k, it is recommended

to accumulate k � 100 regenerative cycles so as to obtain reasonably stable results [27]. However in

many large-scale simulation experiments involving heavily congested systems, it is simply infeasible to

perform runs of sufficient length to accumulate 100 or more regenerative cycles.

2.1.3. Standardized Time Series

The method of Standardized Time Series (STS) was introduced by Schruben [48] for de-

pendent stationary time series whose mean value is a parameter of interest. The STS method yields

an asymptotically valid CI for �X if the target process fXig satisfies the following Functional Central

Limit Theorem (FCLT):

ASSUMPTION FCLT. The steady-state variance parameter 

X
2 .0;1/, and the sequence

of random functions

Wn.t/ D
bntc

˚ xX.bntc/ � �X
�

p
n

X

for t 2 Œ0; 1� and n D 1; 2; : : : (2.10)

satisfies

Wn.�/
D�!

n!1
W.�/ on Œ0; 1�; (2.11)
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where b�c is the greatest-integer (floor) function; and W.�/ is a standard Brownian motion process on

Œ0;1/ (see p. 4 of Billingsley [8]).

Within one steady-state simulation run that generates a time series fX` W ` D 1; : : : ; ng of

length n, the corresponding standardized time series is the random function

Tn.t/ �
bntc

˚ xX.n/ � xX.bntc/
�

p
n

X

for t 2 Œ0; 1�; (2.12)

where n D 1; 2; : : :. Under Assumption FCLT, it can be shown that we have the key limit theorem

hp
nf xX.n/ � �Xg;

p


X
� Tn.�/

i
D�!

n!1

p


X
ŒW.1/;B.�/� ; (2.13)

where B.�/ is a standard Brownian bridge process on Œ0; 1� (see p. 64 of Billingsley [8]) so that xX.n/
and Tn.�/ are asymptomatically independent as n!1. The result (2.13) is the basis for the following

development of a CI for �X using the STS method.

We let fX` W ` D 1; 2; : : : ; ng denote the output of a single steady-state simulation run, and

we organize the data into k nonoverlapping (adjacent) batches each of size m so that we always have

n D km. Thus the j th nonoverlapping batch of size m consists of the observations

fX.j�1/mCi W i D 1; : : : ;mg for j D 1; : : : ; kI (2.14)

and we let

xXj D
1

m

mX

iD1

X.j�1/mCi for j D 1; : : : ; k

denote the j th batch mean of the process. The sample mean for the entire data set is

xxX D 1

k

kX

jD1

xXj :

From (2.14), for the j th adjacent batch of size m .j D 1; : : : ; k/, we compute the STS

Tj;m.t/ D
1

p
m


X

bmtcX

iD1

� xXj � X.j�1/mCi

�
for 0 � t � 1 (2.15)

similar to the STS (2.12) defined for the entire output of the run. Consider

Aj D
p
m


X

mX

uD1

Tj;m

� u
m

�
D

mX

uD1

uX

iD1

� xXj �X.j�1/mCi

�
;
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and

A D 12

m3 �m

kX

jD1

A
2
j Cm

kX

jD1

�
xXj � xxX

�2
: (2.16)

Since each STS Tj;m.�/ converges to a Brownian bridge process asm!1 and the STSs fTj;m.:/ W j D
1; : : : ; kg computed from different nonoverlapping batches are asymptotically independent as m!1,

it can be shown that

12

m3 �m

kX

jD1

A
2
j

D�!
m!1



X
�2k ; (2.17)

where �2
k

denotes a chi-squared random variable with k degrees of freedom;

m

kX

jD1

�
xXj � xxX

�2 D�!
m!1



X
�2k�1I (2.18)

and finally that (2.17) and (2.18) are independent. These results imply that

A



X
.2k � 1/

D�!
m!1

�2
2k�1

2k � 1:

If the batch size m is sufficiently large so that the batch means f xXj W j D 1; : : : ; kg are approximately

i.i.d. normal random variables, then

xxX � �Xq



X

km

and
A



X
.2k � 1/

are stochastically independent; and we have

xxX � �Xq



X

km

� N.0; 1/:

Thus, a Student’s t-ratio can be defined as follows,

xxX��
Xr



X

kmr
A



X
.2k�1/

D
xxX � �Xq

A

km.2k�1/

� t2k�1 as m!1; (2.19)
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where t2k�1 denotes a Student’s t-distribution random variable with 2k � 1 degrees of freedom. This

shows that

lim
m!1

Pr

8
<̂

:̂
�t1�˛=2;2k�1 �

xxX � �Xq
A

km.2k�1/

� t1�˛=2;2k�1

9
>=
>;
D 1 � ˛:

Therefore, an asymptotically valid 100.1 � ˛/% CI for the steady-state mean �X is

xxX ˙ t1�˛=2;2k�1

s
A

km.2k � 1/ : (2.20)

The STS method as explained above has a firm mathematical foundation, and it is capable of

delivering asymptotically valid CIs. The appeal of the STS method is that the SSVP cancels out in the

calculation of the corresponding Student’s t-statistic (2.19); and thus there is no need to estimate 

X

when using this method. The main disadvantage of the STS method is that it is based on the property

that as m ! 1, the standardized process Tj;m.�/ converges to a Brownian bridge process. However,

in many situations extremely large values of m are required to achieve this convergence, resulting in

unrealistically large sample sizes. The complicated structure of this method also makes this approach

difficult to understand and implement in practice.

Recent extensions of the STS method [2, 3] exploit the additional information about the vari-

ance parameter that can be obtained from overlapping batches within the same run so that the final

Student’s t-ratio analogous to (2.19) has substantially more degrees of freedom than (2.19) has; and

thus the resulting CI for �X has improved precision (that is, smaller expected half-length) and improved

stability (that is, smaller variance of the half-length) in comparison with (2.20). As for the version of the

STS method based on nonoverlapping batches, the main problem in practical applications of the STS

method based on overlapping batches is the lack of a definitive, automatable method for determining a

batch size m sufficiently large so that the STSs computed from separate batches behave approximately

like a Brownian Bridge process.

2.1.4. Spectral Analysis

The spectral analysis approach to steady-state output analysis is a consistent estimation method

that seeks to estimate the SSVP in order to construct an asymptotically valid CI for �X centered on the

sample mean xX . This method works in the frequency domain under the assumption that the process

fXi W i D 1; : : : ; ng is stationary.
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The spectral density function pX .!/ corresponding to the process fXig is defined as

pX .!/ D
1X

`D�1



X
.`/cos.2�!`/ for � 1

2
� ! � 1

2
; (2.21)

where 

X
.`/ is the autocovariance function of fXig, as defined in Section 1.1. At frequency ! D 0, we

have

pX .0/ D 
X D
1X

`D�1



X
.`/: (2.22)

If
P1
`D�1

ˇ̌


X
.`/
ˇ̌
<1 and n is sufficiently large, then the variance of xX.n/ can be approximated by

VarŒ xX.n/� � pX .0/

n
: (2.23)

Thus, an estimate ypX .0/ of the spectral density of the underlying time series fXi W i D 1; : : : ; ng at

zero frequency is required to construct an asymptotically valid CI for the steady-state mean �X .

In classical spectral methods, the following estimator of the covariance function,

y

X
.`/ D 1

n � `

n�X̀

jD1

.Xj � xX.n//.XjC` � xX.n//; ` D 0;˙1;˙2; : : : ;˙.n � 1/; (2.24)

is used to estimate at most n � 1 covariances at various lags from a given sample of size n, so that a

naive spectral estimator of the variance parameter 

X

would be

ypX .0/ D y
X D
n�1X

`D�.n�1/

y

X
.`/:

Because of the large number of sample covariances in this naive spectral estimator of 

X

, this estimator’s

variance does not go to zero as n!1 and tends to be highly variable. A truncated estimator

ypX.0/ D y
X D
MX

`D�M

y

X
.`/ (2.25)

has been suggested, with M � n (here � means “much less than”) to reduce the variance of the

estimator, but at the cost of increasing the estimator’s bias. We can improve the estimator in (2.25) even

further by weighing the estimated covariances fy

X
.`/ W j`j �M g, resulting in a less biased estimate as

follows:

ypX.0/ D y
X D
MX

`D�M

g.`/y

X
.`/; (2.26)
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where g.`/ is a positive, even function, called the lag window, with g.0/ D 1 and g.`/ decreases as

j`j increases. If the spectral density function pX .!/ is approximately linear near zero, then for the

estimator ypX .0/ in (2.26) we have EŒ ypX.0/� � pX .0/, i.e., the estimate is approximately unbiased and

therefore, an asymptomatically valid 100.1 � ˛/% CI for �X can be computed as follows:

xX.n/˙ z1�˛=2

r
ypX .0/
n

:

The spectral density pX.!/ is an even function, i.e., it is symmetric around zero. Thus in

general at zero, pX.!/ has either a peak or a valley and is not most often approximately linear. This

implies that a weighted average of the spectrum about the point zero will usually result in a biased

estimator for pX .0/. For this reason, the determination of the truncation point M and the lag window

g.`/ are very tricky and can result in excess variability or bias in the estimation of pX .0/.

In practice, instead of sample covariances, the fast Fourier transform is used to estimate the

SSVP from the values of the periodogram in the region near zero as elaborated in Equation (2.32) below;

and for this reason the spectral method is considered by many to be computationally more efficient than

the replication/deletion and regenerative methods. However, the spectral method is complicated, requir-

ing a sophisticated background on the part of the analyst. Moreover, there is no definitive procedure for

choosing the values for truncation point M and the lag window g.`/.

2.1.5. Method of Autoregressive Representation

The method of autoregressive representation, originated in simulation analysis by Fishman

[18], assumes that the simulation-generated output fXi W i D 1; 2; : : :g is covariance stationary and can

be represented by the pth-order autoregressive model

Xj � �X D
pX

iD1

'i .Xj�i � �X /C "j ; (2.27)

for an appropriate (finite) value of p, where the 'i ’s are the autoregressive coefficients, �X is the

unknown process mean, and the "j ’s are i.i.d. normal residuals with zero mean and finite variance �2" .

It is possible to show that if the Equation (2.27) holds for the process fXig and each of the

roots of the characteristic equation

1�
pX

�D1

'�z
� D 0
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has absolute value greater than one, then

lim
n!1

nVarŒ xX.n/� D �2"�
1�Pp

�D0 'i
�2 :

Fishman gives a procedure in [18] which employs the sample estimators of the process covariances



X
.`/ for ` D 0;˙1;˙2; : : : to determine the estimated order yp, the estimated autoregressive coeffi-

cients y'i for i D 1; : : : ; yp, and the estimated residual variance y�2" .

Yuan and Nelson [62] revisited and updated the autoregressive method proposed by Fishman

and suggested to use Rissanen’s predictive least-squares criterion [46] to estimate the autoregressive

order of the process. Yuan and Nelson [62] also proposed to use the conditional-least-squares estimator

(CLSE) [11] to estimate the coefficients of the autoregressive model.

Let y' D 1 �P yp
iD1 y'i . Then, for large n, an estimate of VarŒ xX.n/� and an approximate

100.1 � ˛/% CI for �X are given by

cVarŒ xX.n/� D y�2"
n.y'/2

and

xX.n/˙ t
1�˛=2; yf

q
cVarŒ xX.n/�; (2.28)

respectively, where Fishman estimated the degrees of freedom yf by

yf D ny'
.2 yp C 1/y' C 4

P yp
�D1 � y'�

:

The main drawback of the method of autoregressive representation is the lack of a definitive

method for estimating the order p of the autoregressive model. In principle a large class of stationary

processes (namely, the so-called invertible processes) have an infinite-order autoregressive represen-

tation; see, for example, Theorem 7.6.9 of Anderson [5] or ÷A7.2 of Koopmans [35]. Unfortunately,

the practical issue of finding an adequate finite-order approximation to the infinite-order autoregressive

representation of a simulation-generated process has yet to be resolved. For example, Yuan and Nelson

[62] apply their autoregressive method to system sojourn times in an M=M=1 queue with mean inter-

arrival time 10 and mean service time 9 so that the server utilization is 0:9 and the steady-state mean

sojourn time �X D 90. For fixed sample sizes ranging from 500 to 5,000 observations, they compute

nominal 90% CIs for �X of the form (2.28). Yuan and Nelson [62] find noticeable degradation in CI

coverage as well as CI half-lengths with relatively large mean and standard deviation. Specifically for
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sample size n D 5,000, nominal 90% CIs have an empirical coverage probability of 69%; and the

sample mean and standard deviation of the associated CI half-lengths are 28:19 and 30:44, respectively.

2.2. Review of Automated Simulation Output Analysis Procedures

In this section we provide a brief explanation of six automated steady-state simulation output

analysis procedures that have received the most attention in the literature. The NBM method was used

in developing the Law-Carson procedure [40] and the ABATCH and LBATCH [19] procedures. ASAP3

[54] and SBatch [39] are two advanced batch-means procedures in which the size of the warm-up period

and the size of all subsequent batches are taken separately to be just large enough to yield adjacent

nonoverlapping batch means (in the case of ASAP3) or spaced batch means (in the case of SBatch) that

approximately constitute a stationary first-order autoregressive process. Suitable adjustments are then

applied to the classical NBM Student’s t-ratio (in the case of ASAP3) or to the sample variance of the

spaced batch means (in the case of SBatch) to construct the final CI. WASSP [37] and the Heidelberger-

Welch procedure [24] seek to deliver valid CIs by estimating the power spectrum of the output process

generated by a steady-state simulation model. The chief advantage of these methods is that most of

them are completely automated, requiring no intervention by the user.

2.2.1. ASAP3

ASAP3 is a sequential nonoverlapping batch-means procedure for constructing CIs for the

mean of a steady-state simulation output process. This procedure is a refinement of ASAP [52] and

ASAP2 [53]. ASAP3 retains the advantages of its predecessors while being mainly designed to address

their weaknesses such as the excessive variability in the half-length of their delivered CIs—especially in

situations for which there is no precision requirement. ASAP3 is based on the observation that the batch

means usually achieve approximately joint multivariate normality at a batch size that is substantially

smaller than the batch size required to achieve approximate independence of the batch means.

ASAP3 starts by dividing the simulation outputs into k D 256 nonoverlapping batches of

user-specified sizem (by defaultm D 16) and computing the corresponding batch means. Next ASAP3

truncates the first four batches to reduce the transient effects in the data, and ASAP3 organizes the

remaining 252 batches into 63 adjacent groups each consisting of four batches. Then from every other
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group of four adjacent batches, ASAP3 computes the corresponding batch means and forms a four-

dimensional vector from these statistics. The resulting sample of 32 four-dimensional vectors is next

tested for stationary multivariate normality. If the normality test is failed, then ASAP3 performs the fol-

lowing operations: the batch sizem is increased by the factor
p
2; additional observations are collected;

and the new set of truncated batch means is tested iteratively for multivariate normality until this test

is finally passed. Each time ASAP3 applies the multivariate normality test, it deflates the significance

level ı of the test to avoid excessive variability in the final sample size in applications with no precision

requirements (see Section 3.1 of Steiger et al. [54] for further explanation).

In the next step, ASAP3 fits a first-order autoregressive (AR(1)) model to all the batch means

computed beyond the first four ignored batches. Thus ASAP3 sets the truncation point w D 4m,

where m is the current sample size delivered by the multivariate normality test; and in subsequent

steps, ASAP3 uses all batch means after the truncation point and not merely alternating groups of four

adjacent batch means. Let fYj .m/ W j D 1; : : : ; k0g denote the resulting set of k0 D 252 truncated,

adjacent batch means. The next step of ASAP3 is to test the following hypothesis:

' D CorrŒYj .m/; YjC1.m/� � 0:8: (2.29)

The main reason for inserting the threshold test (2.29) into ASAP3 is to prevent the excessive variabil-

ity observed in the CIs delivered by ASAP and ASAP2 when ' > 0:8, especially in the absence of

a precision requirement. ASAP3 applies a normalizing arc-sine transformation to the autoregressive

parameter estimator y' in order to test if the null hypothesis (2.29) holds with high probability. If the

null hypothesis (2.29) is rejected, then ASAP3 performs the following steps:

(a) it increases the batch size m by a factor projected to reduce the lag-one correlation between the

batch means to an acceptable level below the 0.8 threshold;

(b) it obtains the required additional observations;

(c) it recomputes 256 batch means using the new batch size m;

(d) it skips the initial four batches and uses the remaining k0 D 252 batches to recompute the new

autoregressive parameter ' by fitting an AR(1) model to the resulting set of truncated, adjacent

batch means; and finally

(e) it retests the hypothesis (2.29).



23

These steps are repeated until we obtain a batch size that is big enough to pass the null hypothesis of

nonexcessive correlation between the successive batch means.

The resulting batch means are then used to build a CI that has been adjusted to account for the

remaining nonexcessive correlations between the batch means. For this purpose, ASAP3 corrects the

classical NBM Student’s t-ratio by using a Cornish-Fisher expansion whose terms are computed from

the parameter estimates y' and y�2a that are obtained by fitting an AR(1) model to the current set of batch

means. A correlation-adjusted 100.1 � ˛/% CI for �X is

xY .m; k0/˙
��
1

2
C y�2
2
� y�4
8

�
z1�˛=2 C

y�4
24
z31�˛=2

�
�

s
cVarŒY.m/�

k0
; (2.30)

where: y�2 and y�4 respectively denote estimators of the second and fourth cumulants of the classical

NBM Student’s t-ratio; cVarŒY.m/� denotes an estimator of the variance of the batch means; and the

statistics y�2, y�4, and cVarŒY.m/� are computed from y' and y�a as detailed in Section 3.3 of Steiger et al.

[54].

The half-length of the delivered CI is then checked to see if it satisfies the precision require-

ment provided by the user (for the no precision case this does not apply). If the precision requirement

is not satisfied, then the batch size m and batch count k are inflated by a factor based on the ratio of the

current iteration’s CI half-length to the desired CI half-length. ASAP3 is reapplied to the simulation-

generated data until finally it delivers a CI with the required precision.

2.2.2. LBATCH and ABATCH

LBATCH and ABATCH are two procedures developed by Fishman and Yarberry [19] to an-

alyze the output of steady-state simulation experiments. These variants of the method of batch means

are designed to be applied to a fixed-length simulation-generated time series, where the user is trying

to verify sufficient conditions to ensure strong consistency for the estimator of the variance of the sam-

ple mean; and ultimately the user seeks to construct asymptotically valid CIs for the mean. Neither

LBATCH nor ABATCH provides a means of eliminating initialization bias or a method for determining

a sample size that is sufficiently large to yield a CI for �X of user-specified precision.

These two procedures are designed based on two specific rules: (i) the fixed-number-of-

batches rule (FNB); and (ii) the square-root rule (SQRT). The FNB rule fixes the number of batches

and lets the batch size increase as the total sample size increases. This rule, however, cannot provide a
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consistent estimator for the SSVP, resulting in CIs which tend to be wider than CIs constructed using

a consistent estimator for the SSVP. The SQRT rule considers a scheme in which both the number of

batches and the batch size grow as the total sample size increases. The SQRT rule tends to underestimate

the variance of the sample mean for a fixed total sample size, which results in poorer coverage (see

Fishman [19]). In general, for a given sample size the FNB rule provides CIs with better coverage than

the SQRT rule, while the CI half-lengths generated by the FNB rule are larger than those generated by

the SQRT rule.

To determine an appropriate batch size and batch count, Fishman [19] developed dynamic as-

signment rules that shift between the FNB and SQRT rules based on a test of independence of the batch

means to retain the advantages of both the FNB and SQRT rules and avoid their major disadvantages.

The FNB rule aims at dissipating the correlation between the batch means as fast as possible, whereas

the SQRT rule aims at making the distribution of the statistic . xX.nj / � �X /=
q
S2
nj ;kj

=kj converge to

N.0; 1/ as rapidly as possible, where nj and kj are the sample size and the number of batches on the

j th iteration of the LBATCH or ABATCH procedure.

The LBATCH procedure begins with a fixed number of batches and tests for correlation be-

tween the batch means using von Neumann’s randomness test [61]. If this test is failed, then the FNB

rule is employed to reduce the correlation as fast as possible. The batch size and hence the total number

of observations are doubled while the number of batches remains fixed; and additional observations are

collected if necessary. The correlation test is applied to the set of batch means until the test no longer

detects high correlation between the batch means based on the latest batch size. Then, the SQRT rule

is applied iteratively until a predetermined number of observations is reached. The total sample size

doubles on each iteration of the SQRT rule; and the batch size and the number of batches grow by a

factor of approximately
p
2 on each application of the SQRT rule.

The ABATCH procedure is similar to the LBATCH procedure, except that ABATCH can

switch back and forth between the FNB and SQRT rules. The test for correlation is applied on each

iteration; and if this test is failed after the SQRT rule has been invoked, then ABATCH switches back

to the FNB rule for the next iteration and all subsequent iterations until the hypothesis of independence

is accepted again, causing the procedure to switch to the SQRT rule again. For detailed steps of the

LBATCH and ABATCH procedures see Section 2 of Fishman and Yarberry [19].
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2.2.3. Law-Carson Procedure

The Law-Carson procedure [40] is based on the method of nonoverlapping batch means. This

procedure discounts the effect of nonnormality for a number of batches k � 20 and mainly focuses on

the problem caused by the correlation between the batch means for small batch sizes. The FNB rule

explained in Section 2.2.2 is also the driving force for this procedure. A comprehensive description of

the Law-Carson procedure is given in [40].

This procedure starts by fixing the number of batches and sequentially increasing the batch

size m until the sample lag-one correlation y�1.m/ between the batch means is less than some specified

level c and the resulting CI achieves a user-specified relative precision level r > 0. However, the

correlation estimator y�1.m/ is generally biased; and for small k, it also has a large variance. Law and

Carson [40] found that some systems require as many as 400 batches for a precise estimate of �1.m/,

the true lag-one correlation between adjacent batch means for batches of size m.

This issue encouraged them to look at the possibility of using `k batches of size m to infer

whether k batches of size `m are approximately uncorrelated. Law and Carson [40] noticed three

types of behavior for �1.m/ as a function of m after studying 34 processes for which �1.m/ could be

computed analytically:

(i) the lag-one correlation strictly decreases to zero;

(ii) the lag-one correlation changes direction one or more times and then strictly decreases to zero;

and

(iii) the lag-one correlation is less than zero.

To complete its initialization step, the Law-Carson procedure requires the user to set some

positive integers `, k, n0, n1 (`k even, `k=2 even, n0 < n1 < 2n0 each divisible by `k). Then, given

a simulation-generated time-series of length n1, the observations are divided into `k batches of size m.

The lag-one correlation between the batch means is estimated using the jackknifed estimator

z�1.`k;m/ D 2y�1.`k;m/ �
h
y�.1/1 .`k=2;m/C y�.2/1 .`k=2;m/

i.
2;

where y�.1/1 .`k=2;m/ and y�.2/1 .`k=2;m/ are the usual lag-one correlation estimators based on the first

and last `k=2 batches, respectively. This jackknife estimator is used because in general it is less biased

than the conventional sample correlation estimator.
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If z�1.`k;m/ > c, meaning that an acceptable level of correlation between the batch means

is not reached, then the total number of observations is updated according to ni  2ni�2, where i is

the iteration number. Therefore, ni doubles on every other iteration. If the desired level of correlation

is achieved, i.e., z�1.`k;m/ � c, then the overall data set of size ni is divided into k batches of size `m

and a classical CI is constructed, using (1.7).

Next, the Law-Carson procedure checks whether the latest CI satisfies the given relative pre-

cision requirement. If not, then the iteration counter i is incremented, i  i C 1; the total sample size

is updated according to ni  2ni�2; additional observations are collected; and another iteration of the

Law-Carson procedure is performed. Successive iterations of the Law-Carson procedure are performed

until the precision requirement is finally satisfied.

2.2.4. SBatch

SBatch [39] is a batch-means procedure in which the size of the warm-up period and the size

of all subsequent batches are taken separately to be just large enough to yield spaced batch means that

approximately constitute a stationary first-order autoregressive process. A correlation adjustment is

then applied to the sample variance of the spaced batch means to construct the final CI. This procedure

is explained in more detail in the following paragraphs.

SBatch begins by dividing the total sample size of n D 16,384 into k D 1,024 adjacent (non-

spaced) batches of size m D 16 with an initial spacer of size s D 0 observations preceding each batch.

Then it applies the randomness test of von Neumann [61] to the initial set of k batch means to determine

the data-truncation point beyond which all computed batch means are approximately independent not

only of each other but also of the simulation’s initial conditions.

Each time the randomness test is failed, SBatch adds a new batch to each spacer (up to 14

batches are allowed per spacer); then SBatch reapplies the randomness test to the new, reduced set of

spaced batch means. If the number of batches in each spacer reaches the maximum of 14 batches and

the randomness test is not yet passed, then SBatch resets the spacer size s to zero and inflates the batch

sizem by a factor of
p
2; additional observations are collected by resuming the simulation if necessary;

and all the observations are rebatched into k D 1,024 adjacent (nonspaced) batches of the new size

m. A new set of k batch means is computed and tested for randomness. The preceding steps in this

paragraph may be repeated several times before the spaced batch means finally pass the randomness
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test. Once the randomness test is passed, the observations fXi W i D 1; : : : ; sg comprising the first

spacer are skipped (ignored) to account for system warm-up; and the size of the spacer separating each

batch is fixed.

Next, the resulting set of spaced batch means are tested for univariate normality using the

method of Shapiro-Wilk [49]. Each time the normality test is failed, SBatch increases the batch size

by a certain multiplicative factor (i.e.,
p
2 for the first six test failures and b21=.`�4/c for the `th failure

of the normality test, ` D 7; 8; : : :). Section 4.3 of Lada et al. [39] explains the reason for reducing

the batch-size inflation factor. Additional observations are collected if required; and a new set of batch

means is then computed using the final spacer size s provided by the randomness test and the new

inflated batch size m. The normality test is repeated for the new set of spaced batch means.

After the normality test is passed, SBatch applies a threshold test to make sure that the lag-one

correlation of the resulting set of approximately normal, spaced batch means is less than 0:8. Each time

the correlation test is failed, the batch size is increased by 10%, additional observations are collected,

a new set of spaced batch means is computed, and the correlation test is repeated for the new set of

spaced batch means.

Once the correlation test is passed, SBatch will deliver a correlation-adjusted 100.1 � ˛/%
CI on the steady-state mean using the current set of k0 approximately i.i.d. normal spaced batch means

as follows,

xX ˙ t1�˛=2;k0�1

s
Ay�2xX.m;s/

k0
;

where the midpoint xX is the average of all observations including those in the spacers (except the first);

y�2xX.m;s/ is the sample variance of the k0 spaced batch means; t1�˛=2;k0�1 is the 1 � ˛=2 quantile of

Student’s t-distribution with k0 � 1 degrees of freedom; and

A D
1C y'2xX.m;s/
1 � y'2xX.m;s/

is the correlation adjustment based on y'2xX.m;s/, the usual sample estimator of the lag-one correlation

between the k0 spaced batch means with batch size m and spacer size s. The adjustment A is applied to

the sample variance y�2xX.m;s/ to account for any residual correlation that may exist between the spaced

batch means.

SBatch checks the half-length of the provided CI in the next step. If the user-specified preci-

sion requirement is satisfied, then SBatch delivers the latest computed CI and terminates. Otherwise, it



28

estimates the number of spaced batch means needed to meet the precision requirement. If the estimated

number of spaced batch means exceeds 1,024, then SBatch reduces this number to 1,024 and increases

the batch size instead. If necessary, additional observations are collected by resuming the current run

of the simulation model. Then a new CI is computed using the recalculated correlation adjustment, and

the precision requirement is retested. SBatch repeats the procedure outlined above until a CI satisfying

the precision requirement is finally delivered.

2.2.5. WASSP

WASSP uses a wavelet-based spectral method to analyze the stochastic output from a steady-

state simulation [37]. This procedure addresses both the start-up and correlation problems, delivering

a CI for the steady-state mean using a wavelet estimator of the SSVP that satisfies the user-specified

precision requirements. The steps of WASSP are summarized in this section.

WASSP starts by dividing the initial simulation-generated time series of length n D 4,096

into k D 256 adjacent batches of size m D 16, with an initial interbatch spacer of size s D 0 ob-

servations preceding each batch. The approach WASSP uses to determine the warm-up period and to

achieve approximately i.i.d. spaced batch means is similar to the approach used by SBatch (see the von

Neumann test in Subsection 2.2.4). However, in its randomness test WASSP allows up to nine batches

in each spacer, whereas SBatch allows up to 14 batches per spacer.

Once the randomness test is passed so that the spacer size s is fixed, WASSP takes the spacer

preceding the first batch to be the warm-up period; and like SBatch, WASSP applies the univariate

Shapiro-Wilk test for normality to the truncated, spaced batch means to determine a batch size suffi-

ciently large to yield approximately normal spaced batch means. If the normality test is failed, then

WASSP progressively increases the batch size while keeping the same spacer size, deflates the Shapiro-

Wilk test level of significance, and retests the newly computed set of spaced batch means for normality

at the newly computed level of significance.

After the normality next is passed, WASSP computes a set of adjacent (nonspaced) batch

means of the current batch size beyond the truncation point. Using these batch means, WASSP com-

putes a wavelet-based estimator of the batch means log-spectrum over its full frequency range (i.e. from

�1=2 to 1=2 cycles per unit of time). Then, WASSP smooths the periodogram of the batch means by

computing a multipoint moving average; WASSP applies a logarithmic transformation to the smoothed
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periodogram; and then WASSP corrects for the bias induced by this transformation. Following this

step, WASSP computes the discrete wavelet transform of the bias-corrected log-smoothed-periodogram

of the batch means and applies a soft-thresholding scheme to obtain a parsimonious, denoised set of

wavelet coefficient estimators. Finally, WASSP computes the inverse discrete wavelet transform of

the thresholded wavelet coefficients to recover the wavelet-based approximation to the batch-means

log-spectrum and ultimately an estimator y

X

of the SSVP for the original process (an estimator of the

spectrum of the unbatched process at zero frequency). WASSP delivers a CI of the form

xX.n0/˙H; with half-length H D t1�˛=2;�

q
y

X
=n0; (2.31)

where: (i) the grand mean xX.n0/ is computed from the truncated output process of size n0; and (ii) �

denotes the effective degrees of freedom associated with y

X

.

WASSP then checks the half-length of the provided CI. If the user-specified precision re-

quirement is not satisfied, then WASSP estimates the total number of batches of the current batch size

that are needed to fulfill the precision requirement. If the estimated number of batch means exceeds

4,096, then WASSP reduces this number to 4,096 and increases the batch size instead. The additional

simulation-generated observations are obtained by restarting the simulation, and then the next iteration

of WASSP is performed.

2.2.6. Heidelberger-Welch Procedure

The Heidelberger-Welch (HW) procedure employs a spectral method for steady-state simula-

tion output analysis in which it uses standard regression techniques to estimate the power spectrum of

the simulation-generated output process fXj W j D 1; : : : ; ng at zero frequency [24, 25, 26]. This pro-

cedure uses the fast Fourier transformation to compute the periodogram values fI
�
`
n

�
W 0 < ` < n

2
g

of the simulation-generated time series which are approximately independent, unlike the original re-

sponses which are often strongly correlated, as follows:

I

�
`

n

�
D 1

n

8
<̂

:̂

2
4

nX

jD1

Xj cos

�
2�.j � 1/`

n

�3
5
2

C

2
4

nX

jD1

Xj sin

�
2�.j � 1/`

n

�3
5
2
9
>=
>;

D ja.`/j2
n

; (2.32)



30

where a.`/ is the discrete Fourier transform of the output process fXi W i D 1; : : : ; ng. The periodogram

has the following properties:

E
h
I
�
`
n

�i
� pX

�
`
n

�
; 0 < ` < n

2
;

Var
h
I
�
`
n

�i
� p2X

�
`
n

�
; 0 < ` < n

2
;

Cov
h
I
�
`
n

�
; I
�
j
n

�i
� 0; 0 < ` ¤ j < n

2
; and

I
�
`
n

�
� 1

2
pX

�
`
n

�
�22; 0 < ` < n

2
;

9
>>>>>>>=
>>>>>>>;

where �22 denotes a chi-squared random variable with two degrees of freedom—that is, an exponential

random variable with mean one.

After computing the periodogram (2.32) of the time series fXi W i D 1; : : : ; ng, HW computes

the logarithm of averages of pairs of adjacent periodogram values and fits a quadratic polynomial to the

log-smoothed-periodogram in a small neighborhood, with zero frequency as its lower boundary, to

estimate the SSVP by extrapolating the fitted polynomial to zero frequency.

On each iteration of the HW procedure, prior to applying the spectral method discussed above,

this procedure performs a scheme for batching the simulation-generated data in an attempt to determine

an appropriate truncation point for eliminating initialization bias. First the user must specify an upper

limit tmax on the allowable length of a given test process; thus like LBATCH and ABATCH, the HW

procedure is a fixed-sample-size procedure rather than a truly sequential procedure. The batch count k

for the HW procedure is always in the range L � k � 2L, where the value L D 200 is recommended

in practice [26]. Following Heidelberger and Welch’s notion, we let ti denote the current (untruncated)

sample size at the i th checkpoint in the analysis of a given output process, where

t1 D
˙
0:15 tmax

�
and ti D min

˚˙
1:5 ti�1

�
; tmax

�
for i D 2; 3; : : : :

If ti � L and we take

bi D
�

log2f.ti � 1/=Lg
˘
;

then at the i th checkpoint the batch size mi and the number of batches ki are given by

mi D 2bi and ki D
�
ti=mi

˘
;

respectively.

At each checkpoint i D 1; 2; : : : of the HW procedure, the simulation-generated process is

initially organized into ki batches of size mi ; and then the untruncated batch means
˚ xXj .mi / W j D
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1; : : : ; ki
�

are computed and tested for covariance stationarity by computing the Cramér–von Mises

(CVM) test statistic,

CVM.mi ; ki / D
h ki �1X

jD0

D2ij

i
=
�
k2i yp xX.mi /

.0/
�
;

where yp
xX.mi /

.0/ denotes the HW estimator of the power spectrum p
xX.mi /

.!/ of the untruncated batch

means process at frequency ! D 0; and

Di0 D 0 and Dij D
jX

uD1

� xXu.mi / � xxX.mi ; ki /
�

for j D 1; : : : ; ki :

A failure of the CVM test is an indication of the presence of nonstationarity (initialization bias) in the

sequence of untruncated batch means.

If the CVM test is failed at a given checkpoint i , then the HW procedure removes the first

10% of the current untruncated batch-means sequence and reapplies the CVM test to the truncated batch

means. If the CVM test again detects nonstationarity in the sequence of the truncated batch means, then

the HW procedure removes the next 10% of the original (untruncated) sequence of batch means of

the current batch size mi . This process is repeated until (i) the CVM test is passed; or (ii) the CVM

stationarity test is failed for six consecutive times, resulting in a warm-up period of length equal to 50%

of the original untruncated sequence of batch means of the current batch size mi . If case (ii) occurs,

then the HW procedure advances to the next checkpoint by increasing the untruncated sample size by

50% and updating the batch size mi , batch count ki , and batch means
˚ xXj .mi / W j D 1; : : : ; ki

�
. The

CVM test is repeated at successive checkpoints until one of the following conditions occur: (a) the

CVM test is passed, and the CI of the form given in (2.31) satisfies the user-specified precision level; or

(b) the new checkpoint’s untruncated sample size exceeds tmax, the maximum allowable length of the

given test process. If condition (b) occurs, then the HW procedure terminates without delivering a CI

with the desired level of precision level. The possibility that HW procedure might simply fail to deliver

a CI with the user-specified level of precision has turned out to be a significant drawback in practical

applications of the procedure. A more comprehensive description of CVM test and the HW procedure

is given in Lada et al. [38].
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2.3. Relative Performance of Automated Simulation Output Analysis Pro-

cedures

Evaluations of some recent procedures for steady-state simulation analysis in Lada et al.

[36] show that ASAP3 and WASSP compare favorably with the Law-Carson procedure with respect to

coverage probability and sampling efficiency in all the considered cases. The results from Steiger et

al. [54] also indicate that ASAP3 outperforms the ABATCH and LABATCH procedures not only with

regard to conformance to the precision and coverage-probability requirements but also with regard to

the mean and variance of the half-length of the delivered CIs. Lada et al. [38] compare the performance

of WASSP, ASAP3, and HW with respect to sampling efficiency and the robustness of the delivered CIs.

Based on their results, WASSP outperforms the HW procedure in many respects and compares favorably

with ASAP3. Most recently, Lada et al. [39] compare the performance of SBatch, ASAP3, and WASSP.

Their performance evaluation results are not very clear-cut, and no single procedure dominates the

others in all the considered experiments.

In Section 4, considering the results given in the above paragraphs, we decided to compare the

performance of our newly proposed batch-means procedure, Skart, with that of ASAP3, WASSP and

SBatch, as the three procedures in the steady-state simulation output analysis literature that currently

seem to dominate all the other competing procedures.

2.4. Skewness Adjustment to the Student’s t-Statistic for Independent Ob-

servations

Consider a sample of n i.i.d. observations fXi W i D 1; : : : ; ng with sample mean xX and

sample variance S2, where the cumulative distribution function (c.d.f.) F.�/ of the Xi ’s has finite

moments at least up to order four so that the mean � D EŒXi � D
R C1

�1 xdF.x/ and the central moments

�k D EŒ.Xi � �/k� D
Z C1

�1
.x � �/kdF.x/ for k D 2; 3; 4 (2.33)

are well-defined and finite. Thus the variance, skewness, and kurtosis of the Xi ’s are given by

�2 D �2; Sk D �3

�3
; and Ku D �4

�4
; (2.34)
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respectively. In this section if we want to emphasize the dependence of the moments (2.33) and (2.34)

on the random variable X , then we will write �.X/, �2.X/, �k.X/, Sk.X/, Ku.X/, etc.

The Student’s ratio t D pn. xX ��/=S is commonly used to make hypothesis tests about the

mean � of the underlying population and also to form CIs for �. The main problem is that when the

underlying population is not normal, the usual Student’s t-distribution cannot be used to compute exact

CIs for �; and in particular if the underlying population has pronounced positive or negative skewness,

then the coverage probability of the usual CI based on Student’s t-distribution is severely degraded.

Several modifications have been suggested to eliminate skewness from the distribution of a Studentized

statistic. In the following subsubsections, we will review some of the popular modifications and clarify

the reason for using the modified t-statistic that has been implemented in Skart.

2.4.1. Johnson’s Modification of Student’s t-Statistic

Johnson [29] suggested a modification of Student’s t-statistic using properties of the data so

that the modified statistic has Student’s t-distribution to a sufficiently good approximation. Because

the skewness of the parent population affects the behavior of the original Student’s t-statistic more than

the kurtosis of the parent population does, Johnson’s modified t-statistic provides a transformation to

reduce the effect of skewness by exploiting the terms of the Cornish-Fisher expansion of the original

Student’s t-statistic involving the third and fourth central moments of the underlying population. The

general form of the Cornish-Fisher expansion for the random variable X with moments (2.33) and

(2.34) is given by [58]:

CF.X/ D �C �� C 1

6
� �3
�2
.�2 � 1/C 1

24
� �4
�3
.�3 � �/C : : : ; (2.35)

where � is a standard normal random variable.

Remark 1. For an alternative derivation of (2.35), see ÷6.25 of Stuart and Ord [55]. In terms of the

analysis (6.47)–(6.56) of Stuart and Ord, we seek to develop a Cornish-Fisher expansion not for the

random variable X directly but instead for the standardized random variable

X 0 D .X � �/=�

as a function of the standard normal random variable � � N.0; 1/; then taking

m D EŒ�� D 0;
�2 D VarŒ�� D 1

9
=
; (2.36)
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in Equations (6.47)–(6.56) of Stuart and Ord [55], we must have

`1 D fEŒX 0� �mg
ı
�2 D 0;

`2 D fVarŒX 0� � �2g
ı
�2 D 0

9
=
; (2.37)

in the Cornish-Fisher expansion of X 0 given by Equation (6.56) of Stuart and Ord [55]. Solving the

resulting equation for X expressed in terms of � and retaining only the first four terms on the right-hand

side of Equation (6.56) of Stuart and Ord [55], we obtain (2.35).

For the sample mean xX D xX.n/ of a random sample of size n from F.�/, we have

�. xX/ D �; �. xX/ D �p
n
; �k. xX/ D

�k

nk�1
for k D 3; 4; : : : I (2.38)

and combining (2.35) and (2.38), we see that a valid representation of xX by a Cornish-Fisher expansion

paralleling (2.35) up to terms of order n�1 is

CF. xX/ D �C �p
n
� C �3

6n�2
.�2 � 1/CO.n� 3

2 /; (2.39)

since the first neglected term in (2.39) is

1

24
� �4.

xX/
�3. xX/

.�3 � �/ D 1

24
� �4.X/=n

3

Œ�.X/=
p
n�3
D 1

24

�4.X/

�.X/ � n3=2
D O.n�3=2/: (2.40)

Here we remark that �3 D �3.X/, the third central moment of the underlying distribution, is the

coefficient of the term .�2 � 1/ in Equation (2.39). The quantity �3 also appears in the coefficients of

other terms, but they are of smaller order in the sample size n.

The key to obtaining a modified t-statistic in Johnson’s approach is to eliminate the term

involving �3 in the Cornish-Fisher expansion of the modified t-statistic, which is defined by

t1 D
. xX � �/C �C 
f. xX � �/2 � .�2=n/g

.S2=n/1=2
: (2.41)

The numerator of (2.41) is suggested by looking at the inverse Cornish-Fisher expansion of � expressed

in terms of the first few powers of . xX � �/ in (2.39). The expansion for t1 is similar to that given in

(2.39). The constant � is chosen so that constant terms (i.e., the terms that do not involve the random

variable . xX ��/ or the sample size n) in the Cornish-Fisher expansion of t1 sum to zero, and the terms

of order
p
n and 1=

p
n that do not involve . xX � �/ are eliminated; moreover, 
 is chosen so that the
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coefficient of the term �2 in the Cornish-Fisher expansion of t1 is zero. Johnson [29] shows that if we

substitute the values


 D �3

3�4
and � D �3

2n�2
(2.42)

into Equation (2.41), then in the Cornish-Fisher expansion for t1 any residual effects due to skewness

of the original observations fXig have the form O.1=n/ and thus become negligible as the sample size

n increases. Making the substitutions (2.42) in (2.41), we obtain

t1 D
. xX � �/C �3=.6�2n/C Œ�3=.3�4/�. xX � �/2

.S2=n/1=2
; (2.43)

which has approximately the Student t-distribution with n � 1 degrees of freedom—provided the Xi ’s

are randomly sampled from a distribution whose first four moments exist, and n is sufficiently large. In

this equation the dominant effects of population skewness are eliminated, although because of the terms

in the numerator of (2.43) that are of second order (quadratic) in the unknown �, this formulation is

neither monotone in � nor invertible and therefore cannot result in a simple expression for CIs. Conse-

quently, the corresponding CIs may consist of two disjoint subintervals, which is highly counterintuitive

and therefore not desirable.

Johnson [29] suggested a method for constructing a simpler CI by removing the term involv-

ing . xX � �/2 in (2.43), claiming the effect of this omitted term is of small order. This new variable t 01

and its corresponding CI have the following form:

t 01 D
. xX � �/C �3=.6�2n/

.S2=n/1=2
; (2.44)

� xX C y�3=.6S2n/
�
˙ t1�˛=2;n�1S=

p
n; (2.45)

where

y�3 D
n

.n � 1/.n � 2/

nX

iD1

.Xi � xX/3:

The experimental results of Kleijnen et al. [33], however, did not support the use of (2.45) in preference

to the usual CI given in (1.1); instead these results indicated that neglecting the term involving . xX��/2

in (2.43) adversely affects the performance of hypothesis tests and CIs based on (2.44).
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2.4.2. Hall’s Modification of Student’s t-Statistic

Hall [23] suggested a modification to Johnson’s method so that the calculated CIs are not

disjoint while providing good coverage. He modified the test statistic to become a monotonic function

of the mean. The Edgeworth expansion of the c.d.f. of the test statistic Q D Q.X1; : : : ; Xn/ based on

a sample of size n, if it exists, is

Pr.n1=2Q � x/ D ˚.x/C n�1=2
.a2 C a1x2/�.x/CO.n�1/; (2.46)

where a1 and a2 are known constants that depend on the function Q.�/, 
 is an estimable constant that

depends on the underlying c.d.f. F.�/ of the fXig, and �.x/ and˚.x/ denote the density and distribution

function of the standard normal distribution, respectively. The second term in the expansion (2.46)

describes the error in the usual normal approximation and depends on the skewness in the underlying

population through the constant 
 .

Hall defines a transformation of the statistic Q to obtain a new statistic R with the following

Edgeworth expansion,

Pr.n1=2R � x/ D ˚.x/CO.n�1/: (2.47)

In the new statistic R, the term involving the skewness of the fXig is eliminated. The transformation

suggested by Hall has the form

R.Q/ � a2
=nCQC a1
Q2 C a21
2Q3=3; (2.48)

with a1, a2, 
 , and n being the constants appearing in (2.46). The function R.Q/ is monotonic and has

a unique inverse

Q.R/ D .a1
/�1.f1C 3a1
.R � a2
=n/g1=3 � 1/ (2.49)

for any real value of R. After transforming theQ statistic to R, whose distribution is nearly symmetric,

Hall applies the normal approximation to the new statistic R and then regains the asymmetry of the

original statistic by the inverse transformation (2.49). This method is more promising than the method

of Johnson because it uses a symmetric statistic in computing CIs.

To build a CI for the population mean �, Hall set Q D . xX � �/=z� , and z� � S
p
.n � 1/=n,

with a1 D 1=3, a2 D 1=6, and 
 D �3=�3; and he estimated the latter quantity by

z
 � n�1
nX

iD1

.Xi � xX/3=z�3:
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It follows that an approximate 100 � .1� 2˛/% two-sided CI for � is

h
xX � z� zQ.˚�1.1 � ˛/=

p
n/; xX � z� zQ.˚�1.˛/=

p
n/
i
; (2.50)

where

zQ.r/ � 3

z


 �
1C z


�
r � z


6n

��1=3
� 1

!
: (2.51)

The results shown in Tables 1–3 of [23] indicate that the relative performance of Hall’s trans-

formed CIs are better than the modified CIs proposed by Johnson [29].

2.4.3. Willink’s Modification of Student’s t-Statistic

Willink [60] suggested a modification to Johnson’s method by adding a cubic term in . xX��/
to the numerator of t1 in (2.43) to ensure existence of a unique inverse of t1 as a function of �. The

added term has the form o.n�1/, which has the same order as the first neglected term in t1. Thus, we

do not expect this extra term to have a large effect on the asymptotic performance of the approximation

as n!1. The modified t-statistic proposed by Willink is

t2 D
. xX � �/C y�3=.6S2n/C Œy�3=.3S4/�. xX � �/2 C Œy�23=.27S8/�. xX � �/3

.S2=n/1=2
: (2.52)

The same transformation given by Hall in (2.48) is recovered if we make the following sub-

stitutions in (2.52):

Q D xX � �; a2
 D y�3=.6S2/; and a1
 D y�3=.3S4/:

The t2 statistic can also be expressed in terms of the standard Student’s t-statistic t D pn. xX � �/=S
as follows:

t2 D t C aC 2at2 C 4a2t3=3; where a D y�3=S
3

6
p
n
: (2.53)

Therefore, an approximate 100 � .1 � 2˛/% two-sided CI for � is

� xX �G.t1�˛;n�1/ � S=
p
n; xX �G.t˛;n�1/ � S=

p
n
�
; (2.54)

where

G.r/ � .2a/�1.f1C 6a.r � a/g1=3 � 1/ and a � y�3=S
3

6
p
n
: (2.55)
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The performance evaluation of Willink in [60] shows that when the distribution of the fXig is

skewed, the intervals proposed by Willink appear to be considerably more reliable (in terms of approx-

imately achieving the nominal coverage probability 1� 2˛) than those based on the standard Student’s

t-statistic and other CIs in the literature. When the distribution of the fXig is normal, the proposed

intervals are slightly wider on average than the standard intervals. In general, the coverage of Willink’s

CI (2.54) increases as the magnitude of the skewness of the Xi ’s decreases, the sample size n increases,

or the nominal confidence coefficient 1�2˛ increases. Moreover, the results in Tables 1–3 of [60] show

that when the sample size is big enough, (2.54) performs well for distributions with skewness as high

as 4:0. For higher skewness values, Willink’s CI (2.54) often fails to achieve an acceptable coverage

probability.
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Chapter 3

Skart: A Skewness- and

Autoregression-Adjusted Procedure for

Steady-State Simulation Analysis

In this chapter we first discuss Skart, an automated sequential procedure for on-the-fly or

offline steady-state simulation output analysis, and we provide a detailed explanation and justification

for each of the steps of Skart. Next we explain the steps of a nonsequential version of Skart, called

N-Skart, that has been specifically designed for arbitrary fixed-size simulation-generated data sets; and

we highlight the key differences between the original version of Skart and the nonsequential version of

the procedure.

3.1. Overview of Skart

Figure 3.1 depicts a high-level flowchart of Skart. To invoke this procedure, the user must

provide a desired CI coverage probability 1 � ˛, where 0 < ˛ < 1, and an upper bound H� on the CI

half-length, where H� is either expressed in absolute terms as the maximum acceptable half-length, or

in relative terms as the maximum acceptable fraction r� of the magnitude of the CI midpoint.

Skart requires 1,280 observations from a simulation model to launch. Then it computes the

sample skewness of these observations to determine the initial batch size. If the sample skewness is
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Figure 3.1: High-level flowchart of Skart

greater than 4:0, then Skart sets the batch size m D 16, so that the initial sample size must be increased

to 16 � 1,280 D 20,480. This extreme case only happens when the observations are highly nonnormal.

Usually, the sample skewness of the initial data set is less than 4:0, and Skart assigns the batch size

m D 1.

Having set an appropriate value for the initial batch size, Skart divides the initial sample

into k D 1,280 nonspaced (adjacent) batches of size m with an initial spacer consisting of d  0

ignored batches preceding each “spaced” batch. Then to determine d�, the maximum number of batches

allowed in each spacer, Skart computes the sample skewness of the corresponding batch means after

skipping the first 20% of the batch means to reduce the effect of any initialization bias that may be

present. If the absolute value of the sample skewness computed from the last 80% of the current set of

k batch means exceeds 0:5, then Skart sets d�  3, otherwise Skart sets d�  10.
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In the next step, Skart applies the randomness test of von Neumann [61] to the current set

of k batch means to determine the required batch count, batch size, and data-truncation point beyond

which all computed spaced batch means are approximately independent not only of each other but also

of the simulation’s initial conditions. After each iteration of the randomness test, we let k0 denote the

current number of spaced batch means, where each spacer consists of d ignored batches. Each time the

randomness test is failed, Skart adds an additional batch to each spacer and increments the number of

batches per spacer, d  d C 1 (up to the computed limit of d� batches per spacer), and updates the

count of spaced batch means, k0  bn=f.d C 1/mgc; then Skart reapplies the randomness test to the

new reduced set of k0 spaced batch means. If the randomness test is failed with a spacer consisting of

d� batches, then d is reset to zero, the nonspaced batch count k is deflated by the factor 0:9, the batch

size m is increased by the factor
p
2, and additional observations are collected if required (by restarting

the simulation if necessary). The augmented sample is rebatched into the reduced set of k nonspaced

batches of the enlarged batch size m; the maximum number of batches d� is updated to take the value

3 or 10 depending on the absolute value of the sample skewness computed from the last 80% of the

latest set of k nonspaced batch means as described previously; and the randomness testing procedure

outlined in this paragraph is reperformed starting with the latest set of k nonspaced batch means.

Once the randomness test is passed, the observations fXi W i D 1; : : : ; dmg in the first spacer

are skipped (ignored) to account for the system warm-up, and the remaining n0 D n� dm observations

are used to build a set of nonspaced (adjacent) batches. The number of batches k0  dk0.1=0:9/be
in this set is obtained by reinflating the batch count resulting from the randomness test by the fac-

tor .1=0:9/b , where b is the number of times the batch count was deflated in the randomness test;

and the corresponding batch size is reset to m  maxfbn0=k0c;mg, the maximum of the number

of truncated observations divided by the computed batch count and the current value of the batch

size. If mk0 > n0, then Skart requests mk0 � n0 additional observations, which may require resum-

ing the simulation. Then, Skart computes the resulting truncated, nonspaced batch means
˚
Yj .m/ D

m�1
Pm
iD1XdmC.j�1/mCi W j D 1; : : : ; k0

�
and the associated grand mean xY .m; k0/ and sample

variance S2
m;k0 of the truncated, nonspaced batch means.

Skart exploits separate adjustments to the classical batch-means CI based on the correspond-

ing effects of nonnormality and correlation of the batch means on the distribution of the usual Student’s

t-ratio that underlies the batch-means method. To do this, Skart first must compute approximately

unbiased estimator of the marginal variance and skewness of the truncated, nonspaced batch means
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fYj .m/ W j D 1; : : : ; k0g with the current batch size m. From all the individual observations in the

current simulation-generated data set, Skart temporarily forms a set of approximately i.i.d. spaced

batch means with batch size m, where the spacer size is the smallest multiple of m exceeding the

size of the warm-up period. Let k00 denote the resulting number of spaced batch means. From this

approximate random sample of size k00, Skart computes S2
m;k00 and yBm;k00 , the usual unbiased esti-

mators of the associated marginal variance and skewness of batch means with batch size m. Skart

exploits the statistics S2
m;k00 and yBm;k00 to compute a skewness- and correlation-adjusted CI for �X

from fYj .m/ W j D 1; : : : ; k0g, the current set of k0 truncated, nonspaced batch means with batch size

m.

Skart computes the correlation adjustment A of Equation (1.11) using y'
Y.m/

, the usual sample

estimator of the lag-one correlation of the truncated nonspaced batch means. Thus AS2
m;k00=k

0 is an

approximately unbiased estimator of xY .m; k0/ that has k00� 1 degrees of freedom and that accounts for

any residual correlation between the current set fYj .m/ W j D 1; : : : ; k0g of truncated, nonspaced batch

means with batch size m.

Skart incorporates the method developed by Willink [60] to adjust the classical Student’s t-

statistic underlying the NBM method for any skewness present in the distribution of the batch means.

For this correction, Skart computes the Willink’s modified t-ratio (2.52) by making the following sub-

stitutions in (2.52):

� S2 is replaced by S2
m;k00 ; and

� y�3 is replaced by yBm;k00S3
m;k00 .

A correlation- and skewness-adjusted CI is then computed, where the midpoint of the CI is

xY .m; k0/. The CIs generated by Skart are not usually equal-tailed, meaning that the intervals can be

asymmetric around xY .m; k0/. When the sample skewness of the batch means is high, the difference in

the lengths of the left and right tails is more conspicuous in the delivered CIs.

If no precision level is specified, then Skart simply delivers the latest CI and stops. Otherwise,

the CI is tested to determine if it satisfies a user-specified absolute or relative precision requirement. In

the precision requirement test, Skart assumes that the interval’s half-length is equal to the length of the

wider tail. If the precision requirement is satisfied, then Skart terminates and delivers the latest CI.

Otherwise, Skart estimates a new batch count or batch size (or both) to meet the precision requirement.
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If necessary, additional observations are collected by resuming the current run of the simulation model.

Then a new CI is computed using the recalculated correlation and skewness adjustments, and the preci-

sion requirement is retested. Skart repeats the procedure outlined in the last two paragraphs until a CI

satisfying the precision requirement is finally delivered.

3.2. Formal Algorithmic Statement of Skart

To invoke Skart the user must provide the following: (i) a desired CI coverage probability

1 � ˛, where 0 < ˛ < 1; and (ii) an upper bound H� on the CI half-length, where H� is either

expressed in absolute terms as the maximum acceptable half-length, or in relative terms as the maximum

acceptable fraction r� of the magnitude of the CI midpoint.

Subsequently Skart delivers one of the following: (i) a nominal 100.1 � ˛/% CI for �X

that satisfies the specified absolute or relative precision requirement, provided no additional data are

required; or (ii) a new, larger sample size n to be supplied to Skart when it is executed again. If addi-

tional observations must be generated by resuming (continuing) the current run of the user’s simulation

model before a CI with the required precision can be delivered, then Skart must be called again with

the additional data; and this cycle may be repeated several times before Skart finally delivers a CI.

A formal algorithmic statement of Skart is given on the succeeding pages. In §3.3.1–3.3.5,

we describe the steps in the algorithm in more detail.

3.3. Detailed Description of Steps in Skart

3.3.1. Initialization Step

To initiate Skart, the user must provide a data set that is at least large enough to satisfy Skart’s

minimal requirement for a simulation-generated time series fXj W j D 1; : : : ; ng of length n 1,280.

This requirement is arguably not too far from the minimal sample size required for meaningful analysis

of a time series with any of the following properties: (i) a nontrivial deterministic trend (initialization

bias); (ii) a nontrivial stochastic dependency structure (autocorrelation function); or (iii) nonnormal

distributional characteristics.

Skart is designed so that it can deliver CIs using either observation-based or time-persistent
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Figure 3.2: Algorithmic statement of Skart
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[1] Take the initial sample of size n 1,280 and compute the sample skewness yB of the last 1,024

observations in the sample. If j yBj > 4:0, then set the initial batch size m  16 and increase

the initial sample size to 20,480; otherwise set m  1. Then divide the initial sample into

k  1,280 nonspaced (adjacent) batches of size m. Compute the batch means fYj .m/ W j D
1; : : : ; kg. Set the current number of batches in a spacer, d  0, and the maximum number

of batches allowed in a spacer, d�  10. Set the randomness test size, ˛ran  0:20, and the

number of times the batch count has been deflated in the randomness test, b  0.

[2] Compute the sample skewness yBm of the last 80% of the current set of k nonspaced batch

means with size m. If j yBmj > 0:5, then reset the maximum number of batches per spacer,

d�  3.

[3] Apply the von Neumann test for randomness to the current set of k batch means with signifi-

cance level ˛ran.

[3a] If the randomness test is passed, then set k0  k and go to [5]; otherwise go to [3b].

[3b] Insert spacers each with m observations (one ignored batch) between the k0  bk=2c re-

maining batches; assign the values of the k0 spaced batch means; and set the total number

of batches in a spacer, d  1.

[3c] Apply the randomness test to the current set of k0 spaced batch means with significance

level ˛ran. If the randomness test passed, then go to [5]; otherwise go to [3d].

[3d] If d D d� so that the current number of batches per spacer equals the maximum number

of batches per spacer, then go to [4]; else add another ignored batch to each spacer so that

the total number of batches per spacer and the number of spaced batches are respectively

updated according to

d  d C 1 and k0  
�
n
ı
f.d C 1/mg

˘
:

Reassign the values of the k0 spaced batch means, and go to [3c].

[4] Update the batch size m, the total batch count k, the overall sample size n, and Skart’s other

status variables according to

m d
p
2me; k  d0:9ke; n km; d  0; b  b C 1; and d�  10:

Obtain the required additional simulation-generated observations, recompute the k adjacent

batch means, and go to [2].
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[5] Skip the firstw D d�m observations in the overall sample of size n. Divide the remaining n0  
n�w observations into k0  dk0.1=0:9/be nonspaced batches of size m maxfbn0=k0c;mg.
Ifmk0 > n0, then obtainmk0�n0 additional observations. Compute the current set of truncated,

nonspaced batch means
˚
Yj .m/ m�1

Pm
iD1XwC.j�1/mCi W j D 1; : : : ; k0

�
.

[6] Compute the grand average xY .m; k0/ and the sample variance S2
m;k0 of the current set of trun-

cated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g. Use the sample estimator of the

lag-one correlation of the truncated, nonspaced batch means

y'Y.m/  
1

k0 � 1

k0�1X

jD1

h
Yj .m/ � xY .m; k0/

ih
YjC1.m/ � xY .m; k0/

i.
S2m;k0

to compute the correlation adjustment

A 1C y'Y.m/
1 � y'Y.m/

to the variance of the grand mean.

[7] Compute the correlation-adjusted 100.1 � ˛/% CI for �X using the skewness-adjusted critical

values G.t1�˛=2;k00�1/ and G.t˛=2;k00�1/ of Student’s t-ratio for k00 � 1 degrees of freedom,

2
4 xY .m; k0/ �G.t1�˛=2;k00�1/

s
AS2

m;k00

k0
; xY .m; k0/ �G.t˛=2;k00�1/

s
AS2

m;k00

k0

3
5 ; (3.1)

where to evaluate (3.1) we must first compute spaced batch means with d 0 D dw=me batches

per spacer so we have k00 D 1 C b.k0 � 1/=.d 0 C 1/c spaced batches of size m with corre-

sponding spaced batch means Yj .m; d
0/ � Y.j�1/.d 0C1/C1.m/ for j D 1; : : : ; k00 with grand

mean

xY .m; k00; d 0/ 1

k00

k00X

jD1

Yj .m; d
0/

and sample variance and sample third central moment respectively given by

S2m;k00  
1

k00 � 1

k00X

jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�2

(3.2)
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and

Tm;k00 ;d 0  k00

.k00 � 1/.k00 � 2/

k00X

jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�3
: (3.3)

From the latter statistics (3.2) and (3.3), we compute

yBm;k00 D Tm;k00;d 0

S3
m;k00

; and ˇ �
yBm;k00

6
p
k0
; and G.�/ �

3
p
1C 6ˇ.� � ˇ/� 1

2ˇ
:

If no precision level is specified, then deliver the CI (3.1) and stop; else go to [8].

[8] Apply the appropriate absolute or relative precision stopping rule.

[8a] If the half-width

H  max
˚
jG.t1�˛=2;k00�1/j; jG.t˛=2;k00�1/j

�
�

s
AS2

m;k00

k0

of the current CI satisfies the user-specified precision requirement

H � H�;

where

H�  
(
r�j xY .m; k0/j; for a user-specified relative precision level r�;

h�; for a user-specified absolute precision level h�;

then deliver both the CI xY .m; k0/˙H and the alternative form (3.1) and stop; otherwise

go to [8b].

[8b] Estimate the number of batches of the current size that will be required,

k�  
˙
.H=H�/2k0

�
:
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[8c] Update the number of nonspaced batch means k0, the batch size m, and the total sample

size n as follows:

k0  minfk�; 1024gI
If k0 < k� then m  

˙
m �midf1:02; .H=H�/2; 2g

�
I and

n  d C k0m:

Obtain the additional simulation-generated observations; recompute the nonspaced batch

means and go to [6].

statistics. For observation-based statistics, initially the simulation model generates the required initial

sample size and temporarily suspends the current run (stands by), waiting for Skart to do one of the fol-

lowing: (i) return a CI with the required precision so that the current simulation run may be terminated;

or (ii) return the number of additional observations that must be generated after the current simulation

run is resumed and before the next invocation of Skart. This cycle might be repeated for several times

before Skart finally delivers a CI.

For time-persistent statistics, the situation is more complicated. First Skart asks the user for a

sampling interval value� expressed in the basic time units of the simulation clock. Skart then computes

time-weighted statistics at multiples of � during a pilot simulation run. Usually the value of � is set

by the user based on knowledge of the dynamics of the given simulation model. A larger sampling

interval might be more appropriate in a system in which the value of the statistic does not change too

often during the simulation run. Having the value of �, next Skart computes the total simulation time

required to generate the minimum initial sample size. For instance, if the user sets � D 4, then to

generate a data set of size 1,280 in the initialization step of Skart, the simulation model has to run up to

time 1,280 � 4 D 5,120. The required simulation run length is updated similarly each time Skart asks

for a new sample size. As in the case of discrete-time output processes, this cycle might be repeated

several times before Skart finally delivers a CI for the steady-state mean of a time-persistent statistic.

To determine the initial value of the batch size m, Skart computes the sample skewness of the
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last ` 1,024 observations in the initial sample,

yB `

.`� 1/.` � 2/

nX

jDn�`C1

�
Xj � xX

�3
=S3;

where

xX  1

`

nX

jDn�`C1

Xj ; and S2  1

` � 1

nX

jDn�`C1

�
Xj � xX

�2

respectively denote the sample mean and variance of the last ` observations in the initial sample.

If
ˇ̌yB
ˇ̌
� 4:0, then Skart takes the initial batch size m  1; otherwise, Skart takes m  16.

Then Skart initializes the current batch count k  1,280 and computes the current sample size n  
km, requesting additional observations from the user if the initially supplied data set does not contain

at least n observations. This method for assigning the initial batch size and then increasing the initial

sample size from n D 1,280 to n D 16 � 1,280 D 20,480 if necessary is designed to ensure that in

subsequent steps of Skart, the skewness of the batch means has sufficiently small magnitude so that the

proposed skewness adjustment to the classical batch-means Student’s t-statistic will be effective; see

§§3.3.2–3.3.5.

Next Skart divides the data set fXi W i D 1; : : : ; ng into k batches of size m, with the initial

spacer consisting of d  0 ignored batches preceding each “spaced” batch from which we compute

a batch mean; and the corresponding “spaced” batch means fY1.m/; : : : ; Yk.m/g are computed using

(1.2). (The index d will be used in §3.3.2, when Skart determines the number of batches per spacer that

are required to ensure the spaced batch means are approximately i.i.d.) Then Skart determines d�, the

maximum number of batches per spacer, to be used in the test for randomness of the spaced batch means

in §3.3.2 based on the sample skewness of the current set of batch means. By default we take d�  10.

To get a more accurate estimator yBm of the marginal skewness of the batch means with the current

batch size m and to reduce the effect of any initial transient on the sample skewness computation, Skart

skips the first 20% of the current set of batch means and computes the skewness only using the last 80%

of the batch means as follows:

` b0:8kc; xY .m; `/ 1

`

kX

jDk�`C1

Yj .m/; (3.4)

S2m;`  
1

`� 1

kX

jDk�`C1

�
Yj .m/ � xY .m; `/

�2
; (3.5)
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yBm  
`

.` � 1/.` � 2/

kX

jDk�`C1

�
Yj .m/ � xY .m; `/

�3

S3
m;`

: (3.6)

To handle effectively an output process whose marginal skewness has excessive magnitude,

Skart exploits the broadly applicable property that as m ! 1, the fYj .m/g are asymptotically i.i.d.

normal; and since the normal distribution is determined by its moments [9], the skewness of the batch

means tends to zero as m!1. Hence, if the sample skewness yBm of the fYj .m/g in (3.6) satisfies

ˇ̌yBm
ˇ̌
> 0:5; (3.7)

then Skart sets d�  3 as the maximum number of batches allowed per spacer to be used in the test for

randomness of the spaced batch means. By doing this, Skart forces the randomness test to increase the

batch size more frequently for skewed processes as explained in the next section.

To complete initialization, we take ˛ran  0:2 as the randomness test size and b  0 as the

number of times the batch count has been deflated in the randomness test.

3.3.2. The Test for Randomness

In this step, Skart applies the randomness test of von Neumann [61] to the current set of k0  
k D 1,280 batch means by computing the ratio of the mean square successive difference of the batch

means to the sample variance of the batch means. Skart applies this test iteratively to determine the size

of an interbatch spacer that is sufficiently large to yield approximate independence of the corresponding

spaced batch means and consequently to determine a proper batch count, batch size, and data-truncation

point beyond which all the computed batch means are approximately independent of the simulation’s

initial conditions as well as being i.i.d.—that is, the spaced batch means constitute a random sample

from a common distribution.

At the significance level ˛ran, we test the null hypothesis that the current spaced batch means

are i.i.d.,

˚
Yj.dC1/.m/ W j D 1; : : : ; k0

�
are i.i.d.; (3.8)

by computing their grand mean,

xY .m; k0; d / D 1

k0

k0X

jD1

Yj.dC1/.m/;
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and the corresponding randomness test statistic,

Ck0  1 �
Pk0�1
jD1

�
Yj.dC1/.m/ � Y.jC1/.dC1/.m/

�2

2
Pk0

jD1

h
Yj.dC1/.m/ � xY .m; k0; d /

i2 ; (3.9)

which is a relocated and rescaled version of the ratio of the mean square successive difference of the

spaced batch means to the sample variance of the spaced batch means. Since Skart’s test for randomness

usually involves a large number of spaced batch means, we use a normal approximation to the null

distribution of the test statistic (3.9); see ([19], p. 303). Let z! denote the ! quantile of the standard

normal distribution for 0 < ! < 1. If

ˇ̌
Ck0

ˇ̌
� z1�˛ran=2

q�
k0 � 2

�ı�
.k0/2 � 1

�
; (3.10)

then the hypothesis (3.8) is accepted; otherwise (3.8) is rejected so that Skart must increase the spacer

size before retesting (3.8). We found that setting ˛ran D 0:2 works well in practice and provides an

effective balance between errors of type I and II in testing the hypothesis (3.8).

If the randomness test is passed the first time it is executed so that the current set of batch

means is fY1.m/; Y2.m/; : : : ; Y1280.m/g, then we fix the batch count k0  1,280 and the batch size

m and proceed to the variance-adjustment step as detailed in §3.3.3. Otherwise after executing the

randomness test for the first time, we insert spacers each consisting of one ignored batch between the

k0  1,280=2 D 640 remaining batches and increment the number of batches per spacer, d  d C 1.

Thus every other batch, beginning with the second batch, is retained as one of the spaced batch means;

and the alternate batches are ignored. Now, we retest the corresponding set of k0 D 640 spaced batch

means fY2.m/; Y4.m/; : : : ; Y1280.m/g for randomness by reperforming (3.8)–(3.10) with batch size m

and d D 1 batch per spacer.

If the latest retest of (3.8) using (3.10) is passed, then we move to the variance-adjustment

step of §3.3.3 with the current values of k0, m, and d ; otherwise, we add another ignored batch to each

spacer so that the total number of batches per spacer and the number of spaced batches are updated

according to

d  d C 1 and k0  
�
n
ı
f.d C 1/mg

˘
; (3.11)

respectively.

If the update step (3.11) has been executed immediately after the first randomness test is

performed, then we now have k0 D 426 spaced batch means fY3.m/; Y6.m/; : : : ; Y1278.m/g with

batch size m and d D 2 batches per spacer so that the spacer size is dm D 2m. Each time (3.11)



52

is executed, the sequence of steps in the three immediately preceding paragraphs (i.e., (3.8)–(3.10)) is

reperformed until one of the following conditions occurs:

(i) The randomness test (3.10) is failed and in the update step (3.11), we get d > d� so that the total

number of batches per spacer exceeds its upper limit; or

(ii) The randomness test is passed.

When condition (i) occurs, the batch size m is increased (inflated), the batch count k is de-

creased (deflated), and Skart’s other status variables are updated as follows:

m 
˙p
2m
�
; k  d0:9ke; n km; d  0; b  b C 1; and d�  10: (3.12)

The required additional observations are obtained (from the original data set, or by restarting the sim-

ulation if necessary) to complete the overall sample fXi W i D 1; : : : ; ng; and then k nonspaced batch

means are computed from the overall sample according to (1.2). The updated sample skewness of the

new nonspaced batch means is computed using (3.4)–(3.6). If (3.7) is satisfied, then Skart takes d�  3

as the maximum number of batches per spacer; otherwise Skart takes d�  10.

If condition (i) above occurs so that the update step of the previous paragraph (including

(3.12)) is executed, then Skart reperforms the entire randomness-testing procedure (3.8)–(3.11), starting

with the current set of k nonspaced batch means of the current batch size m so that we take k0  k and

d  0 in (3.8). Skart repeats the steps outlined in the five preceding paragraphs (starting with (3.8))

until condition (ii) above finally occurs.

If the condition (ii) above occurs, then we proceed to the correlation-adjustment step detailed

in §3.3.3 with the current value of d as the number of batches per spacer and the following values for

the batch size, the truncated sample size, and the batch count:

k0  
l
k0.1=0:9/b

m
; n0  n � dm; and m max

˚�
n0=k0

˘
;m
�
; (3.13)

where the batch count k0 is reinflated by the factor .1=0:9/b to compensate for the total number of times

the batch count was deflated in successive iterations of (3.12). Ifmk0 > n0, then Skart requestsmk0�n0

additional observations, which may require resuming the simulation.

Skart’s approach for determining a data-truncation point (statistics clearing time, warm-up

period) and appropriate values for the batch size and batch count is similar to the approaches used in

WASSP and Sbatch. The observations fX1; X2; : : : ; Xdmg constituting the first spacer can be regarded
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as containing the warm-up period because the spaced batch means beyond the first spacer do not exhibit

significant departures from randomness—that is, they do not exhibit a deterministic trend or any type of

stochastic dependence on the simulation’s initial conditions. Moreover, the spaced batch means com-

puted beyond the first spacer are approximately i.i.d. and thus can be meaningfully used for computing

the skewness adjustment to the Student’s t-statistic underlying the classical method of batch-means.

However, there are a few key differences between the randomness-testing methods used in

WASSP and Sbatch on the one hand and Skart on the other. In Skart, the value of d�, the maximum

number of batches per spacer, is dynamically adjusted based on the sample skewness of the most re-

cently computed set of nonspaced batch means, whereas WASSP and Sbatch use (different) fixed values

for d�. Skart also decreases the initial count of the nonspaced batch means each time the randomness

testing is restarted with (3.12) to control the sample size growth, but in WASSP and SBatch the batch

count is constant.

3.3.3. Autocorrelation Adjustment for the Variance Estimator

Constructing a valid CI for �X requires an approximately unbiased estimator for the variance

of the grand mean xY .m; k0/, where we take k D k0 in (1.3) to indicate that the batch means have

been suitably truncated to eliminate initialization bias. In the classical NBM method, S2
m;k0

ı
k0 is

taken as the estimator of Var
� xY .m; k0/

�
; and thus the conventional 100.1 � ˛/% CI (1.7) centered at

xY .m; k0/ is taken to have half-length t1�˛=2;k0�1Sm;k0=
p
k0 on the assumption that the batch means

are approximately i.i.d. normal variates. In practice, however, we have found that the batch means

are rarely uncorrelated even when they are approximately normal [54]; and in general S2
m;k0

ı
k0 can

be a badly biased estimator of VarŒ xY .m; k0/�—especially when the original simulation output process

fXig has a positive autocorrelation function that declines slowly with increasing lags. Skart applies

the autocorrelation adjustment A given by (1.11) to the variance estimator S2
m;k00

ı
k0 to compensate for

any residual correlation between the truncated batch means, where S2
m;k00 is an approximately unbiased

estimator of the variance of the fYj .m/g computed from k00 approximately i.i.d. spaced batch means

separated by spacers having approximately the same size as the warm-up period (see (3.3.4) below).

To compute the autocorrelation adjustment, Skart first uses the batch count k0 and the batch

size m determined in (3.13) to perform the following operations on the data set fXi W i D 1; : : : ; ng
accumulated so far: (a) Skart skips the first w D d �m observations to eliminate the effects of initial-
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ization bias; and (b) Skart computes the corresponding nonspaced batch means

n
Yj .m/ D m�1

mX

iD1

XwC.j�1/mCi W j D 1; : : : ; k0
o

from the truncated data set. In general the resulting nonspaced batch means will have a nonnegligible

autocorrelation structure; moreover, they sometimes exhibit significant departures from normality. If

the fYj .m/g constitute a stationary process (a property that the randomness test was designed to ensure),

then usually the batch-means process can be adequately modeled by an autoregressive–moving average

(ARMA) process, at least for the purpose of estimating the autocorrelation structure of the batch means

[11, 52]. In Appendix A, we prove that the lag-one autoregressive and moving-average parameters

are the dominant factors in an ARMA(p; q) model for the fYj .m/g as m ! 1, although we ended

up using a first-order autoregressive (AR(1)) model instead of an ARMA(1; 1) model to compute the

autocorrelation adjustment in Skart for the reasons discussed at the end of Appendix A. Hence Skart

fits an AR(1) model to the fYj .m/g, estimating the associated autoregressive parameter by y'
Y.m/

as

given in (1.12). Then y'
Y.m/

is used to compute the correlation adjustment A as given in (1.11) so that

AS2
m;k00

ı
k0 is an approximately unbiased estimator of Var

� xY .m; k0/
�
.

3.3.4. Skewness Adjustment to Student’s t-Statistic

When the truncated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g exhibit significant de-

partures from normality, Skart applies an appropriate adjustment to the usual critical value of Student’s

t-distribution to yield a valid CI for �X . As detailed in §§3.3.1–3.3.2, Skart inflates the batch size for

a highly skewed process to mitigate at least partially the effect of nonnormality of the batch means on

the associated NBM Student’s t-statistic. In some simulation applications, however, conditions such

as high congestion can induce substantial skewness in the batch means (of flow times, for example)

even for batch sizes that are sufficiently large to ensure the batch means are nearly uncorrelated. There-

fore, the skewness adjustment that Skart applies in this step can be crucial in delivering a CI with good

coverage. Moreover, we have found that the batch-size increases imposed in previous steps of Skart

are necessary to ensure that the skewness of the batch means has sufficiently small magnitude so the

skewness adjustment is effective.

In this step of Skart, we adapt the skewness adjustment developed by Willink [60]. The

adjustment is based on the modified t-statistic of Johnson [29] in which key terms of a Cornish-Fisher

expansion involve the marginal skewness of the basic data items going into the t-statistic (in this case,

batch means). It must be recognized that Willink’s skewness adjustment is based on the assumption
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that the basic data items going into the t-statistic are i.i.d.; but the experimental performance evaluation

shows the effectiveness of this adjustment in the operation of Skart when the basic data items are

correlated batch means.

To obtain an approximately unbiased estimator of the marginal skewness of the current set of

truncated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g, Skart computes this skewness estimator

from approximately i.i.d. spaced batch means constituting a subset of the current set of nonspaced batch

means. From the randomness test in §3.3.2, we concluded that spacers consisting of w observations are

sufficiently large to ensure approximate independence of the corresponding spaced batch means. Thus

from the current set of k0 nonspaced batch means, we can extract the spaced batch means
˚
Y1.m/;

Yd 0C2.m/; : : : ; Y.k00�1/.d 0C1/C1.m/
�
; where d 0 D dw=me is the number of batches per spacer and

k00 D 1 C b.k0 � 1/=.d 0 C 1/c is the total number of spaced batch means. To simplify the following

discussion, for j D 1; : : : ; k00 we let Yj .m; d
0/ � Y.j�1/.d 0C1/C1.m/ denote the associated spaced

batch means with the following approximately unbiased estimators of their required marginal moments:

the grand mean

xY .m; k00; d 0/ 1

k00

k00X

jD1

Yj .m; d
0/I

the sample variance

S2m;k00  
1

k00 � 1

k00X

jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�2 I

and sample third central moment

Tm;k00;d 0  k00

.k00 � 1/.k00 � 2/

k00X

jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�3
:

Skart uses these statistics to calculate G.L/ and G.R/, the skewness-adjusted quantile of Student’s

t-ratio for the left and right half-lengths of the proposed CI. The function G.�/ is defined by taking

yBm;k00  Tm;k00 ;d 0

ı
S3m;k00 (3.14)

in Equation (1.9); and thenL andR are defined by Equation (1.10). Thus Skart provides the correlation-

and skewness-adjusted CI in Equation (1.8).
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3.3.5. Fulfilling the Precision Requirement

The final step of Skart is to determine whether the constructed CI satisfies the user-specified

precision requirement. The half-length of the CI (1.8) is given by

H  maxf jG.L/j; jG.R/jg �

s
AS2

m;k00

k0
;

where L and R are defined in (1.10), the maximum of the two half-lengths. If the CI (1.8) satisfies the

precision requirement

H � H�; (3.15)

where H� is given by

H�  

8
ˆ̂<
ˆ̂:

1; for no user-specified precision level;

r�
ˇ̌ xX

ˇ̌
; for a user-specified relative precision level r�;

h�; for a user-specified absolute precision level h�;

(3.16)

then Skart terminates, delivering the confidence interval (1.8).

If the precision requirement H � H� is not satisfied, then Skart estimates the total number

of nonspaced batches of the current batch size that are needed to satisfy the precision requirement,

k�  
˙
.H=H�/2k0

�
I

and thus k�m is our latest estimate of the total sample size beyond the truncation point that is needed

to satisfy the precision requirement. The batch count k0 is set for the next iteration of Skart as follows:

k0  min
˚
k�; 1,024

�
;

where 1,024 is the upper bound on the number of batch means used in Skart. Our experiments showed

that in those situations requiring more than 1,024 batches to achieve the desired precision, we could

generally obtain better performance (in terms of the final required sample size) by increasing the batch

size rather than increasing the batch count. If the projected total number of batches k� > 1,024, then

on the next iteration of Skart we take k0  1,024 and we update the batch size according to

m 
˙
m �mid

˚
1:02;

�
k�=k0

�
; 2:0

��
;

which is assigned to satisfy the precision requirement based on an approximation to the (complicated)

way in which the half-length H of the CI (1.8) depends on the batch size. This approximation is
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explained in detail in §3.4 of Steiger et al. [54]. We constrain the batch-size inflation factor to lie

between the limits 1:02 and 2:0 to avoid an excessive number of iterations of Skart or an excessive total

sample size.

On the next iteration of Skart, the total sample size including the warm-up period is thus given

by

n .d C k0/m;

where d was finalized in the randomness test. The additional simulation-generated observations are

obtained by restarting the simulation or by retrieving extra data from storage; and then the next itera-

tion of Skart is performed by computing a new CI for �X using Equation (1.8) after recomputing the

following: (a) the grand mean xY .m; k0/ of the new set of k0 truncated, nonspaced batch means; (b) the

associated correlation and skewness adjustments; and (c) the sample variance S2
m;k00 of the new set of

k00 truncated, spaced batch means.

3.4. N-Skart: A Nonsequential Version of Skart

Skart also has a nonsequential mode of operation in which the user merely supplies a single

simulation-generated time series of an arbitrary fixed length and requests a CI with a specific coverage

probability based on the available data. This procedure, called N-Skart, is designed for simulation

experiments in which the size of the output data set is fixed because of a limited computing budget, a

constraint on the time available for the user to complete the simulation study, or other restrictions that

prevent the user from resuming the current run of the simulation model. N-Skart requires a data set

of size at least 1,280, the same as for the sequential version of Skart. Figure 3.3 depicts a high-level

flowchart of N-Skart.

A formal algorithmic statement of N-Skart for a data set of fixed size N is given in Figure

3.4. This algorithm has nearly the same design as the sequential algorithm given in Figure 3.2; only

Steps [1], [4], and [5] are slightly changed, and Step [8] is removed completely. The modified steps

are highlighted with a star next to their numbers in Figure 3.4. The necessary changes for N-Skart are

summarized below:

[1*]– This step is adjusted so that if the magnitude of the computed sample skewness yB is greater than

4:0, then the increase in the batch size m is bounded in proportion to N , the available sample

size, resulting in 1,280 batches of size m minf16; bN=1,280cg.



58

Independence

test passed?

Skip first spacer; reinflate batch count,

increase batch count and batch

size to use all truncated sample size N'

Compute skewness-

and autoregression-

adjusted CI

Deliver CI

No

For sample of fixed size N, compute

sample skewness, and set initial batch

size accordingly

Add another batch to

each spacer; recompute

spaced batch means

Yes

Reached max

batches per

spacer?

Increase batch size; deflate batch

count; set spacer size to zero

Yes

No

Increase length of warm-up period to eliminate

last partial batch; compute truncated, nonspaced

batch means; and compute autoregression-adjusted

variance estimator

Compute nonspaced batch means

and their sample skewness; set

max batches allowed per spacer

Compute spaced batch means and

associated skewness-adjusted t-ratio

Start

Variable updates

would cause the

sample size to

exceed N?

No

Yes Construct a

CI anyway?

Quit without

delivering a CI

No

Yes

Figure 3.3: High-level flowchart of N-Skart

[4*]– In the sequential version of Skart, this step is designed to update the status variables of the pro-

cedure, such as batch size, batch count, and sample size before reapplying the randomness test.

Since only limited simulation-generated observations are available in N-Skart, a feasibility check

is done in this step of N-Skart to verify if the updates on the batch size and batch count would

cause the sample size to exceed the available sample size N . If d
p
2me � d0:9ke � N , then

we update the batch size, batch count, and other status variables of the randomness test; we re-

compute the nonspaced batch means, and we return to Step [2]. Otherwise, N-Skart issues a

warning to the user, stating that the randomness test could not be passed because of insufficient

data. The warning also notes that if the user decides to continue the procedure under the given

circumstances, the delivered CI might not provide the target confidence level. Here the user has

two choices: (a) quit the procedure without delivering a CI; or (b) continue with constructing the
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Figure 3.4: Algorithmic statement of N-Skart
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[1*] From the given sample data set of sizeN , compute the sample skewness yB of the last 80% of the

observations. If j yBj > 4:0, then set the initial batch size m minf16; bN=1,280cg; otherwise

set m 1. Then divide the initial sample into k  1,280 nonspaced (adjacent) batches of size

m. Compute the batch means fYj .m/ W j D 1; : : : ; kg. Set the current number of batches in a

spacer, d  0, and the maximum number of batches allowed in a spacer, d�  10. Set the

randomness test size, ˛ran  0:20, and the number of times the batch count has been deflated

in the randomness test, b  0.

[2] Compute the sample skewness yBm of the last 80% of the current set of k nonspaced batch

means with size m. If j yBmj > 0:5, then reset the maximum number of batches per spacer,

d�  3.

[3] Apply the von Neumann test for randomness to the current set of k batch means with signifi-

cance level ˛ran.

[3a] If the randomness test is passed, then set k0  k and go to [5a*]; otherwise go to [3b].

[3b] Insert spacers each with m observations (one ignored batch) between the k0  bk=2c re-

maining batches; assign the values of the k0 spaced batch means; and set the total number

of batches in a spacer, d  1.

[3c] Apply the randomness test to the current set of k0 spaced batch means with significance

level ˛ran. If the randomness test passed, then go to [5a*]; otherwise go to [3d].

[3d] If d D d� so that the current number of batches per spacer equals the maximum number

of batches per spacer, then go to [4*]; else add another ignored batch to each spacer so that

the total number of batches per spacer and the number of spaced batches are respectively

updated according to

d  d C 1 and k0  
�
n
ı
f.d C 1/mg

˘
;

respectively. Reassign the values of the k0 spaced batch means, and go to [3c].

[4*] If d
p
2me � d0:9ke � N , then update the batch size m, the total batch count k, the overall

sample size n, and Skart’s other status variables according to

m d
p
2me; k  d0:9ke; n km; d  0; b  b C 1; and d�  10I

recompute the k adjacent (nonspaced) batch means, and go to [2]. Otherwise, issue a warning

that the randomness test could not be passed due to insufficient data, and ask if user wishes to

continue. If the user chooses to continue with constructing a CI, then go to [5a*]; otherwise

quit
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the procedure without delivering a CI.

[5a*] Skip the first w D d � m observations in the overall sample of size N . First reinflate the

batch count k0  minfdk0.1=0:9/be; kg; then compute the additional inflation factor f  p
N 0=.k0m/ for both the batch size and batch count, and reset the truncated batch count k0  

minfbf k0c; 1,024g. If k0 < 1024, then reset the batch size according tom bf mc; otherwise

take m bN 0=1,024c because the maximum of k0 D 1,024 truncated, nonspaced batch means

has been reached.

[5b*] Compute the corresponding truncated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g so that

there is no partial batch left at the end,

Yj .m/ 
1

m

N�.k0�j /mX

iDN�.k0�jC1/mC1

Xi for j D 1; : : : ; k0I (3.17)

and update the length of the warm-up period according to w  w C .N 0 � k0m/ so that the

initial observations fXi W i D 1; : : : ; wg are the only unused items in the entire data set of size

N .

[6] Compute the grand average xY .m; k0/ and the sample variance S2
m;k0 of the current set of trun-

cated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g. Use the sample estimator of the

lag-one correlation of the truncated, nonspaced batch means

y'Y.m/  
1

k0 � 1

k0�1X

jD1

h
Yj .m/ � xY .m; k0/

ih
YjC1.m/ � xY .m; k0/

i.
S2m;k0

to compute the correlation adjustment,

A 1C y'Y.m/
1 � y'Y.m/

to the variance of the grand mean.

[7] Compute the correlation-adjusted 100.1 � ˛/% CI for �X using the skewness-adjusted critical

values G.t1�˛=2;k00�1/ and G.t˛=2;k00�1/ of Student’s t-ratio for k00 � 1 degrees of freedom,

2
4 xY .m; k0/ �G.t1�˛=2;k00�1/

s
AS2

m;k00

k0
; xY .m; k0/ �G.t˛=2;k00�1/

s
AS2

m;k00

k0

3
5 ; (3.18)
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where to evaluate (3.18) we must first compute spaced batch means with d 0 D dw=me batches

per spacer so we have k00 D 1 C b.k0 � 1/=.d 0 C 1/c spaced batches of size m with corre-

sponding spaced batch means Yj .m; d
0/ � Y.j�1/.d 0C1/C1.m/ for j D 1; : : : ; k00 with grand

mean

xY .m; k00; d 0/ 1

k00

k00X

jD1

Yj .m; d
0/I

and sample variance and sample skewness respectively given by

S2m;k00  
1

k00 � 1

k00X

jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�2 I and (3.19)

Tm;k00 ;d 0  k00

.k00 � 1/.k00 � 2/

k00X

jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�3
: (3.20)

From the latter statistics (3.19) and (3.20), we compute

yBm;k00 D Tm;k00;d 0

S3
m;k00

; and ˇ �
yBm;k00

6
p
k0
; and G.�/ �

3
p
1C 6ˇ.� � ˇ/� 1

2ˇ
:

Deliver the CI (3.18) and stop.

requested CI by ignoring the warning.

[5a*]– In this step N-Skart skips the first w D dm observations in the warm-up period, so that N 0 D
N �w approximately steady-state observations are available to build a CI for �X . Next the batch

count k0 is reinflated according to the formula k0  minfdk0.1=0:9/be; kg to compensate for the

total number of times the batch count was deflated in successive iterations of the randomness test.

Then N-Skart computes a multiplier

f D
p
N 0=.k0m/

to increase both the batch count k0 and the batch size m so as to use all of the available sample

size N 0, subject to the constraint that k0 � 1,024. Thus, N-Skart updates the count of truncated,
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nonspaced batch means according to

k0  minfbf k0c; 1,024gI

and the associated batch size is updated as follows:

m 
(
bf mc; if k0 < 1,024;

bN 0=1,024c; if k0 D 1,024:

[5b*]– This step is specific to N-Skart. N-Skart uses formula (3.17) to compute k0 batches of size m and

adds the extra N 0 � mk0 observations, where .N 0 � mk0/ < m, to the end of warm-up period.

This step enlarges the warm-up period and enhances the removal of the transients, especially in

the problem instances in which the provided sample size N is fairly small and the randomness

test of N-Skart is exited without being passed, as explained in Step [4*].

[8*]– This step is removed since no absolute or relative precision requirement is considered in N-Skart

and the user just expects to get the best coverage on the delivered CIs.
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Chapter 4

Performance Evaluation of Skart

We conducted an extensive performance evaluation of Skart for CI estimation, including a

comparison of this procedure with other well-known steady-state simulation analysis procedures—

namely, ASAP3, WASSP, and SBatch. A broad diversity of test processes are considered in the ex-

perimentation, including the following: (a) processes resembling practical applications with realistic

levels of complexity; and (b) processes exhibiting extremes of stochastic behavior that are commonly

used to “stress-test” simulation analysis procedures. For each of the test processes, the steady-state

mean is known; therefore for a given test process, we can compute the empirical coverage probabilities

for the CIs delivered by each output procedure in order to evaluate the performance of the procedure

and compare its performance with that of Skart. Furthermore, some specific simulation output statis-

tics are used in the experimentation to assess the quality of Skart’s CIs for the steady-state mean of

time-persistent statistics.

Beyond CI coverage probability, the performance of each output procedure is reported with

respect to the following criteria: total sample size, average CI relative precision, average CI half-length,

and variance of the CI half-length. Each experiment includes either 400 or 1,000 independent repli-

cations of the selected output analysis procedures for constructing 90% and 95% CIs. To provide an

indication of the asymptotic performance of these output procedures, decreasing values of the relative-

precision level r� were considered for each test problem.

The standard error of each CI coverage estimator varies, depending on the number of inde-

pendent replications of that CI. In case of 400 replications, for CIs with nominal 90% (respectively,

95%) coverage probability, this standard error is approximately 1:5% (respectively, 1:1%). For 1,000

replications, the standard error of the coverage estimator is approximately 0:95% (respectively, 0:69%).
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To get a reasonable level of precision in the estimation of coverage probabilities, Skart was run for 1,000

replications in all the experiments. The resulting coverage error is fairly small and therefore enables

us to compare the performance of Skart with that of the other output procedures and consequently find

significant differences in their performance.

4.1. Performance of Skart

4.1.1. The M=M=1 Queue-Waiting-Time Process

Table 4.1 shows the results of applying 1,000 replications of Skart to an M=M=1 queue-

waiting-time process with an empty-and-idle initial condition, interarrival rates ranging from 0:1 up

to 0:8 customers per-time-unit, and a service rate of 1:0 customers per-time-unit. Comparable results

for the other procedures are not available for traffic intensities over the entire range from 10% to 80%.

These eight test problems are considered to study the performance of Skart as the interarrival rate

increases, or in other words as server utilization grows, so that the correlation between successive

queue waiting times increases and the system becomes more congested.

The results of the no precision case for both 90% and 95% CIs are reported in Table 4.1.

These results suggest that Skart provides very close to the nominal coverage probabilities for all the

reported server utilization rates. Looking at the average sample sizes in Table 4.1, we see a noticeable

U-shaped trend in their values as the server utilization increases. When the server utilization is small,

the sample size value is fairly high, and then it follows a decreasing trend; but later on, the sample size

rapidly increases as the server utilization gets closer to one.

The logic behind this trend in the sample size highlights the basic principles on which Skart

is built. For the smaller sever utilizations such as 10% and 20%, the queue-waiting-time statistics have

a high sample skewness due to the pronounced nonnormality of the observations—namely, the high

relative frequency with which the value zero occurs among the series of observed queue waiting times.

Therefore, Skart inflates the batch size in the initialization and randomness tests to mitigate the effects

of nonnormality on the batch means. In queueing systems with server utilizations between 30% and

60%, neither the correlation between successive queue-waiting-times nor the skewness of those waiting

times is significantly different from zero; thus Skart does not inflate the sample size very often and

delivers CIs with fairly small sample sizes. As the server utilization surpasses 70%, the correlation and

nonnormality effects again deviate significantly from zero, resulting in an increase in the sample size.
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Table 4.1: Performance of Skart in the M=M=1 queue-waiting-time process for different

levels of server utilization (SU) and for 90% and 95% CIs for the no precision case

Performance 10% SU 20% SU 30% SU 40% SU
Measure 90% 95% 90% 95% 90% 95% 90% 95%

CI coverage 89.8% 94.6% 89.7% 96.1% 89.5% 94.3% 89.3% 94.1%
Avg. sample size 20,650 20,650 14,597 14,597 4,571 4,571 3,213 3,213

Avg. rel. precision 6.74% 8.09% 12.21% 14.78% 19.29% 23.83% 17.83% 21.64%
Avg. CI half-length 0.0077 0.0093 0.0331 0.0413 0.0872 0.1088 0.1261 0.1579
Var. CI half-length 0 0 0.0007 0.0013 0.0011 0.0019 0.0013 0.0028

Performance 50% SU 60% SU 70% SU 80% SU
Measure 90% 95% 90% 95% 90% 95% 90% 95%

CI coverage 89.2% 94.9% 89.3% 94.1% 90.5% 94.3% 90.4% 94.4%
Avg. sample size 4,014 4,014 5,837 5,837 9,025 9,025 15,495 15,495

Avg. rel. precision 16.33% 19.91% 15.29% 18.69% 15.48% 18.92% 16.48% 19.73%
Avg. CI half-length 0.1762 0.2224 0.2533 0.3232 0.3964 0.4990 0.7214 0.9082
Var. CI half-length 0.0031 0.0077 0.0051 0.0167 0.0119 0.0273 0.0648 0.1561

From Table 4.1 we also observe that the total sample sizes required by Skart for 30%, 40%,

and 50% server utilizations are almost equal to, or even smaller than, the initial sample sizes required

by SBatch (16,384), WASSP (4,096), or ASAP3 (4,096).

Table 4.2 summarizes the experimental performance of Skart, ASAP3, WASSP, and SBatch

when they are applied to an M=M=1 queue-waiting-time process for a system with an empty-and-idle

initial condition, an interarrival rate of � D 0:9 customers per-time-unit, and a service rate of � D 1:0
customers per-time-unit. In this system the steady-state server utilization is � D 0:9, the steady-state

expected waiting time is �X D 9:0 time units, and the steady-state standard deviation of the waiting

time is �X D 9:950.

This process reaches the steady-state phase rather fast, and consequently the effect of initial-

ization bias on the sample mean waiting time is insignificant. However, this process is a particularly

interesting problem because in steady-state operation, we observe the following anomalies: (a) the au-

tocorrelation function of the waiting time process decays very slowly with increasing lags; and (b) the

marginal distribution of the waiting times has an exponential tail and is therefore markedly nonnormal.

These characteristics result in slow convergence to the classical requirement that the batch means are

i.i.d. normal as the batch size increases.

From the results in Table 4.2, it is evident that all four procedures performed reasonably

well in terms of conformance to the nominal coverage probability. This was to be expected, since
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Table 4.2: Performance of Skart, SBatch, WASSP, and ASAP3 in the M=M=1 queue-waiting-time

process with 90% server utilization and empty-and-idle initial condition

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch WASSP ASAP3 Skart SBatch WASSP ASAP3

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 87.9% 87.1% 87.7% 87.5% 92.4% 91.6% 93.4% 91.5%

None Avg. sample size 41,855 54,371 18,090 31,181 41,855 54,371 17,971 31,181
Avg. CI half-length 1.6741 1.3864 3.0715 2.0719 2.0118 1.6578 3.9987 2.5209
Var. CI half-length 0.2282 0.2603 2.0026 0.3478 0.3607 0.3725 3.6999 0.5350

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 87.5% 86.6% 87.2% 91% 93.6% 91.2% 93% 95.5%

˙15% Avg. sample size 70,473 66,719 92,049 103,742 101,730 88,447 143,920 140,052
Avg. CI half-length 1.1905 1.1556 1.1103 1.1820 1.2284 1.2046 1.1342 1.2059
Var. CI half-length 0.0217 0.0396 0.0387 0.0259 0.0161 0.0263 0.0314 0.0205

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 90% 88.8% 90.4% 89.5% 95.3% 94% 97% 94%

˙7:5% Avg. sample size 273,540 278,642 388,000 287,568 401,816 403,844 598,020 382,958
Avg. CI half-length 0.6396 0.6141 0.5866 0.6273 0.6397 0.6160 0.5950 0.6324
Var. CI half-length 0.0013 0.0055 0.0072 0.0023 0.0011 0.0056 0.0056 0.0020

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 90.5% 89.8% 94% 89.5% 95.5% 95.2% 97.7% 93.5%

˙3:75% Avg. sample size 1,057,080 1,151,178 1,518,400 969,011 1,492,458 1,618,147 2,361,300 1,341,522
Avg. CI half-length 0.3223 0.3081 0.3060 0.3200 0.3232 0.3076 0.3060 0.3210
Var. CI half-length 0.0002 0.0014 0.0008 0.0004 0.0002 0.0014 0.0007 0.0004

virtually all simulation-analysis procedures have been “tuned” to this test problem at least to some

extent. As the precision level r� became progressively smaller, Skart, ASAP3, and SBatch delivered

CIs whose coverage probabilities converged to their nominal levels, while WASSP delivered CIs with

some overcoverage; moreover, in this situation WASSP appeared to require substantially larger sample

sizes than were required by Skart, ASAP3, or SBatch.

In the case of the ˙15% precision requirement, Skart outperformed WASSP and ASAP3

with respect to the average sample size, while for smaller precision levels Skart’s performance was

inferior to ASAP3 with respect to sampling efficiency. The results also reveal that SBatch suffered

from some undercoverage at the ˙15% precision requirement. In the no precision case while Skart

still experienced some minor undercoverage, its CIs were much better behaved than those of ASAP3,

WASSP, and SBatch—to be more specific, ASAP3 suffered from more serious undercoverage compared

with that of Skart; WASSP delivered a CI with much higher variance of the half-length compared with

that of Skart; and SBatch’s average sample size exceeded Skart’s by 30%.

To put these figures in the proper perspective, note that the corresponding results for LBATCH,

ABATCH, the Law-Carson procedure, and the Heidelberger-Welch procedure are inferior to most of the
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results in Table 4.2. From Table 2 of Steiger and Wilson [52] for example, ABATCH delivered the fol-

lowing coverage probabilities for nominal 90% CIs with the indicated relative precision levels: (i) no

precision, 60%; (ii)˙15% precision, 72%; and (iii)˙7:5% precision, 82%. From Table 2 of Lada et al.

[38], the corresponding coverage probabilities for the Heidelberger-Welch procedure are 67.8%, 76%,

and 77%.

Next, we studied theM=M=1 queueing system with 90% server utilization as described above

with arrival rate � D 0:9 and service rate � D 1:0 but with an extreme initial condition in which

c D 113 customers are assumed to be in the queue at time zero; and the first “regular” customer arrives

as usual after an exponentially distributed interarrival time. This new initial condition was carefully

designed to introduce a long transient in the queue-waiting-time statistic and to test the robustness of

Skart, SBatch, and ASAP3 in removing severe initialization bias. Queue-waiting-time statistics are

accumulated only for the “regular” customers arriving after time zero.

Let N.t/ denote the number of customers in the system at time t . If the initial number of

customers N.0/ D c, then it can be shown that the conditional moment generating function of the

queue-waiting-time for the first regular customer is

MX1
.t/ � E

�
etX1

ˇ̌
N.0/ D c

�
D  c C

.1 �  /
�
1�  c.1 � t=�/c

�

.1 � t=�/c Œ1�  .1 � t=�/� for t < �; (4.1)

where  � �=.�C �/. From (4.1) if follows that

E
�
X1jN.0/ D c

�
D d

dt
MX1

.0/ D c

�
�  .1 �  

c/

�.1�  / ; and (4.2)

Var
�
X1jN.0/ D c

�
D d2

dt2
MX1

.0/ � E2
�
X1jN.0/ D c

�
; (4.3)

where the expression for .d2=dt2/MX1
.0/ in (4.3) is too complicated to display in (4.3) but is easily

evaluated using Maple [42]. The derivation of (4.1) and (4.2) is given in Appendix B. The Maple code

to evaluate (4.3) is also listed in Appendix B. Thus for the M=M=1 queue-waiting-time process with

N.0/ D 113, we have

EŒX1jN.0/ D 113� D 111:889;
p

VarŒX1jN.0/ D 113� D 10:6881: (4.4)

Thus we see that with the initial condition N.0/ D 113, the expected value of the queue waiting time

for the first regular customer is

EŒX1jN.0/ D 113� � �X
�X

PD10:34 (4.5)
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standard deviations above the steady-state mean queue waiting time. It is clear from the results in (4.4)

and (4.5) that this proposed M=M=1 queue is highly contaminated by severe initialization bias.

As Table 4.3 illustrates, Skart, SBatch, and ASAP3 all performed relatively well as far as

conformance to the nominal CI coverage probabilities, although Skart showed some overcoverage for

the ˙15% precision requirement. SBatch experienced overcoverage for the ˙7:5% precision level.

Overall, ASAP3 outperformed Skart and SBatch with respect to the required average sample size. Also,

as the precision requirement became smaller, Skart required relatively smaller sample sizes than SBatch

required.

Table 4.3: Performance of Skart, SBatch, and ASAP3 in the M=M=1 queue-waiting-time pro-

cess with 90% server utilization and 113 customers initially in the system

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch ASAP3 Skart SBatch ASAP3

# replications 1,000 1,000 1,000 1,000 1,000 1,000
CI coverage 90.5% 92.1% 93.1% 95% 96.1% 95.7%

None Avg. sample size 84,661 111,198 57,880 84,661 111,198 57,876
Avg. CI half-length 1.3422 1.1843 1.6330 1.6315 1.4165 1.9699
Var. CI half-length 0.2751 0.1795 0.3970 0.4145 0.2570 0.6033

# replications 1,000 1,000 1,000 1,000 1,000 1,000
CI coverage 92.5% 91.9% 91.8% 94.5% 96.3% 95.5%

˙15% Avg. sample size 106,688 124,040 93,296 123,686 143,172 127,885
Avg. CI half-length 1.1009 1.0729 1.1688 1.1606 1.1710 1.1967
Var. CI half-length 0.0565 0.0544 0.0339 0.0362 0.0413 0.0240

# replications 1,000 1,000 1,000 1,000 1,000 1,000
CI coverage 91% 93.7% 90.1% 94.5% 97.3% 95.6%

˙7:5% Avg. sample size 290,403 358,533 300,386 399,023 514,722 390,574
Avg. CI half-length 0.6367 0.6115 0.6219 0.6397 0.6101 0.6268
Var. CI half-length 0.0025 0.0062 0.0027 0.0012 0.0063 0.0022

# replications 1,000 1,000 1,000 1,000 1,000 1,000
CI coverage 91.5% 92.1% 89.3% 95.8% 95.3% 94.9%

˙3:75% Avg. sample size 1,011,328 1,329,144 968,361 1,367,011 1,887,500 1,338,628
Avg. CI half-length 0.3204 0.3079 0.3193 0.3166 0.3042 0.3214
Var. CI half-length 0.0002 0.0014 0.0004 0.0001 0.0015 0.0003

Comparing the results in Tables 4.2 and 4.3, for the cases of ˙7:5% and ˙3:75% precision

levels, we see that both Skart and ASAP3 required nearly the same average sample sizes for both the

empty-and-idle and extreme initial conditions, whereas SBatch required average sample sizes that were

15%–40% larger for the initial condition N.0/ D 113 compared with the average required sample sizes

for the initial condition of N.0/ D 0. For the no precision case the sample sizes given in Table 4.3 for

Skart, ASAP3, and SBatch were roughly twice as large as the corresponding sample sizes for the empty-
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Table 4.4: Performance of Skart, SBatch, WASSP, and ASAP3 in the M=M=1 queue-waiting-time

process with 80% server utilization and empty-and-idle initial condition

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch WASSP ASAP3 Skart SBatch WASSP ASAP3

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 90.4% 89.7% 91.3% 88.8% 94.4% 95.3% 96.5% 93.3%

None Avg. sample size 15,495 67,434 38,275 41,326 15,495 67,434 35,074 41,326
Avg. CI half-length 0.6551 0.2602 0.5400 0.3480 0.7812 0.3107 0.7060 0.4170
Var. CI half-length 0.0264 0.0157 0.1110 0.0310 0.0373 0.0224 0.1870 0.0460

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 89.1% 90.4% 89% 88.5% 93.5% 95.3% 96.3% 93%

˙15% Avg. sample size 21,006 68,778 42,497 43,796 29,983 70,225 54,578 46,106
Avg. CI half-length 0.5327 0.2400 0.3720 0.3100 0.5402 0.2827 0.3840 0.3490
Var. CI half-length 0.0046 0.0046 0.0070 0.0090 0.0035 0.0054 0.0060 0.0070

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 91.1% 90.3% 88.5% 86.8% 95.4% 94.2% 96.3% 93.3%

˙7:5% Avg. sample size 77,050 89,434 117,540 72,060 112,206 115,037 179,840 97,643
Avg. CI half-length 0.2845 0.2079 0.2000 0.2200 0.2842 0.2193 0.2020 0.2240
Var. CI half-length 0.0002 0.0010 0.0010 0.0004 0.0002 0.0007 0.0008 0.0003

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 93.6% 90.3% 94% 89.5% 95.7% 95.2% 97.2% 93%

˙3:75% Avg. sample size 286,566 328,768 465,160 256,186 412,386 474,520 710,070 365,353
Avg. CI half-length 0.144 0.1116 0.1030 0.1140 0.1437 0.1109 0.1040 0.1150
Var. CI half-length 0 0.0002 0.0002 0 0 0.0002 0.0002 0

and-idle initial condition. From the results in Tables 4.2 and 4.3, it is evident that the average sample size

for the process with the extreme initial condition is higher compared with that of the process having the

empty-and-idle initial condition for the cases involving the higher (coarser) levels of precision (namely,

˙15% and ˙7:5%); and then the difference between these two average sample sizes decreases as the

precision level decreases. This convergence occurs because as the precision level gets smaller, the

required average sample size must increase as the inverse square of the precision level; and this inverse-

square-law growth in the sample size rapidly “swamps” any effects arising from initialization bias.

Table 4.4 shows the experimental performance of Skart, ASAP3, WASSP, and SBatch when

they are applied to the same M=M=1 queue-waiting-time process with the same empty-and-idle initial

condition and service rate � D 1:0 customers per-time-unit as discussed above but with a smaller

interarrival rate of � D 0:8 customers per-time-unit. The steady-state server utilization for this system

is � D 0:8, and the steady-state expected waiting time is �X D 3:2 time units.
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Based on the results in Table 4.4, we see that although all four methods delivered comparable

results in terms of CI coverage, Skart had a much better sampling efficiency compared with the other

procedures for the no precision case and the case of˙15% precision. In the latter situation, the average

sample sizes required to deliver nominal 90% CIs by SBatch, WASSP, and ASAP3 exceeded Skart’s

average sample size by the following percentages: 227%, 102%, and 108%, respectively. ASAP3

showed a better sampling efficiency than Skart for higher precision levels; however in the case of

˙7:5% precision with nominal 90% CIs, ASAP3 delivered 86:8% coverage, while the corresponding

coverage probability for Skart was 91:1%. For this test problem, all four procedures delivered close

conformance to the nominal CI coverage probabilities. From Table 4 of Lada, Steiger, and Wilson [36],

the Law-Carson procedure delivered the following coverage probabilities for nominal 90% CIs: (i) no

precision, 85%; (ii) ˙15% precision, 85%; and (iii) ˙7:5% precision, 87%. These results are inferior

to most of the results in Table 4.4.

4.1.2. The M=M=1 Number-in-Queue Process

Table 4.5 shows the result of applying Skart to construct CIs on the number-in-queue statistic

for two M=M=1 queueing systems, each with an empty-and-idle initial condition; interarrival rates of

0:8 and 0:9 customers per-time-unit, respectively; and each with a service rate of 1:0 customers per-

time-unit. It should be mentioned here that SBatch, ASAP3, and WASSP do not have facilities for

handling time-persistent statistics; but it is equally true that all these procedures can easily be adapted

to yield CIs based on time-persistent statistics. The sampling interval for the M=M=1 number-in-queue

process was set at � D 1:0, enforcing the collection of the time-weighted (or time-averaged) number-

in-queue statistic every 1:0 time units during the simulation run. Considering that the service rate is 1:0

customers per-time-unit and the interarrival rates are fairly high, it was reasonable to monitor changes

in the time-weighted number-in-queue statistic every 1:0 time units.

It is evident from the results in Table 4.5 that the delivered CIs for both 80% and 90% server

utilizations were in close conformance with the nominal coverage values for all the precision levels.

The average simulation run time for each precision level was equal to the reported average sample size

multiplied by the sampling interval�. Comparing the results in Table 4.5 to the results in Tables 4.2 and

4.4, we see Skart almost required the same average sample sizes to deliver CIs for the number-in-queue

and queue-waiting-time statistics in both considered M=M=1 queueing systems.
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Table 4.5: Performance of Skart in the M=M=1 number-in-queue process

with 80% and 90% server utilization computed over 1,000 independent

replications

Prec. Performance 80% server utilization 90% server utilization
Req. Measure 90% CIs 95% CIs 90% CIs 95% CIs

CI coverage 89.20% 94.30% 88.80% 93.80%
Avg. sample size 14,700 14,700 42,211 42,211

None Avg. rel. prec. 17.7% 21.51% 20.09% 24.35%
Avg. CI half-length 0.5631 0.6843 1.6053 1.9459
Var. CI half-length 0.0184 0.0284 0.226 0.3401

CI coverage 89.50% 94.30% 88% 94.40%
Avg. sample size 22,814 33,119 85,083 129,766

˙15% Avg. rel. prec. 13.67% 13.78% 13.56% 13.61%
Avg. CI half-length 0.4288 0.4343 1.07 1.101
Var. CI half-length 0.0027 0.002 0.0176 0.0142

CI coverage 91% 94% 91.50% 95.70%
Avg. sample size 83,268 117,855 324,574 470,936

˙7:5% Avg. rel. prec. 7.14% 7.16% 7.14% 7.15%
Avg. CI half-length 0.2269 0.2281 0.5736 0.5532
Var. CI half-length 0.0001 0.0001 0.001 0.001

CI coverage 91.30% 96.10% 92.1% 96%
Avg. sample size 298,774 427,169 1,022,624 1,498,953

˙3:75% Avg. rel. prec. 3.54% 3.55% 3.56% 3.55%
Avg. CI half-length 0.1142 0.1142 0.3004 0.3005
Var. CI half-length 0 0 0.0001 0.0001

4.1.3. The M=H2=1 Queue-Waiting-Time Process

Table 4.6 includes the results for the queue-waiting-time process in an M=H2=1 queueing

system with an empty-and-idle initial condition, a mean interarrival time of 1:0, and a hyperexponential

service-time distribution that is a mixture of two exponential distributions with a common mean such

that the service times have a mean of 0:8 and a coefficient of variation of 2:0. Thus in steady-state

operation this system has a server utilization of � D 0:8 and a mean queue-waiting-time of �X D 8:0

(see [36] for more details).

We concluded from Table 4.6 that in the case of no precision requirement, Skart and WASSP

outperformed SBatch and ASAP3 with respect to average required sample size, while all four proce-

dures achieved close conformance to the user-specified CI coverage probability. In the case of ˙15%

precision, all four procedures performed about the same. In the ˙7:5% and ˙3:75% precision cases,

Skart, SBatch, and ASAP3 delivered comparable CI coverages; however, the average sample size re-
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Table 4.6: Performance of Skart, SBatch, WASSP, and ASAP3 in the M=H2=1 queue-waiting-time

process with 80% server utilization and empty-and-idle initial condition

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch WASSP ASAP3 Skart SBatch WASSP ASAP3

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 88.2% 89.5% 91% 87.8% 93% 94.3% 93% 91.8%

None Avg. sample size 27,148 50,777 23,221 42,022 27,148 50,777 22,230 42,022
Avg. CI half-length 1.6703 1.2135 2.7040 1.6140 2.038 1.4504 3.4560 1.9500
Var. CI half-length 0.1972 0.2106 1.7720 0.5960 0.3431 0.3015 2.9820 0.9080

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 89.4% 89.2% 88.3% 88% 94.7% 93.3% 94.5% 93.3%

˙15% Avg. sample size 62,754 65,149 78,691 76,214 88,015 84,363 138,960 96,706
Avg. CI half-length 1.0875 1.0286 0.9930 1.0330 1.1167 1.0804 0.9940 1.0690
Var. CI half-length 0.0161 0.0339 0.0300 0.0270 0.0097 0.0227 0.0290 0.0170

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 90% 89.6% 91% 90% 95.4% 94.7% 95.7% 94.5%

˙7:5% Avg. sample size 239,976 254,400 330,580 228,482 336,319 364,154 519,990 309,560
Avg. CI half-length 0.5686 0.5478 0.5160 0.5620 0.5693 0.5512 0.5280 0.5650
Var. CI half-length 0.0011 0.0048 0.0060 0.0020 0.0009 0.0048 0.0020 0.0003

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 91.2% 89.5% 93% 90% 94.9% 94.7% 98% 94.7%

˙3:75% Avg. sample size 875,718 1,028,683 1,283,400 798,234 1,236,649 1,396,922 2,006,800 1,115,986
Avg. CI half-length 0.2886 0.2722 0.2700 0.2870 0.2879 0.2729 0.2700 0.2880
Var. CI half-length 0.0001 0.0012 0.0009 0.0003 0.0001 0.0011 0.0009 0.0002

quired by ASAP3 was smaller than the average sample sizes required by Skart, SBatch, and WASSP. At

all levels of precision, the CI coverage provided by Skart and SBatch were close to the nominal levels.

4.1.4. The First-Order Autoregressive (AR(1)) Process

The results shown in Table 4.7 are for applying Skart, ASAP3, WASSP, and SBatch to an

AR(1) process with autoregressive parameter � D 0:995, steady-state mean �X D 100, and the initial

condition X0 D 0. This AR(1) process is represented by

Xt D �X C �.Xt�1 � �X /C "t for t D 1; 2; : : : ; (4.6)

where f"t W t D 1; 2; : : :g
i.i.d.� N.0; �2" / with �2" D 1.

The high correlation between successive observations in this process makes it a severe test of

Skart’s ability to handle high correlation and to deliver an approximately valid correlation-adjusted CI.

The steady-state marginal standard deviation of the AR(1) process (4.6) is

�X D �"
.q

1 � �2 D 10:0125I (4.7)
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and thus like the M=M=1 queue-waiting-time process with initial condition N.0/ D 113, the AR(1)

process (4.6) with initial condition X0 D 0 starts approximately ten standard deviations away from the

steady-state mean. In both processes, there is a high level of positive correlation between successive

observations, and the magnitude of the resulting initialization bias is very large; however this bias is

positive for the M=M=1 queue-waiting-time and negative for the AR(1) process. The extremely long

transient in the simulation-generated realizations of this AR(1) process is also of particular interest and

was purposely designed to “stress-test” Skart’s ability to eliminate initialization bias.

Table 4.7: Performance of Skart, SBatch, WASSP, and ASAP3 in the AR(1) process

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch WASSP ASAP3 Skart SBatch WASSP ASAP3

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 91% 91.5% 90.9% 95.5% 95.5% 95.6% 94.5% 98.8%

None Avg. sample size 20,632 29,831 9,866 41,076 20,632 29,831 9,824 41,076
Avg. CI half-length 2.6618 2.1468 5.3000 2.3300 3.2097 2.5678 6.7300 2.8300
Var. CI half-length 0.284 0.0901 1.8300 0.1700 0.4245 0.1292 2.8800 0.2700

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 91.8% 91.5% 87% 95.5% 94.9% 95.6% 95% 98.8%

˙3:75% Avg. sample size 20,565 29,831 13,535 41,076 21,781 29,857 21,099 41,208
Avg. CI half-length 2.7242 2.1468 3.2100 2.3300 3.1033 2.5653 3.2800 2.8200
Var. CI half-length 0.24 0.0901 0.1420 0.1700 0.2095 0.1233 0.1530 0.2570

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 93.2% 91.2% 93.5% 95.5% 95.9% 95.8% 97.7% 99.3%

˙1:875% Avg. sample size 48,077 42,182 57,449 68,474 68,762 61,001 90,371 101,526
Avg. CI half-length 1.7273 1.7764 1.6500 1.7600 1.7238 1.7717 1.6600 1.7700
Var. CI half-length 0.0226 0.0084 0.0423 0.0134 0.0236 0.0100 0.0429 0.0120

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 93.4% 92.7% 94% 94.3% 97% 96.9% 98% 97.3%

˙0:9375% Avg. sample size 168,190 175,257 229,730 213,826 230,460 249,387 333,050 254,920
Avg. CI half-length 0.9063 0.8861 0.8300 0.8940 0.9034 0.8855 0.8670 0.8960
Var. CI half-length 0.001 0.0035 0.0105 0.0026 0.0008 0.0039 0.0115 0.0021

Table 4.7 shows that for all precision levels Skart’s sampling efficiency was better than that

of SBatch and ASAP3. Notice that for this test problem, ASAP3-generated CIs exhibited significant

overcoverage. In particular, at the˙1:875% precision level, the CI coverage of 99:3% was significantly

higher than the nominal 95% level for ASAP3. The results in Table 4.7 show that while Skart experi-

enced some overcoverage, its CIs exhibited closer conformance to the nominal coverage levels than did

the CIs delivered by ASAP3 and WASSP.

For the no precision case, WASSP had the best sampling efficiency, with an average sample

size of 9,866 and an empirical coverage probability of 90:9% for nominal 90% CIs, although the mean
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and variance of the CI half-lengths delivered by WASSP were significantly higher than the mean and

variance of the CI half-lengths provided by Skart, SBatch, and ASAP3. WASSP also had the best

sampling efficiency at the ˙3:75% relative precision level for nominal 90% CIs, requiring an average

sample size of 13,535; by contrast, Skart, SBatch, and ASAP3 had average sample sizes of 21,273,

29,831 and 41,076, respectively. On the other hand, in this case WASSP delivered an empirical coverage

probability of only 87%, which we judged to be unacceptable; and by contrast the empirical coverage

probabilities in this case for Skart, SBatch, and ASAP3 were 91:9%, 91:5%, and 95:5%, respectively.

4.1.5. The AR(1)-to-Pareto (ARTOP) Process

The next test process we considered was the AR(1)-to-Pareto, or ARTOP, process. To gen-

erate an ARTOP time series, we initially require an AR(1) process fZj W j D 1; 2; : : :g represented

by

Zj D �Zj�1 C bj ; (4.8)

where Z0 � N.0; 1/, and fbj W j D 1; 2; : : :g i.i.d.� N.0; �2
b
/ is a white-noise process with variance

�2
b
D �2

Z
.1 � �2/ D 1 � �2. This AR(1) time-series is then fed into the standard normal c.d.f. to get a

sequence of correlated, Uniform(0,1), random variables fUj D ˚.Zj / W j D 1; 2; : : :g, where

˚.z/ D
Z z

�1

1p
2�
e��2=2d� for all real z

denotes the N.0; 1/ c.d.f. Next, we feed the process fUj W j D 1; 2; : : :g into the inverse of the Pareto

c.d.f.

FX .x/ � PrfX � xg D
(
1 � .�=x/ ; x � �;
0; x < �;

(4.9)

where � > 0 is a location parameter and  > 0 is a shape parameter, to generate the ARTOP process

fXj W j D 1; 2; : : :g as follows,

Xj D F�1
X .Uj / D F�1

X Œ˚.Zj /� D �=Œ1� ˚.Zj /�1= for j D 1; 2; : : : : (4.10)

The mean and variance of the ARTOP process (4.10) are given by

�X D EŒXj � D  �. � 1/�1; for  > 1;

and

�2X D VarŒXj � D �2 . � 1/�2. � 2/�1; for  > 2;
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respectively [30].

The parameters of the Pareto distribution (4.9) are set according to  D 2:1 and � D 1;

and the lag-one correlation in the base process (4.8) is set to � D 0:995. This provides an ARTOP

process fXj W j D 1; 2; : : :g whose marginal distribution has mean, variance, skewness, and kurtosis,

respectively, given by

�X D 1:9091; �2X D 17:3554; E

"�
Xj � �X
�X

�3#
D1; and E

"�
Xj � �X
�X

�4#
D1:

This process is particularly difficult because its marginals are highly nonnormal—in fact in-

finite values of the marginal skewness and kurtosis are well beyond the type of nonnormality that Skart

was designed to handle. We set Z0 D 3:4 to generate an ARTOP process with a fairly long transient

period (i.e., to make the first observation X0 D �X C 10�X D 43:5689, which is ten standard devia-

tions bigger than the steady-state mean). The results obtained for the ARTOP process are summarized

in Table 4.8. It should be mentioned that the ARTOP process used for computing results of SBatch,

WASSP and ASAP3 in Table 4.8 were begun in steady-state operation and thus had no transient effect.

Table 4.8: Performance of Skart, SBatch, WASSP, and ASAP3 in the ARTOP process

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch WASSP ASAP3 Skart SBatch WASSP ASAP3

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 85.8% 85.3% 79% 85.5% 90.2% 90.1% 87% 90.8%

None Avg. sample size 36,821 47,423 22,512 114,053 36,821 47,423 19,012 114,053
Avg. CI half-length 0.4034 0.3012 0.4480 0.1730 0.5606 0.0576 0.0830 0.0144
Var. CI half-length 1.5853 0.0403 0.0540 0.0098 1.0658 0.0576 0.0830 0.0144

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 86.2% 84.4% 71.5% 85.5% 90.5% 89.6% 81% 90.8%

˙15% Avg. sample size 67,667 85,077 66,158 117,092 83,067 109,473 95,488 120,660
Avg. CI half-length 0.2163 0.1940 0.2230 0.1030 0.2319 0.2121 0.2230 0.1900
Var. CI half-length 0.0024 0.0030 0.0020 0.0025 0.0018 0.0031 0.0020 0.0024

# replications 1,000 1,000 1,000 400 1,000 1,000 1,000 400
CI coverage 86.9% 82.3% 85.3% 84% 92.9% 88% 91.5% 90.3%

˙7:5% Avg. sample size 213,151 306,781 345,870 186,517 370,773 460,613 520,750 255,512
Avg. CI half-length 0.1282 0.1154 0.1160 0.1270 0.1272 0.1144 0.1200 0.1310
Var. CI half-length 0.0002 0.0007 0.0005 0.0002 0.0002 0.0007 0.0004 0.0001

# replications 1,000 1,000 - 400 1,000 1,000 - 400
CI coverage 89.7% 86.3% - 88.8% 94.3% 93.7% - 91%

˙3:75% Avg. sample size 937,053 1,366,856 - 734,312 1,389,168 1,943,033 - 1,044,259
Avg. CI half-length 0.0655 0.0576 - 0.0665 0.0657 0.0580 - 0.0668
Var. CI half-length 0 0.0002 - 0 0 0.0002 - 0

Table 4.8 indicates that Skart’s performance on the ARTOP process was significantly better
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than that of ASAP3, SBatch, and WASSP with respect to both conformance to the nominal CI cov-

erage probabilities and sampling efficiency. ASAP3, SBatch, and WASSP all experienced substantial

undercoverage, while Skart provided coverage probabilities that were remarkably close to their nomi-

nal levels, especially for the precision requirements of ˙7:5% and ˙3:75%. These results suggest that

Skart should be robust against nonnormal marginals in many types of practical applications. Moreover,

these results demonstrate the effectiveness of Skart’s skewness adjustment to the classical batch-means

Student’s t-ratio, so that the remaining deviations of the final batch means from normality did not cause

a loss of CI coverage that was either practically or statistically significant.

4.1.6. The M=M=1=LIFO Queue-Waiting-Time Process

The next test process was the sequence of queue waiting times for the M=M=1=LIFO queue,

with customers in the queue being served in last-in-first-out (LIFO) order, a mean interarrival time of

1:0, a mean service time of 0:8, and an empty-and-idle initial condition. Thus in steady-state operation

this system has a server utilization of � D 0:8 and a mean queue waiting time �X D 3:20.

The M=M=1=LIFO queue-waiting-time process was mainly selected because in steady-state

operation, batch means computed from the waiting times are highly skewed—even for batch sizes that

are sufficiently large to ensure the batch means are nearly uncorrelated [36].

Table 4.9 summarizes the experimental performance of Skart, SBatch, WASSP, and ASAP3

for the queue-waiting-time process in the M=M=1=LIFO queueing system. These results show that

Skart had a better sampling efficiency compared with that of WASSP and SBatch, especially at the

less-stringent precision levels (that is, no precision and ˙15% relative precision). The high skewness

of the distribution of the batch means in the M=M=1=LIFO queue-waiting-time process caused the

normality test in SBatch and WASSP to be passed only after the significance level of the test had become

practically negligible (that is, less than 10�30), resulting in excessively inflated sample sizes. For

the nominal coverage probability of 90%, Skart also demonstrated better conformance to the nominal

coverage level compared with ASAP3 while usually requiring substantially smaller sample sizes. From

Table 2 of Lada, Steiger, and Wilson [36], the Law-Carson procedure delivered the following coverage

probabilities for nominal 90% CIs: (i) no precision, 64%; (ii) ˙15% precision, 76%; and (iii) ˙7:5%

precision, 84%. All in all, we judged the performance of Skart to be superior to its competitors in this

test problem.
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Table 4.9: Performance of Skart, SBatch, WASSP, and ASAP3 in the M=M=1=LIFO queue-waiting-

time process with 80% server utilization

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart SBatch WASSP ASAP3 Skart SBatch WASSP ASAP3

# replications 1,000 1,000 400 400 1,000 1,000 400 400
CI coverage 87.1% 91.4% 93% 87% 92.5% 95.9% 96% 92.5%

None Avg. sample size 23,943 117,416 125,517 53,958 23,943 117,416 124,202 53,958
Avg. CI half-length 0.4318 0.1891 0.2650 0.1060 0.5522 0.2255 0.3350 0.3120
Var. CI half-length 0.0326 0.0057 0.0230 0.1060 0.1015 0.0080 0.0310 0.0080

# replications 1,000 1,000 400 400 1,000 1,000 400 400
CI coverage 89.2% 91.3% 90.7% 86.8% 93.9% 94% 95.2% 92.8%

˙15% Avg. sample size 27,671 118,209 124,512 54,017 32,985 119,903 126,682 54,265
Avg. CI half-length 0.3703 0.1812 0.2490 0.2600 0.4021 0.2117 0.2960 0.3080
Var. CI half-length 0.0051 0.0021 0.0110 0.0040 0.0035 0.0022 0.0110 0.0050

# replications 1,000 1,000 400 400 1,000 1,000 400 400
CI coverage 91.9% 89.5% 90.2% 87.5% 95.6% 95.4% 96.2% 92.5%

˙7:5% Avg. sample size 73,986 126,961 152,355 68,325 110,520 134,123 194,590 90,911
Avg. CI half-length 0.2263 0.1734 0.1860 0.2190 0.2253 0.1996 0.1990 0.2260
Var. CI half-length 0.0002 0.0012 0.0020 0.0005 0.0002 0.0011 0.0010 0.0003

# replications 1,000 - - - 1,000 - - -
CI coverage 92.4% - - - 95.1% - - -

˙3:75% Avg. sample size 284,637 - - - 417,745 - - -
Avg. CI half-length 0.1149 - - - 0.1151 - - -
Var. CI half-length 0 - - - 0 - - -

4.1.7. The M=M=1=SIRO Queue-Waiting-Time Process

For the next test problem, we chose an M=M=1 queue-waiting-time process with customers

in the queue being served in random order, a mean interarrival time of 1:0, a mean service time of

0:8, and an empty-and-idle initial condition. Thus in steady-state operation this system has a server

utilization of � D 0:8 and a mean queue waiting time �X D 3:20.

Table 4.10 summarizes the performance results of applying Skart to theM=M=1=SIRO queue-

waiting-time process. Skart showed close conformance to the nominal CI coverage probabilities at all

reported precision levels. No results are available for the performance of ASAP3, WASSP, and SBatch

on this test problem.
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Table 4.10: Performance of Skart in the M=M=1=SIRO queue-

waiting-time process with 80% server utilization based on 1,000

replications of the process

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart Skart

CI coverage 88.40% 94.30%
Avg. sample size 18,438 18,438

None Avg. rel. prec. 15.43% 18.74%
Avg. CI half-length 0.4892 0.5952
Var. CI half-length 0.0194 0.0267

CI coverage 89.60% 93.00%
Avg. sample size 22,620 32,093

˙15% Avg. rel. prec. 13.13% 13.46%
Avg. CI half-length 0.4123 0.4236
Var. CI half-length 0.0039 0.0025

CI coverage 92.90% 96.00%
Avg. sample size 79,279 109,846

˙7:5% Avg. rel. prec. 7.10% 7.16%
Avg. CI half-length 0.2263 0.2282
Var. CI half-length 0.0002 0.0001

CI coverage 92.10% 95.30%
Avg. sample size 289,717 414,379

˙3:75% Avg. rel. prec. 3.54% 3.55%
Avg. CI half-length 0.1137 0.1133
Var. CI half-length 0 0

4.1.8. The M=M=1=M=1 Queue-Waiting-Time Process

The next test process we considered in our experimentation was the overall queue waiting time

in a system consisting of twoM=M=1 queues in series; this is usually called theM=M=1=M=1 queueing

system. This system has a mean interarrival time of 1.0, a mean service time of 0.8 at each server, and an

empty-and-idle initial condition. Thus in steady-state operation, each sever has a utilization of � D 0:8;

and the expected total waiting time in both queues is 6:4.

Table 4.11 summarizes the results of applying Skart, ASAP3, and WASSP to theM=M=1=M=1

queue-waiting-time process. Skart and ASAP3 achieved close conformance to the specified CI coverage

probabilities at all reported precision levels while requiring smaller sample sizes than WASSP required.



80

Table 4.11: Performance of Skart, ASAP3, and WASSP in the M=M=1=M=1

queue-waiting-time process with 80% server utilization

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart ASAP3 WASSP Skart ASAP3 WASSP

# replications 1,000 400 400 1,000 400 400
CI coverage 92.5% 91% 92% 95.9% 94.3% 96.3%

None Avg. sample size 18,457 19,133 46,462 18,457 19,133 46,462
Avg. CI half-length 0.821 0.9830 0.7840 1.0243 1.1920 0.9880
Var. CI half-length 0.0339 0.1650 0.2260 0.0721 0.2520 0.3580

# replications 1,000 400 400 1,000 400 400
CI coverage 90.6% 91.5% 92% 95.3% 96.8% 96.3%

˙15% Avg. sample size 19,665 25,522 48,064 29,991 32,634 52,349
Avg. CI half-length 0.7476 0.7550 0.6400 0.7844 0.7920 0.7050
Var. CI half-length 0.0131 0.0370 0.0440 0.0125 0.0250 0.0360

# replications 1,000 400 400 1,000 400 400
CI coverage 90.6% 91.3% 89% 95.5% 96.3% 96.5%

˙7:5% Avg. sample size 57,743 58,844 82,680 77,332 77,211 124,368
Avg. CI half-length 0.4311 0.4410 0.3920 0.4309 0.4470 0.4000
Var. CI half-length 0.0014 0.0017 0.0050 0.0013 0.0012 0.0040

4.1.9. Two-State Discrete-Time Markov Chains

For the last series of test processes, we used a real-valued “reward” function defined on three

irreducible aperiodic discrete-time Markov chains (DTMCs), all with relatively high positive corre-

lation structure but with marginal distributions having different levels of skewness. In particular, we

considered three two-state chains fZi .j / W i D 0; 1; : : : I j D 1; 2; 3g on the state space f0; 1g with the

following one-step transition probability matrices:

P.1/ D
 
0:99 0:01

0:01 0:99

!
; P.2/ D

 
0:99 0:01

0:0625 0:9375

!
; and P.3/ D

 
0:99 0:01

0:25 0:75

!
;

respectively. The associated output processes fXi .j / D hŒZi .j /� W i D 0; 1; : : : I j D 1; 2; 3g with

cost vector Œh.0/; h.1/�T D .5; 10/T, have steady-state means �X.1/ D 7:5, �X.2/ D 5:6897, and

�X.3/ D 5:1923, respectively. The steady-state marginal distributions for these two-state DTMCs are

given by

�.1/ D .0:5; 0:5/; �.2/ D .0:8621; 0:1379/; and �.3/ D .0:9615; 0:0385/;

respectively; and the initial conditions Z0.1/, Z0.2/, Z0.3/ are respectively sampled from �.1/, �.2/,

�.3/ so that each process starts in steady-state operation. The steady-state marginal skewnesses for
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each of these three processes are

B.1/ D 0:0; B.2/ D 2:1; and B.3/ D 4:8;

respectively. We chose these three test problems in the performance evaluation to study highly corre-

lated output processes under discrete steady-state distributions that are symmetric, skewed, or highly

skewed.

Tables 4.12–4.14 summarize the results of applying Skart, ASAP3, and SBatch to these pro-

cesses. For the first DTMC with skewness B.1/ D 0:0, the results in Table 4.12 reveal that Skart

outperformed both ASAP3 and SBatch in sampling efficiency at all considered precision levels. All

Table 4.12: Performance of Skart, ASAP3, and SBatch in the two-state discrete-

time Markov chain with marginal skewness B.1/ D 0:0 based on 1,000

replications

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart ASAP3 SBatch Skart ASAP3 SBatch

CI coverage 93.40% 97.10% 93.20% 98.40% 99.10% 97.00%
None Avg. sample size 8,511 9,210 42,459 8,511 9,210 42,459

Avg. CI half-length 0.5147 0.6248 0.2221 0.6194 0.7615 0.2652
Var. CI half-length 0.0052 0.0076 0.0014 0.0071 0.0124 0.0020

CI coverage 92.10% 96.00% 93.30% 96.10% 97.80% 96.60%
˙3:75% Avg. sample size 29,343 45,520 42,952 41,840 48,489 46,022

Avg. CI half-length 0.2677 0.2610 0.2195 0.267 0.2715 0.2503
Var. CI half-length 0.0003 0.0005 0.0010 0.0003 0.0002 0.0006

CI coverage 91.70% 91.90% 92.70% 95.50% 96.30% 97.20%
˙1:875% Avg. sample size 101,833 104,325 110,499 137,104 142,924 158,003

Avg. CI half-length 0.1359 0.1362 0.1352 0.1369 0.1362 0.1349
Var. CI half-length 0 0 0 0 0 0

CI coverage 89.90% 90.50% 93.10% 94.90% 95.00% 96.10%
˙0:9375% Avg. sample size 358,466 363,598 445,427 501,382 517,142 625,901

Avg. CI half-length 0.0687 0.0684 0.0658 0.0689 0.0683 0.0652
Var. CI half-length 0 0 0 0 0 0

CI coverage 89.20% 90.50% 89.70% 95.50% 93.60% 95.70%
˙0:46875% Avg. sample size 1,406,197 1,440,692 1,725,495 1,991,597 2,043,950 2,454,197

Avg. CI half-length 0.0344 0.0342 0.0320 0.0345 0.0342 0.0319
Var. CI half-length 0 0 0 0 0 0

procedures also exhibited some overcoverage for the cases of no precision and ˙3:75% relative preci-

sion.

DTMCs having marginal skewness B.2/ D 2:1 or B.3/ D 4:8 are much more difficult test

problems compared with the DTMC having skewness B.1/ D 0:0, because the nonnormality issue is

added to the high correlation problem of the simulation output. These severe complications make the
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latter two DTMCs interesting test cases for evaluating the performance of Skart, ASAP3, and SBatch

under extreme conditions.

The results in Tables 4.13–4.14 show that Skart and ASAP3 outperformed SBatch in sampling

efficiency. SBatch performed very poorly in the DTMCs with marginal skewness B.2/ D 2:1 or B.3/ D
4:8, requiring excessively large sample sizes. In the DTMC with marginal skewness B.3/ D 4:8, which

was the most difficult of all the DTMCs we tested, the results in Table 4.14 indicate that other than for

the ˙0:46875% precision level, Skart’s sampling efficiency was superior to that of ASAP3. For the

DTMC with marginal skewness B.2/ D 2:1, the results in Table 4.13 demonstrate better sampling

efficiency for Skart compared with that of ASAP3 for the no precision case and the ˙3:75% precision

level; but for smaller precision levels, ASAP3 outperformed Skart.

Table 4.13: Performance of Skart, ASAP3, and SBatch in the two-state discrete-

time Markov chain with marginal skewness B.2/ D 2:1 based on 1,000

replications

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart ASAP3 SBatch Skart ASAP3 SBatch

CI coverage 91.90% 89.50% 91.40% 95.60% 94.40% 95.50%
None Avg. sample size 8,711 21,991 111,570 8,711 21,991 111,570

Avg. CI half-length 0.1891 0.1077 0.0465 0.2283 0.1286 0.0554
Var. CI half-length 0.0012 0.0011 0.0001 0.0015 0.0016 0.0001

CI coverage 92.60% 89.70% 91.40% 97.60% 94.30% 95.50%
˙3:75% Avg. sample size 9,097 22,047 111,570 10,726 22,129 111,570

Avg. CI half-length 0.1829 0.1065 0.0465 0.1971 0.1261 0.0554
Var. CI half-length 0.0008 0.0008 0.0001 0.0004 0.0009 0.0001

CI coverage 92.40% 90.10% 91.40% 96.90% 94.90% 95.50%
˙1:875% Avg. sample size 25,112 24,809 111,570 34,850 30,274 111,577

Avg. CI half-length 0.102 0.0956 0.0465 0.1017 0.1016 0.0554
Var. CI half-length 0 0.0001 0.0001 0 0 0.0001

CI coverage 92.20% 89.10% 91.40% 95.60% 95.80% 95.30%
˙0:9375% Avg. sample size 85,771 81,819 114,899 120,614 114,772 127,273

Avg. CI half-length 0.0519 0.0516 0.0452 0.052 0.0517 0.0507
Var. CI half-length 0 0 0 0 0 0

CI coverage 89.50% 90.00% 92.00% 95.10% 95.40% 95.50%
˙0:46875% Avg. sample size 324,151 320,549 343,159 455,686 457,644 491,011

Avg. CI half-length 0.026 0.0259 0.0259 0.0261 0.0259 0.0255
Var. CI half-length 0 0 0 0 0 0
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Table 4.14: Performance of Skart, ASAP3, and SBatch in the two-state discrete-

time Markov chain with marginal skewness B.3/ D 4:8 based on 1,000

replications

Prec. Performance Nominal 90% CIs Nominal 95% CIs
Req. Measure Skart ASAP3 SBatch Skart ASAP3 SBatch

CI coverage 90.30% 91.60% 91.50% 95.90% 94.90% 95.60%
None Avg. sample size 21,705 28,522 165,394 21,705 28,522 165,394

Avg. CI half-length 0.0404 0.0253 0.0105 0.0502 0.0302 0.0125
Var. CI half-length 0.0009 0 0 0.0014 0 0

CI coverage 90.30% 91.60% 91.50% 95.90% 94.90% 95.60%
˙3:75% Avg. sample size 21,705 28,522 165,394 21,705 28,522 165,394

Avg. CI half-length 0.0404 0.0253 0.0105 0.0502 0.0302 0.0125
Var. CI half-length 0.0009 0 0 0.0014 0 0

CI coverage 93.00% 91.60% 91.50% 96.00% 94.90% 95.60%
˙1:875% Avg. sample size 21,860 28,522 165,394 22,106 28,522 165,394

Avg. CI half-length 0.0377 0.0253 0.0105 0.0424 0.0302 0.0125
Var. CI half-length 0.0005 0 0 0.0004 0 0

CI coverage 92.90% 91.60% 91.50% 95.50% 94.90% 95.60%
˙0:9375% Avg. sample size 22,682 28,525 165,394 23,720 28,536 165,394

Avg. CI half-length 0.0314 0.0253 0.0105 0.0358 0.0301 0.0125
Var. CI half-length 0 0 0 0 0 0

CI coverage 90.70% 90.90% 91.50% 95.50% 94.40% 95.60%
˙0:46875% Avg. sample size 34,672 33,111 165,394 48,518 43,408 165,394

Avg. CI half-length 0.0232 0.0227 0.0105 0.0234 0.0235 0.0125
Var. CI half-length 0 0 0 0 0 0

4.2. Performance Evaluation of N-Skart

To examine the performance of N-Skart with respect to coverage probability and the mean

and variance of the half-length of its CIs, we applied N-Skart to some of the test problems discussed in

the previous section. We used the following sample sizes in our experiments: 10,000; 20,000; 50,000;

and 200,000. These particular values were singled out to evaluate the performance of N-Skart for what

might be considered “small,” “medium,” and “large” sample sizes.

Table 4.15 shows the result of applying N-Skart to the queue waiting times for the M=M=1,

M=H2=1, M=M=1=LIFO, and M=M=1=SIRO queueing systems as well as the AR(1) and ARTOP

processes to construct nominal 90% and 95% CIs. The experimentation for each test problem included

1,000 independent replications of N-Skart.

The results in Table 4.15 indicate that the coverage probabilities provided by Skart for the

given sample sizes were close to their nominal levels in almost all test problems, except for the queue-
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Table 4.15: Performance of N-Skart for selected test problems based on 1,000

replications

Confidence Performance M/M/1 90% M/M/1 80%
Level Measure 10,000 20,000 50,000 200,000 10,000 20,000 50,000 200,000

CI coverage 87.60% 88.40% 90.30% 90.00% 90.40% 90.70% 90.40% 89.60%
90% Avg. rel. precision 33.32% 25.77% 17.66% 8.64% 20.57% 14.77% 9.23% 4.39%

Avg. CI half-length 3.1309 2.4018 1.6195 0.7791 0.8395 0.5972 0.3702 0.1757
Var. CI half-length 3.7402 2.1298 0.4448 0.0542 0.1038 0.0522 0.0115 0.0008

CI coverage 92.20% 93.10% 94.00% 94.90% 94.90% 95.80% 94.20% 94.90%
95% Avg. rel. precision 39.79% 30.93% 20.83% 10.46% 24.06% 17.91% 10.85% 5.28%

Avg. CI half-length 3.7681 2.8757 1.8963 0.9461 0.9764 0.7231 0.4363 0.2114
Var. CI half-length 4.847 2.2475 0.5176 0.0582 0.1076 0.0503 0.015 0.0012

Confidence Performance M/H2/1 AR(1)
Level Measure 10,000 20,000 50,000 200,000 10,000 20,000 50,000 200,000

CI coverage 88.90% 91.20% 89.60% 91.60% 93.60% 93.20% 92.90% 92.50%
90% Avg. rel. precision 33.76% 25.22% 16.33% 7.95% 4.02% 2.78% 1.71% 0.81%

Avg. CI half-length 2.7817 2.0589 1.3233 0.6386 4.0009 2.7803 1.7146 0.8136
Var. CI half-length 2.1832 0.7285 0.2497 0.0156 1.0087 0.2751 0.0494 0.0036

CI coverage 93.00% 94.20% 94.90% 95.20% 96.40% 97.40% 98.50% 97.50%
95% Avg. rel. precision 40.69% 31.16% 19.67% 9.56% 4.88% 3.37% 2.04% 0.97%

Avg. CI half-length 3.3531 2.5868 1.5845 0.7673 4.8682 3.3709 2.0408 0.9704
Var. CI half-length 3.1949 1.3782 0.3239 0.024 1.3579 0.4296 0.0689 0.005

Confidence Performance ARTOP M/M/1/LIFO
Level Measure 10,000 20,000 50,000 200,000 10,000 20,000 50,000 200,000

CI coverage 83.10% 85.30% 87.40% 88.80% 84.50% 87.20% 88.50% 89.00%
90% Avg. rel. precision 26.97% 22.03% 14.69% 9.17% 17.76% 13.54% 8.89% 4.40%

Avg. CI half-length 0.5632 0.4505 0.2878 0.179 0.5757 0.4368 0.2855 0.1411
Var. CI half-length 0.405 0.2802 0.0587 0.049 0.0534 0.0291 0.006 0.0008

CI coverage 88.40% 90.60% 91.80% 93.60% 90.70% 92.70% 93.10% 95.10%
95% Avg. rel. precision 33.15% 28.63% 23.08% 11.31% 21.87% 16.64% 10.84% 5.32%

Avg. CI half-length 0.6715 0.5897 0.4816 0.2213 0.7094 0.5373 0.3481 0.1706
Var. CI half-length 0.3698 0.9588 1.1747 0.1093 0.092 0.0526 0.0104 0.0013

Confidence Performance M/M/1/SIRO
Level Measure 10,000 20,000 50,000 200,000

CI coverage 89.00% 89.30% 89.80% 89.50%
90% Avg. rel. precision 19.22% 14.53% 9.20% 4.39%

Avg. CI half-length 0.6264 0.4687 0.2965 0.1405
Var. CI half-length 0.0504 0.0215 0.0054 0.0005

CI coverage 94.10% 95.00% 95.90% 94.50%
95% Avg. rel. precision 23.20% 17.57% 11.10% 5.29%

Avg. CI half-length 0.756 0.5669 0.3577 0.1692
Var. CI half-length 0.0747 0.0325 0.0082 0.0008

waiting-time process in the M=M=1=LIFO queue and the ARTOP process, where Skart experienced
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some minor undercoverage for the sample sizes 10,000 and 20,000. The pronounced level of non-

normality and stochastic dependence exhibited by the M=M=1=LIFO and ARTOP processes prevented

N-Skart from working effectively with such unrealistically small sample sizes as 10,000 and 20,000. As

mentioned in Section 2.4.3, Skart performs better when it is applied to processes with limited marginal

skewness. In the cases of the M=M=1=LIFO queueing system and the ARTOP process, when the sam-

ple size is small, the batch size cannot get sufficiently large to reduce the batch-means skewness to a

reasonable level. It should be mentioned here that in all the experimentation reported in Table 4.15, we

simply ignored the warning message issued by N-Skart for test problems in which the randomness test

could not be passed due to insufficient data; and we requested that N-Skart deliver a CI on all 1,000

independent replications of each test problem.

In general, when we are working with N-Skart, a CI with abnormally large half-length or high

relative precision should alert us regarding potential problems with the delivered CIs and a possible need

for bigger sample size.

4.3. Efficiency Analysis

If the steady-state variance parameter 

X

is known for an output process fXi W i D 1; 2; : : : ; ng
that is stationary and satisfies (1.4), then the nominal 100.1 � ˛/% CI for the mean of this process �X ,

xX.n/˙ z1�˛=2

r


X

n
; (4.11)

is asymptotically valid in the sense that

lim
n!1

Pr

(
�X 2 xX.n/˙ z1�˛=2

r


X

n

)
D 1 � ˛: (4.12)

For a relative precision level of r�, Chow and Robbins [15] and Nádas [43] show that for constructing

a CI under the ideal conditions described above, an efficient procedure would require an expected total

sample size of

n� D n�.r�/ D d

X
z21�˛=2=.r

��X /
2e; (4.13)

and as r� ! 0, the coverage probability of the resulting CI will converge to the limiting value 1 � ˛.

In this section we present the results of performing an empirical efficiency analysis for Skart,

ASAP3, WASSP, and SBatch. The optimal sample size n� was first computed for some test problems
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for which the steady-state variance parameter 

X

is analytically available or can at least be evaluated

numerically to a high degree of accuracy. Next we computed xn=n�, where xn denotes the average

sample size reported by Skart, ASAP3, WASSP, or SBatch for each of the test problems. Progressively

smaller values of the relative precision r� were considered in our analysis so as to estimate the sampling

efficiency of Skart, ASAP3, WASSP, and SBatch as r� ! 0.

Tables 4.16–4.17 summarize the efficiency analysis results for applying Skart, ASAP3, WASSP,

and SBatch to the M=M=1 and M=H2=1 queue-waiting-time processes, the AR(1) process, and the se-

lected DTMCs when constructing nominal 90% and 95% CIs. These tables display the values of n�,

xn, the ratio xn=n�, and the coverage probability we observed by applying Skart, ASAP3, WASSP, and

SBatch to these test problems. The problem specifications and numerical details for computing the

steady-state variance parameter of these test problems are provided in [36].

From Table 4.16, we can see for progressively smaller values of r�, the ratio xn=n� consis-

tently approached 1:0 for both Skart and ASAP3 in all the considered test problems. However for these

two procedures, the rates of convergence did not appear to be the same. For ASAP3 we observed a

faster convergence of xn=n� to 1:0 for the M=M=1 and M=H2=1 queueing systems, and DTMCs with

B.2/ D 2:1 and B.3/ D 4:8 compared with the rate of convergence achieved by Skart for all these test

processes. On the other hand, in the case of the AR(1) process and the DTMC with B.1/ D 0:0, this

rate was faster for Skart. One advantage of Skart over ASAP3 is that for the highest (coarsest) relative

precision values we considered in this efficiency analysis—which is ˙15% in the case of the M=M=1

and M=H2=1 queueing systems and ˙3:75% in the case of the AR(1) process and the DTMCs—Skart

almost always required smaller sample sizes compared with ASAP3.

Willink explained in [60] that when the distribution of a given process is normal, the CIs

delivered by his modified Student’s t-statistic are slightly wider than the standard CIs of (1.1), which are

the optimal CIs for a normal distribution. Hence, as the precision level goes to zero and the distribution

of the computed batch means gets closer to normal, Skart may require sample sizes that are slightly

larger than the ones required by a standard CI of form (1.1). This explains why ASAP3’s sampling

efficiency was somewhat better than that of Skart at the smallest levels of precision reported in Tables

4.16 and 4.17.
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Table 4.16: Asymptotic efficiency of Skart and ASAP3 in the sense of Chow and Rob-

bins based on 1,000 replications of each test process

Procedure Output 90% CI 95% CI
Type Process r�(%) n� xn xn=n� Cover. r�(%) n� xn xn=n� Cover.

15 53,306 70,473 1.32 87.50% 15 75,675 101,730 1.34 93.60%
M/M/1 7.5 213,222 273,540 1.28 90.00% 7.5 302,670 401,816 1.33 95.30%

90% SU 3.75 852,886 1,057,080 1.24 90.50% 3.75 1,210,797 1,492,458 1.23 95.70%
15 14,853 21,006 1.41 89.10% 15 21,086 29,983 1.42 93.50%

M/M/1 7.5 59,412 77,050 1.30 91.10% 7.5 84,344 112,206 1.33 95.40%
80% SU 3.75 237,650 286,566 1.21 93.60% 3.75 337,376 412,386 1.22 95.70%

15 45,486 62,754 1.38 89.40% 15 64,574 88,015 1.36 94.70%
M/H2/1 7.5 181,942 239,976 1.32 90.00% 7.5 258,293 336,319 1.30 95.40%
80% SU 3.75 727,765 875,718 1.20 91.20% 3.75 1,033,169 1,236,649 1.20 94.90%

3.75 7,697 20,565 2.67 91.80% 3.75 10,927 21,781 1.99 94.90%
Skart AR(1) 1.875 30,789 48,077 1.56 93.20% 1.875 43,709 68,762 1.57 95.90%

0.0938 123,154 168,190 1.37 93.40% 0.0938 174,835 230,460 1.32 97.00%
3.75 21,167 29,343 1.39 92.10% 3.75 30,050 41,840 1.39 96.10%

DTMC 1.875 84,669 101,833 1.20 91.70% 1.875 120,199 137,104 1.14 95.50%
B.1/ D 0.9375 338,674 358,466 1.06 89.90% 0.09375 480,798 501,382 1.04 94.90%

0 0.46875 1,354,696 1,406,197 1.04 89.20% 0.046875 1,923,190 1,991,597 1.04 95.50%
3.75 4,698 9,097 1.94 92.60% 3.75 6,669 10,726 1.61 97.60%

DTMC 1.875 18,791 25,112 1.34 92.40% 1.875 26,677 34,850 1.31 96.90%
B.2/ D 0.9375 75,164 85,771 1.14 92.20% 0.09375 106,707 120,614 1.13 95.60%

2.1 0.46875 300,657 324,151 1.08 89.50% 0.046875 426,826 455,686 1.07 95.10%
3.75 442 21,705 49.15 90.30% 3.75 627 21,705 34.62 95.90%

DTMC 1.875 1,767 21,860 12.37 93.00% 1.875 2,508 22,106 8.81 96.00%
B.3/ D 0.9375 7,066 22,682 3.21 92.90% 0.09375 10,031 23,720 2.36 95.50%

4.8 0.46875 28,264 34,672 1.23 90.70% 0.046875 40,125 48,518 1.21 95.50%

15 53,306 103,742 1.95 91.0% 15 75,675 140,052 1.85 95.5%
M/M/1 7.5 213,222 287,568 1.35 89.5% 7.5 302,670 382,958 1.27 94.0%

90% SU 3.75 852,886 969,011 1.14 89.5% 3.75 1,210,797 1,341,522 1.11 93.5%
15 14,853 43,796 2.95 88.5% 15 21,086 46,106 2.19 93.0%

M/M/1 7.5 59,412 72,060 1.21 86.8% 7.5 84,344 97,643 1.16 93.3%
80% SU 3.75 237,650 256,186 1.08 89.5% 3.75 337,376 365,353 1.08 93.0%

15 45,486 76,214 1.68 88.0% 15 64,574 96,706 1.50 93.3%
M/H2/1 7.5 181,942 228,482 1.26 90.0% 7.5 258,293 309,560 1.20 94.5%
80% SU 3.75 727,765 798,234 1.10 90.0% 3.75 1,033,169 1,115,986 1.08 94.7%

3.75 7,697 41,076 5.34 95.5% 3.75 10,927 41,208 3.77 98.8%
ASAP3 AR(1) 1.875 30,789 68,474 2.22 95.5% 1.875 43,709 101,526 2.32 99.3%

0.0938 123,154 213,826 1.74 94.3% 0.0938 174,835 254,920 1.46 97.3%
3.75 21,167 45,520 2.15 96.0% 3.75 30,050 48,489 1.61 97.8%

DTMC 1.875 84,669 104,325 1.23 91.9% 1.875 120,199 142,924 1.19 96.3%
B.1/ D 0.9375 338,674 363,598 1.07 90.5% 0.09375 480,798 517,142 1.08 95.0%

0 0.46875 1,354,696 1,440,692 1.06 90.5% 0.046875 1,923,190 2,043,950 1.06 93.6%
3.75 4,698 22,047 4.69 89.7% 3.75 6,669 22,129 3.32 94.3%

DTMC 1.875 18,791 24,809 1.32 90.1% 1.875 26,677 30,274 1.13 94.9%
B.2/ D 0.9375 75,164 81,819 1.09 89.1% 0.09375 106,707 114,772 1.08 95.8%

2.1 0.46875 300,657 320,549 1.07 90.0% 0.046875 426,826 457,644 1.07 95.4%
3.75 442 28,522 64.58 91.6% 3.75 627 28,522 45.49 94.9%

DTMC 1.875 1,767 28,522 16.15 91.6% 1.875 2,508 28,522 11.37 94.9%
B.3/ D 0.9375 7,066 28,525 4.04 91.6% 0.09375 10,031 28,536 2.84 94.9%

4.8 0.46875 28,264 33,111 1.17 90.9% 0.046875 40,125 43,408 1.08 94.4%
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Table 4.17: Asymptotic efficiency of WASSP and SBatch in the sense of Chow and

Robbins based on 1,000 replications of each test process

Procedure Output 90% CI 95% CI
Type Process r�(%) n� xn xn=n� Cover. r�(%) n� xn xn=n� Cover.

15 53,306 92,049 1.73 87.2% 15 75,675 143,920 1.90 93.0%
M/M/1 7.5 213,222 388,000 1.82 90.4% 7.5 302,670 598,020 1.98 97.0%

90% SU 3.75 852,886 1,518,400 1.78 94.0% 3.75 1,210,797 2,361,300 1.95 97.7%
15 14,853 42,497 2.86 89.0% 15 21,086 54,578 2.59 96.3%

M/M/1 7.5 59,412 117,540 1.98 88.5% 7.5 84,344 179,840 2.13 96.3%
WASSP 80% SU 3.75 237,650 465,160 1.96 94.0% 3.75 337,376 710,070 2.10 97.2%

15 45,486 78,691 1.73 88.3% 15 64,574 138,960 2.15 94.5%
M/H2/1 7.5 181,942 330,580 1.82 91.0% 7.5 258,293 519,990 2.01 95.7%
80% SU 3.75 727,765 1,283,400 1.76 93.0% 3.75 1,033,169 2,006,800 1.94 98.0%

3.75 7,697 13,535 1.76 87.0% 3.75 10,927 21,099 1.93 95.0%
AR(1) 1.875 30,789 57,449 1.87 93.5% 1.875 43,709 90,371 2.07 97.7%

0.0938 123,154 229,730 1.87 94.0% 0.0938 174,835 333,050 1.90 98.0%

15 53,306 66,719 1.25 86.6% 15 75,675 88,447 1.17 91.2%
M/M/1 7.5 213,222 278,642 1.31 88.8% 7.5 302,670 403,844 1.33 94.0%

90% SU 3.75 852,886 1,151,178 1.35 89.8% 3.75 1,210,797 1,618,147 1.34 95.2%
15 14,853 68,778 4.63 90.4% 15 21,086 70,225 3.33 95.3%

M/M/1 7.5 59,412 89,434 1.51 90.3% 7.5 84,344 115,037 1.36 94.2%
80% SU 3.75 237,650 328,768 1.38 90.3% 3.75 337,376 474,520 1.41 95.2%

15 45,486 65,149 1.43 89.2% 15 64,574 84,363 1.31 93.3%
M/H2/1 7.5 181,942 254,400 1.40 89.6% 7.5 258,293 364,154 1.41 94.7%
80% SU 3.75 727,765 1,028,683 1.41 89.5% 3.75 1,033,169 1,396,922 1.35 94.7%

3.75 7,697 29,831 3.88 91.5% 3.75 10,927 29,857 2.73 95.6%
SBatch AR(1) 1.875 30,789 42,182 1.37 91.2% 1.875 43,709 61,001 1.40 95.8%

0.0938 123,154 175,257 1.42 92.7% 0.0938 174,835 249,387 1.43 96.9%
3.75 442 165,394 374.51 91.5% 3.75 627 165,394 263.80 95.6%

DTMC 1.875 1,767 165,394 93.63 91.5% 1.875 2,508 165,394 65.95 95.6%
B.1/ D 0 0.9375 7,066 165,394 23.41 91.5% 0.09375 10,031 165,394 16.49 95.6%

0.46875 28,264 165,394 5.85 91.5% 0.046875 40,125 165,394 4.12 95.6%
3.75 4,698 111,570 23.75 91.4% 3.75 6,669 111,570 16.73 95.5%

DTMC 1.875 18,791 111,570 5.94 91.4% 1.875 26,677 111,577 4.18 95.5%
B.2/ D 0.9375 75,164 114,899 1.53 91.4% 0.09375 106,707 127,273 1.19 95.3%
2:1 0.46875 300,657 343,159 1.14 92.0% 0.046875 426,826 491,011 1.15 95.5%

3.75 21,167 42,952 2.03 93.3% 3.75 30,050 46,022 1.53 96.6%
DTMC 1.875 84,669 110,499 1.31 92.7% 1.875 120,199 158,003 1.31 97.2%
B.3/ D 0.9375 338,674 445,427 1.32 93.1% 0.09375 480,798 625,901 1.30 96.1%
4:8 0.46875 1,354,696 1,725,495 1.27 89.7% 0.046875 1,923,190 2,454,197 1.28 95.7%
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All the test problems reported in Tables 4.16 and 4.17 were contaminated by initialization

bias, nonnormality, and stochastic dependence; and therefore these test processes were considerably

different from the stationary process assumed above in determining n�. So it should not be surprising

that Skart, ASAP3, WASSP, and SBatch all required larger average sample sizes xn to eliminate the

initial transients in the data and to overcome the nonnormality and dependence issues.

Table 4.17 shows that WASSP and SBatch were less efficient asymptotically compared with

ASAP3 and Skart. WASSP required almost twice the corresponding average sample sizes required by

ASAP3 and Skart. SBatch’s sampling efficiency was also inferior to that of ASAP3 and Skart for all the

considered DTMCs. The ratio xn=n� also exhibited much more erratic behavior for WASSP and SBatch

as r� ! 0. For example, see the values of xn=n� for 90% CIs for theM=M=1 queueing system for both

WASSP and SBatch.
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Chapter 5

Conclusions and Future Research

5.1. Main Conclusions of the Research

A long-standing problem in the analysis of an output process generated by a steady-state

simulation is the formulation of a robust and efficient procedure to construct a valid CI for the steady-

state process mean. Three primary issues impede successful analysis. The first concerns the need

to remove the influence of initial conditions on the data, the second concerns the proper handling of

the correlation between successive observations of the target output process, and the third concerns

the proper handling of the departures from normality in the simulation-generated responses. A good

procedure requires dealing with these three issues to provide not only an accurate point estimator of the

selected parameter but also a sufficiently stable estimator of the standard error of the point estimator so

that we are then able to construct a meaningful and reliable CI.

In this research we have developed a new, completely automated nonoverlapping batch-means

method, called Skart, for constructing a correlation- and skewness-adjusted CI for the steady-state mean

of a simulation output process in either discrete time (i.e., observation-based statistics) or continuous

time (i.e., time-persistent statistics). Skart incorporates some advantages of its predecessors ASAP3,

WASSP, and SBatch (such as the sampling efficiency of ASAP3 and the ability of WASSP and SBatch

to eliminate initialization bias effectively) while exploiting separate adjustments to the classical batch-

means CI based on the corresponding effects of nonnormality and correlation of the delivered batch

means.

N-Skart, the nonsequential version of Skart, has also been developed in this research for
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handling the test problems in which the user supplies a single simulation-generated series of arbitrary

length, and the user specifies the desired coverage probability for a CI based on that series.

From the experimental results presented in Chapter 4, it is evident that Skart outperformed

both SBatch and WASSP with respect to CI coverage probability and sampling efficiency. Skart and

ASAP3 produced comparable results in most of the test problems studied in Chapter 4, although in the

problems involving the most extreme stress testing, Skart appeared to be a more robust procedure than

ASAP3 overall. In particular, we found that ASAP3 did not perform well for relatively high (coarse)

precision levels when it was applied to processes with an exceptionally high correlation structure, like

the AR(1) process described in Section 4.1.4. The reason for Skart’s superior performance in test

problems like this is that for highly correlated processes, Skart is able to control the excessive growth

of the sample size in the randomness test of von Neumann by deflating the initial batch count k during

the course of the randomness test and then by reinflating the new batch count k0 after the randomness

test is finally passed (see Section 3.3.2 for more details).

Also Skart’s sampling efficiency seems to be better than ASAP3 for relatively high (coarse)

precision levels for processes which are markedly nonnormal, like the M=M=1=LIFO process as ex-

plained in Section 4.1.6. The Shapiro-Wilk normality test in SBatch and WASSP is not efficient for

highly skewed processes, because this test must be applied iteratively until the significance level of the

test becomes extremely small (� 10�30). This feature of the normality testing procedure in SBatch and

WASSP has the potential to yield excessively large sample sizes simply to “pass” the normality test,

without even considering any precision requirement that might also apply to the final CI that will be

delivered. Skart handles the nonnormality issue differently by applying a skewness adjustment to the

Student’s t-statistic, removing the need for a normality test.

The key advantages of Skart over other steady-state simulation output procedures can be

summarized as follows:

� Skart is specifically designed to handle time-persistent statistics as well as observation-based

statistics.

� Skart has a nonsequential version (N-Skart) in which the user merely supplies a single simulation-

generated time series of an arbitrary fixed length and requests a CI with a specific coverage

probability based on the available data.

� Skart usually requires a smaller initial sample size compared with other well-known simulation

analysis procedures.
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� Skart removes the need for the normality test, which can sometimes result in excessive sam-

ple sizes, by applying Willink’s skewness adjustment to the classical NBM-based Student’s t-

statistic.

� Skart efficiently controls the sample size growth in highly correlated processes by the following

techniques:

– When testing the spaced batch means for randomness, Skart effectively applies an inflation

factor to the batch size while also effectively applying deflation and reinflation factors to the

batch count at critical points in the testing procedure so as to determine an adequate spacer

size for use as the warm-up period, etc., without requiring an excessively large sample size

for the randomness test alone.

– When testing the computed CI for conformance to the precision requirement, Skart employs

a reasonably efficient stopping rule featuring rapid convergence to a final sample size that

is sufficient for satisfying the specified coverage-probability and precision requirements

without being excessive.

The main theoretical contribution of this research can be summarized by the following result

whose proof is given in appendix A. If for some sufficiently large batch sizem the nonoverlapping batch

means fYj .m/g computed from a stationary process with mean �X and variance parameter 

X
2 .0;1/

constitute a stationary, invertible ARMA(p; q) process with finite autoregressive order p � 0 and fi-

nite moving-average order q � 0, then as m ! 1 the batch means constitute a stationary, invertible

ARMA(p;p) model in which the higher-order autoregressive (respectively, moving average) coeffi-

cients tend to zero faster than the first-order autoregressive (respectively, moving-average) coefficient

tends to zero.

The immediate practical consequence of this result is that as the batch size m ! 1, the

batch means fYj .m/g can be adequately modeled as an ARMA(1; 1) process. Moreover, in practice we

have found that the simpler AR(1) model provides not only an adequate asymptotic model for the batch

means as m ! 1 but also the basis for an effective correction to the classical NBM CI for �X that

accounts for any remaining correlation among the batch means.

5.2. Directions for Future Research

Several future research paths can be followed based on the results of this dissertation:
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� It would be desirable to establish key asymptotic properties of the CIs delivered by Skart and

prove rigorously that there is a nontrivial class of discrete-event stochastic systems for which

Skart’s CIs are asymptotically valid—that is, the CIs delivered by Skart have coverage probabili-

ties equal to (or no less than) the user-specified nominal levels—as the user’s absolute or relative

precision specification tends to zero.

� It would be desirable to prove that in some nontrivial class of discrete-event stochastic systems,

the average sample sizes required by Skart to deliver its CIs exhibit convergence in some sense

to the corresponding minimal (efficient) sample sizes specified by Chow and Robbins [15] as the

precision requirement (r� or H�) tends to zero.

� Explore multivariate extensions of Skart, where one might estimate the mean of several different

performance measures, providing both point and confidence-region estimators.

� Another area of interest is to enhance Skart so that it can deliver high-quality point and CI esti-

mates of the marginal variance and user-selected quantiles of the marginal output distribution of

interest.

� The results from [60] show that if a given process has approximately normal marginals, then Will-

ink’s CIs are wider than those based on the classical Student’s t-statistic, which are the optimal

CIs for a normal distribution. Thus, it would be desirable to modify the precision requirement

step of Skart, so that asymptotically as the overall run length and the batch size increase (possi-

bly along with the batch count), an appropriate transition is made from Skart’s correlation- and

skewness-adjusted CI (1.8) to the classical CI (1.1) based on i.i.d. normal batch means.

� Develop a new Cornish-Fisher expansion that simultaneously considers both skewness and corre-

lation adjustments to the classical Student’s t-statistic. This would entail a significant theoretical

extension of the approach of Johnson [29] and Willink [60], which are based on the assumption

that the observations (basic data items) used in the analysis are i.i.d. but not necessarily normal.
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Appendix A

Asymptotic Properties of Batch Means

from Stationary, Invertible ARMA

Processes with Increasing Batch Size

A.1 Motivation, Assumptions, and Basic Results about Batch-Means

Processes

If fXig is the output of a simulation model in steady-state operation, then under fairly general condi-

tions the corresponding sequence of batch means
˚
Yj .m/ D m�1

Pjm

iD.j�1/mC1
Xi W j D 1; 2; : : :

�

is asymptotically Gaussian as the batch size m ! 1; see, for example, Steiger and Wilson [51].

Moreover, in practice many stationary Gaussian time series can be adequately modeled by a mixed

autoregressive–moving average (ARMA) process of order .p; q/, provided the autoregressive order p

and the moving-average order q are chosen properly; see, for example, p. 47 of Chatfield [14] and p.

140 of Priestley [45].

If the original (unbatched) process fXig is a stationary and invertible ARMA.p�; q�/ process

with 0 � p�; q� <1, then Tiao [57] shows that as the batch size m!1 ; the batch means fYj .m/g
are asymptotically uncorrelated. In the following theorem we provide a simpler alternative proof of this

result under what is arguably the most broadly applicable set of hypotheses.

THEOREM 1. If the process fXig is strictly stationary with mean �X and finite variance parameter 

X

,
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then for the associated nonoverlapping batch means fYj .m/g with batch size m, the lag-` autocorrela-

tion function,

�`.m/ D CorrŒYj .m/; YjC`.m/� for ` D 0;˙1;˙2; : : : ; (A.1)

satisfies

lim
m!1

�`.m/ D 0 for ` D ˙1;˙2; : : : : (A.2)

Moreover if the process fXig is �-mixing with mixing coefficients f�ig satisfying

1X

iD0

p
�i <1 ; (A.3)

then

j��`.m/j D j�`.m/j � 2
q
�.`�1/mC1 �!

m!1
0 for ` D 2; 3; : : : I (A.4)

and for a fixed batch count k, the standardized nonoverlapping batch means
˚p
m=


X

�
Yj .m/ � �X

�
W

j D 1; : : : ; k
�

are asymptotically i.i.d. standard normal random variables as the batch size m!1:

p
m=


X

�
Y1.m/ � �X ; : : : ; Yk.m/ � �X

� D�!
m!1

N.0k ; Ik/ ; (A.5)

where 0k denotes the k � 1 null vector and Ik denotes the k � k identity matrix.

Proof. The proof of (A.2) is by induction on ` for positive values of `. From the well-known relation

Var
�xY .m; `/

�
D VarŒY.m/�

`

�
1C 2

`�1X

uD1

�
1� u

`

�
�u.m/

�
for ` D 2; 3; : : : ; (A.6)

it follows that for ` D 2 we have

VarŒ xY .m; 2/�
VarŒY.m/�=2

� 1 D �1.m/ : (A.7)

From



X
D lim
m!1

`mVarŒ xY .m; `/� D lim
m!1

mVarŒY.m/� for ` D 1; 2; : : : ; (A.8)

we see that

lim
m!1

�1.m/ D lim
m!1

VarŒ xY .m; 2/�
VarŒY.m/�=2

� 1 D lim
m!1

2mVarŒ xY .m; 2/�
mVarŒY.m/�

� 1

D .

X
=

X
/ � 1 D 0 : (A.9)

Now suppose that we have

lim
m!1

�`.m/ D 0 for ` D 1; : : : ; L ; (A.10)
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where L � 1. From (A.6) we have

VarŒ xY .m;LC 2/�
VarŒY.m/�=.LC 2/ �

VarŒ xY .m;LC 1/�
VarŒY.m/�=.LC 1/ D

"
2

.LC 1/.LC 2/

LX

uD1

u�u.m/

#
� 2

LC 2�LC1.m/ :

(A.11)

Letting m!1 in (A.11), we see from (A.8) that the left-hand side of (A.11) vanishes asymptotically,

lim
m!1

(
VarŒ xY .m;LC 2/�

VarŒY.m/�=.LC 2/ �
VarŒ xY .m;LC 1/�

VarŒY.m/�=.LC 1/

)

D lim
m!1

.LC 2/mVarŒ xY .m;LC 2/�
mVarŒY.m/�

� lim
m!1

.LC 1/mVarŒ xY .m;LC 1/�
mVarŒY.m/�

D .

X
=

X
/ � .


X
=

X
/ D 0 : (A.12)

From the induction hypothesis (A.10), we see that the first term on the right-hand side of (A.11) tends

to zero as m!1,

lim
m!1

2

.LC 1/.LC 2/

LX

uD1

u�u.m/ D
2

.LC 1/.LC 2/

LX

uD1

u �
h

lim
m!1

�u.m/
i
D 0 I (A.13)

and combining (A.11), (A.12), and (A.13), we finally obtain

lim
m!1

�LC1.m/ D 0 : (A.14)

The conclusion (A.2) follows by induction.

Now let Mu
t denote the � -field (or Borel-field) generated by the random variables fXi W i D

t; tC1; : : : ; ug; and let M1
t denote the � -field generated by the random variables fXi W i D t; tC1; : : :g;

see, for example, Billingsley [8, 9]. Since the fYj .m/g are computed from nonoverlapping batches of

size m, we see that Yj .m/ is measurable with respect to M
jm
1 ; and for ` � 1, the lagged batch mean

YjC`.m/ is measurable with respect to M1
.jC`�1/mC1

. It follows immediately from Equation (20.23)

of Billingsley [8] that

j��`.m/j D j�`.m/j � 2
q
�.`�1/mC1 for ` D 1; 2; : : : : (A.15)

The hypothesis (A.3) ensures that

lim
i!1

p
�i D 0 I (A.16)

and thus (A.4) follows immediately from (A.15). Finally, the limiting result (A.5) is the main conclusion

of Theorem 1 of Steiger and Wilson [51].
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REMARK 1. It might seem plausible that the Central Limit Theorem (1.4) specialized to each of the

standardized batch means
˚p
m=


X

�
Yj .m/ � �X

�
W j D 1; : : : ; k

�
and coupled with the result (A.2)

should be sufficient to yield the multivariate limiting property (A.5). Unfortunately, a k-dimensional

random vector with normal marginals and all pairwise correlations equal to zero does not necessarily

possess a k-dimensional normal distribution; see, for example, Exercise 15.20 of Stuart and Ord [55].

Some additional hypothesis is needed to ensure that the dependence between the lagged batch means

Yj .m/ and YjC`.m/ falls off sufficiently fast as j`j ! 1. An alternative to the assumption (A.3) is the

assumption FCLT (2.10) that underlies the method of standardized time series; unfortunately neither of

these assumptions is easily checked in practice.

REMARK 2. Equation (A.2) will play a key role in the rest of the development, and it is similar to Equa-

tion (2.8) of [57]. However, the only assumption required to obtain (A.2) is that fXig is stationary with

a finite variance parameter. By contrast, the derivation of Equation (2.8) of [57] is arguably more com-

plicated and requires the stronger assumption that fXig is a stationary and invertible ARMA(p�; q�)

process for 0 � p�; q� <1.

All the foregoing considerations form the basis for our fundamental assumption that the un-

derlying process fXig is such that with a sufficiently large batch size, the stochastic behavior of the

associated batch means can be accurately approximated by an ARMA.p; q/ process for finite nonneg-

ative values of p and q. Specifically, we assume that for any batch size m � m0 (where m0 is a “base”

batch size taken sufficiently large), the batch means fYj .m/ W j D 1; 2; : : :g can be adequately modeled

by an ARMA.p; q/ process

Yj .m/ D �X C
pX

`D1

'`.m/ŒYj�`.m/ � �X �C "j .m/ �
qX

`D1

�`.m/"j�`.m/ ; (A.17)

where: p and q depend on m0; we have 0 � p; q < 1; the random “shocks” f"j .m/ W j D 1; 2; : : :g
driving the process are randomly sampled from NŒ0; �2

".m/
�; and the ARMA model (A.17) satisfies the

following conditions—

� Stationarity: The roots of the degree-p autoregressive polynomial

˚p;m.z/ �
(
1 ; if p D 0 ;
1�

Pp

`D1
'`.m/z

` ; if p � 1 ;
(A.18)

must lie outside the unit circle in the complex plane

C �
n
z D x C y

p
�1 W x; y 2 R

o
: (A.19)
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� Invertibility: The roots of the degree-q moving-average polynomial

�q;m.z/ �
(
1 ; if q D 0 ;
1 �Pq

`D1
�`.m/z

` ; if q � 1 ;
(A.20)

must lie outside the unit circle in C .

� Unicity: The polynomials ˚p;m.z/ and �q;m.z/ have no common roots and no multiple roots.

Moreover any two roots of ˚p;m.z/ that are not complex conjugates of each other must have dis-

tinct absolute values. A similar condition applies to the roots of the moving-average polynomial

�q;m.z/.

Recall that each complex number

z D x C y
p
�1 2 C (A.21)

has complex conjugate

xz � x � y
p
�1 (A.22)

and absolute value

jzj �
p
zxz D

q
x2 C y2 : (A.23)

In the subsequent discussion, we let

D.R/ � fz 2 C W jzj � Rg (A.24)

denote the disk of radius R � 0 centered at the origin in C. Thus D.1/ is the unit circle; and the

stationarity condition is that

˚p;m.z/ ¤ 0 for every z 2 D.1/ : (A.25)

The invertibility condition is that

�q;m.z/ ¤ 0 for every z 2 D.1/ : (A.26)

In addition to requiring that ˚p;m.z/ and �q;m.z/ have no common roots and no multiple roots, the

unicity condition requires that

If

8
ˆ̂<
ˆ̂:

˚p;m.zj / D 0 for j D 1; 2
or

�q;m.zj / D 0 for j D 1; 2

9
>>=
>>;

and z2 ¤ xz1 ; then jz1j ¤ jz2j : (A.27)
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REMARK 3. Because both ˚p;m.z/ and �q;m.z/ have real coefficients, their roots are either real num-

bers or conjugate pairs of complex numbers; see p. 104 of Birkhoff and MacLane [10]. In the unicity

condition, the requirement that each polynomial has no multiple roots implies that for each polyno-

mial, its real roots must all have distinct values. The requirement (A.27) is similar, but it stipulates that

nonconjugate roots must have distinct absolute values. The unicity assumption does not appear to be

restrictive in practice, but it is necessary for the analysis that follows. See also p. 236 of Anderson [5]

and p. 58 of Box, Jenkins, and Reinsel [12].

If p > 0, then for m � m0 we let fri .m/ 2 C W i D 1; : : : ; pg denote the roots of ˚p;m.z/ so

that we can write

˚p;m.z/ D
pY

iD1

Œ1� ıi .m/z� for all z 2 C ; (A.28)

where

ıi .m/ D Œri .m/��1 2 C and jıi .m/j < 1 for i D 1; : : : ; p (A.29)

by the stationarity condition. Similarly if q > 0, then for m � m0 we let fuj .m/ 2 C W j D 1; : : : ; qg
denote the roots of �q;m.z/ so that we can write

�q;m.z/ D
qY

jD1

Œ1 � !j .m/z� for all z 2 C ; (A.30)

where

!j .m/ D Œuj .m/��1 2 C and j!j .m/j < 1 for j D 1; : : : ; q (A.31)

by the invertibility condition.

In view of Theorem 1, we make the following continuity assumption about the autoregressive

and moving-average coefficients in (A.17):

limm!1 'i .m/ D 0 for i D 1; : : : ; p (provided p > 0) ;

limm!1 �j .m/ D 0 for j D 1; : : : ; q (provided q > 0) :

)
(A.32)

A.2 Proof of (A.17) and (A.32) When the Original (Unbatched) Process

Is ARMA

Although we cannot prove that (A.17) and (A.32) hold for every stationary stochastic pro-

cess with a finite variance parameter, we can establish (A.17) and (A.32) in a large class of stationary
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stochastic processes that at least make (A.17) and (A.32) plausible assumptions about any batch-means

process fYj .m/g obtained by aggregating (batching) a stationary process, provided the batch size m is

sufficiently large.

THEOREM 2. If the original (unbatched) process fXig is a stationary and invertible ARMA(p�; q�)

process,

Xi D �X C
p�X

`D1

'�
` .Xi�` � �X /C "i �

q�X

`D1

��
` "i�` ; (A.33)

where 0 � p�; q� < 1, then the batch-means process fYj .m/ W j D 1; 2; : : :g is a stationary and

invertible ARMA(p; q) process (A.17) with

p D p� and q D
(

p�; if q� < p� C 1 ;
p� C 1; if q� � p� C 1 ;

)
for m � m0 D jp� � q�j C 1 : (A.34)

Moreover, the autoregressive and moving-average coefficients in the ARMA(p; q) model describing the

batch-means process fYj .m/g satisfy the continuity condition (A.32):

limm!1 'i .m/ D 0 for i D 1; : : : ; p (provided p > 0) ;

limm!1 �j .m/ D 0 for j D 1; : : : ; q (provided q > 0) :

)
(A.35)

Proof. To avoid trivial cases, throughout the rest of this proof we assume that p� � 1 and q� � 1. It

is straightforward to adapt the following argument to handle situations in which p� D 0 or q� D 0 (or

both). The result (A.34) was first established in [13, p. 145]; see also Result 1 of [31] and Result 2 of

[50]. Corresponding to the ARMA(p�; q�) representation (A.33) of the original (unbatched) process

fXig, we let fı� W � D 1; : : : ; p�g denote the inverse roots of the associated autoregressive polynomial

˚p�.z/ �
(
1; if p� D 0 ;
1�Pp�

`D1
'�
`
z`; if p� � 1 I

(A.36)

and we let f!� W � D 1; : : : ; q�g denote the inverse roots of the associated moving-average polynomial

�q�.z/ �
(
1; if q� D 0 ;
1 �Pq�

`D1
��
`
z`; if q� � 1 :

(A.37)

Because (A.33) is stationary and invertible, we have

jı� j < 1 for � D 1; : : : ; p� (provided p� > 0)

j!�j < 1 for � D 1; : : : ; q� (provided q� > 0)

)
: (A.38)
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Notice that the development in Equations (A.36), (A.37), and (A.38) for the original (unbatched) pro-

cess (A.33) is a special case for batch size m D 1 of the development in Equations (A.28)–(A.31) for

the batch-means process (A.17).

If the original (unbatched) process has the ARMA(p�; q�) representation (A.33), then from

the first (unnumbered) equation on p. 467 of [50] we see that in the ARMA(p; q) representation of the

batch-means process fYj .m/g with batch size

m � m0 D jp� � q�j C 1 (A.39)

and autoregressive and moving-average orders p and q given by (A.34), the autoregressive parameters

are given by

'1.m/ D
pX

�D1

ım� ; (A.40)

'2.m/ D �
p�1X

�D1

pX

jD�C1

ım� ı
m
j ; (A.41)

:::

'p.m/ D .�1/pC1
pY

�D1

ım� ; (A.42)

where in general '`.m/ equals .�1/`C1 times the sum of products of the mth powers of individual

elements from fı� W � D 1; : : : ; pg taken ` at a time for ` D 1; : : : ; p. The desired continuity condition

(A.35) for the autoregressive coefficients f'�.m/ W � D 1; : : : ; pg then follows immediately from (A.38)

and (A.40)–(A.42).

A less straightforward approach is required to prove that the moving-average coefficients

f��.m/ W � D 1; : : : ; qg also satisfy the continuity condition (A.35). Computing batch means from the

moving-average component of (A.33), we obtain the auxiliary process

Uj .m/ D
1

m

jmX

iD.j�1/mC1

�
"i �

q�X

`D1

��
` "i�`

�
: (A.43)

From the analysis concerning the first (unnumbered) equation on p. 467 of [50], we see that (A.43)

defines an invertible MA.q/ process whose autocorrelation function,

%`.m/ D CorrŒUj .m/;UjC`.m/� for ` D 0;˙1;˙2; : : : ; (A.44)
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satisfies

%`.m/ 6D 0 ; if ` D ˙q ;
%`.m/ D 0 ; if ` < �q or ` > q :

)
(A.45)

Our approach is based on the analysis given in §5.7.1 of [5], which we will adapt to show

that given the marginal variance VarŒU.m/� and the associated correlations %1.m/, . . . , %q.m/, the

invertible MA(q) representation of the auxiliary process fUj .m/g defined by (A.43) has moving-average

coefficients f�`.m/ W ` D 1; : : : ; qg that converge to zero as m ! 1. We consider the roots of the

degree-(2q) polynomial

Cm.z/ D
2qX

`D0

%`�q.m/z
` : (A.46)

As shown in §5.7.1 of [5], the roots of Cm.z/ D 0 can be divided into two sets f$`.m/ W ` D 1; : : : ; qg
and f$qC`.m/ W ` D 1; : : : ; qg such that

For ` D 1; : : : ; q; we have j$`.m/j � 1; and

(
if j$`.m/j < 1; then $qC`.m/ D 1=$`.m/
if j$`.m/j D 1; then $qC`.m/ D $`.m/

)
:

(A.47)

Moreover, from the analysis in §5.7.1 of [5], we see that moving-average polynomial corresponding to

the MA(q) representation of (A.43) has the form

�q;m.z/ � 1�
qX

`D1

�`.m/z
` D

qY

`D1

Œ1 �$`.m/z� (A.48)

because

Cm.z/ D
(

%�q.m/ ; if z D 0 ;
zq�q;m.z/�q;m.1=z/ ; if z 6D 0 I

(A.49)

and from (A.48), we see immediately that

�1.m/ D
qX

�D1

$�.m/ ; (A.50)

�2.m/ D �
q�1X

�D1

qX

jD�C1

$�.m/$j .m/ ; (A.51)

:::

�q.m/ D .�1/qC1
qY

�D1

$�.m/ ; (A.52)
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where in general �`.m/ equals .�1/`C1 times the sum of products of individual elements from f��.m/ W
� D 1; : : : ; qg taken ` at a time for ` D 1; : : : ; q. The desired contintuity condition (A.35) for the

moving-average coefficients f��.m/ W � D 1; : : : ; qg will follow immediately if we can show that

lim
m!1

j$`.m/j D 0 for ` D 1; : : : ; q : (A.53)

To establish (A.53), we will prove that the quantity

b.m/ � minfj$qC`.m/j W ` D 1; : : : ; qg (A.54)

satisfies

lim
m!1

b.m/ D C1 : (A.55)

Suppose on the contrary that

lim inf
m!1

b.m/ D b� <1 : (A.56)

Choose � > 0 arbitrarily. From (A.56) it follows immediately that we can find at least one integer

� 2 f1; : : : ; qg together with a strictly increasing subsequence fm.`/ W ` D 1; 2; : : :g of batch sizes such

that

lim
`!1

m.`/ D C1 and 1 � j$qC� Œm.`/�j � b� C � D b�� for ` D 1; 2; : : : : (A.57)

(Throughout the rest of the proof of Theorem 2, the integer � and the associated subsequence fm.`/ W
` D 1; 2; : : :g satisfying (A.57) will remain fixed.) From (A.57) we have

f$qC� Œm.`/� W ` D 1; 2; : : :g � A.b��/ ; (A.58)

where

A.b��/ � fz 2 C W 1 � jzj � b��g (A.59)

is the annulus centered at the origin with inner radius 1 and outer radius b��. Since A.b��/ is closed and

bounded (and hence compact), the Bolzano-Weierstrass Theorem [34] implies that f$qC� Œm.`/� W ` D
1; 2; : : :g has a limit point � 2 A.b��/. This means that there exists a subsubsequence f$qC� Œm.`w/� W
w D 1; 2; : : :g of the subsequence f$qC� Œm.`/� W ` D 1; 2; : : :g such that

lim
w!1

$qC� Œm.`w/� D � 2 A.b��/ : (A.60)

We have

Cm.`w/f$qC� Œm.`w/�g D 0 for w D 1; 2; : : : ; (A.61)
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since for each m � m0, recall that $qC�.m/ is a root of Cm.z/ D 0 . On the other hand, we must have

lim
w!1

Cm.`w/

˚
$qC� Œm.`w/�

�
D lim

w!1

2qX

`D0

%`�q Œm.`w/�
˚
$qC� Œm.`w/�

�`

D
2qX

`D0

n
lim
w!1

%`�q Œm.`w/�
o
�
�

lim
w!1

˚
$qC� Œm.`w/�

�`�

D �q (A.62)

because %0.m/ � 1 and limm!1 %`.m/ D 0 for ` D ˙1;˙2; : : : ;˙q by Equation (A.2) of Theorem

1. Since we must have j�j � 1 by the definition (A.59), Equation (A.62) contradicts (A.61); and thus

the assumption (A.56) must be false for b� <1. It follows that

1D lim inf
m!1

b.m/ � lim sup
m!1

b.m/ (A.63)

so that we have

lim
m!1

b.m/ D C1I (A.64)

and thus the desired conclusion of Theorem 2 follows.

A.3 Consequences of Assumption (A.32) When the Batch-Means Process

Is ARMA

LEMMA 1. If fYj .m/g is a stationary and invertible ARMA(p; q) process (A.17) for m � m0 and the

continuity condition (A.32) holds, then

limm!1 jıi .m/j D 0 for i D 1; : : : ; p (provided p > 0) ;

limm!1 j!j .m/j D 0 for j D 1; : : : ; q (provided q > 0) :

)
(A.65)

Proof. The proof of Lemma 1 is similar in spirit to that of Theorem 2, but the details are somewhat

different. To avoid trivial cases, throughout the rest of this proof we assume that p � 1 and q � 1. It

is straightforward to adapt the following argument to handle situations in which p D 0 or q D 0 (or

both). We will prove that the quantities

a1.m/ � minfjri .m/j W i D 1; : : : ; pg
a2.m/ � minfjuj .m/j W j D 1; : : : ; qg

)
(A.66)

satisfy

lim
m!1

aj .m/ D C1 for j D 1; 2 I (A.67)
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and from (A.29) and (A.31), we have

jıi .m/j � Œa1.m/��1 for i D 1; : : : ; p
j!j .m/j � Œa2.m/��1 for j D 1; : : : ; q

)
for all m � m0 I (A.68)

thus the desired conclusion (A.65) will follow immediately from (A.67).

Suppose that on the contrary

lim inf
m!1

a1.m/ D a�
1 <1 : (A.69)

Choose � > 0 arbitrarily. From (A.69) it follows that we can find at least one index i 2 f1; : : : ; pg
together with a strictly increasing subsequence fm.`/ W ` D 1; 2; : : :g such that

lim
`!1

m.`/ D C1 and jri Œm.`/�j � a�
1 C � D a��

1 for ` D 1; 2; : : : : (A.70)

(Throughout the rest of the proof of Lemma 1, the index i and the associated subsequence fm.`/ W ` D
1; 2; : : :g are fixed.) From (A.70) we have

fri Œm.`/� W ` D 1; 2; : : :g � D.a��
1 / I (A.71)

and since D.a��
1 / is closed and bounded (and hence compact), the Bolzano-Weierstrass Theorem [34]

implies that fri Œm.`/� W ` D 1; 2; : : :g has a limit point � 2 D.a��
1 /. This means that there exists a

subsubsequence fri Œm.`w/� W w D 1; 2; : : :g of the subsequence fri Œm.`/� W ` D 1; 2; : : :g such that

lim
w!1

ri Œm.`w/� D � 2 D.a��
1 / : (A.72)

We have

˚p;m.`w/fri Œm.`w/�g D 0 for w D 1; 2; : : : ; (A.73)

since by definition ri .m/ is a root of ˚p;m.z/ D 0 for each m � m0. On the other hand, we must have

lim
w!1

˚p;m.`w/ fri Œm.`w/�g D 1 �
pX

�D1

n
lim
w!1

'� Œm.`w/�
o n

lim
w!1

ri Œm.`w/�
o�

D 1 �
pX

�D1

f0gf�g�

D 1 : (A.74)

Clearly (A.74) contradicts (A.73); and thus the assumption (A.69) must be false for a�
1 <1. It follows

that

1D lim inf
m!1

a1.m/ � lim sup
m!1

a1.m/ (A.75)



112

so that we have

lim
m!1

a1.m/ D C1 : (A.76)

A similar argument yields the remaining part of (A.67), and the desired conclusion of Lemma 1 follows.

A.4 Proof of the Main Result When the Batch-Means Process Is ARMA

To complete the analysis of the batch-means process fY`.m/ W ` D 1; 2; : : :g for sufficiently

large values of the batch size m, we impose the following regularity condition on the way in which the

inverse autoregressive roots fıi .m/ W i D 1; : : : ; pg and the inverse moving-average roots f!j .m/ W
j D 1; : : : ; qg tend to zero in absolute value as m!1:

lim sup
m!1

jıi .m/j
jPp

`D1
ı`.m/j

<1 for i D 1; : : : ; p (provided p > 0) (A.77)

and

lim sup
m!1

j!j .m/j
jPq

`D1
!`.m/j

<1 for j D 1; : : : ; q (provided q > 0) : (A.78)

REMARK 4. Equation (A.65) in Lemma 1 ensures that both the numerators and denominators in (A.77)

and (A.78) tend to zero as m!1. The condition (A.77) merely requires that the absolute value of the

sum of inverse autoregressive roots should tend to zero as m ! 1 at a rate which does not differ too

much from the rates at which the absolute values of each of the individual inverse autoregressive roots

tend to zero. Condition (A.78) imposes a similar requirement on the rates at which the absolute values

of the inverse moving-average roots tend to zero as m!1. In particular, autoregressive (respectively,

moving-average) roots that decline in absolute value according to an inverse-power law in the batch

size m or exponentially in the batch size as m!1 and that satisfy the unicity condition can be easily

shown to satisfy condition (A.77) (respectively, (A.78)).

THEOREM 3. If for all m � m0 the batch-means process fYj .m/ W j D 1; 2; : : :g is an ARMA.p; q/

process (A.17) that satisfies the stationarity, invertibility, and unicity conditions as well as the continuity

condition (A.32) and the regularity conditions (A.77) and (A.78), then as m!1 we have

'�.m/ D oŒ'1.m/� for � D 2; : : : ; p (provided p > 1) ; (A.79)

��.m/ D oŒ�1.m/� for � D 2; : : : ; q (provided q > 1) ; (A.80)
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and

Var
�xY .m; k0/

�
� VarŒY.m/�

k0

�
1 � '21.m/

1 � 2'1.m/�1.m/C �21 .m/

� �
1 � �1.m/
1 � '1.m/

�2
(A.81)

� VarŒY.m/�

k0

�
1C '1.m/
1 � '1.m/

�
: (A.82)

Proof. To avoid trivial cases, throughout the rest of this proof we assume that p � 2 and q � 2. It is

straightforward to adapt the following argument to handle situations in which p � 1 or q � 1 (or both).

Corresponding to the ARMA(p; q) model of the batched means fYj .m/g for m � m0, we see that the

autoregressive polynomial (A.28) expressed in terms of its roots (A.29) is given by

˚p;m.z/ D
pY

�D1

Œ1� ı�.m/z� for z 2 C : (A.83)

Expanding (A.83) and equating the result to the formal definition

˚p;m.z/ � 1 �
pX

�D1

'�.m/z
� ; (A.84)

we see that

'1.m/ D
pX

�D1

ı�.m/ ; (A.85)

'2.m/ D �
p�1X

�D1

pX

jD�C1

ı�.m/ıj .m/ ; (A.86)

:::

'p.m/ D .�1/pC1
pY

�D1

ı�.m/ ; (A.87)

where in general '`.m/ equals .�1/`C1 times the sum of products of roots taken ` at a time for ` D
1; : : : ; p . Similarly, the moving-average polynomial (A.30) expressed in terms of its roots (A.31) is

given by

�q;m.z/ D
qY

�D1

Œ1 � !�.m/z� for z 2 C I (A.88)

Expanding (A.88) and equating the result to the formal definition

�q;m.z/ � 1�
qX

�D1

��.m/z
� ; (A.89)
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we obtain

�1.m/ D
qX

�D1

!�.m/ ; (A.90)

�2.m/ D �
q�1X

�D1

qX

jD�C1

!�.m/!j .m/ ; (A.91)

:::

�q.m/ D .�1/qC1
qY

�D1

!�.m/ ; (A.92)

where in general �`.m/ equals .�1/`C1 times the sum of products of individual elements from f��.m/ W
� D 1; : : : ; qg taken ` at a time for ` D 1; : : : ; q .

We will prove (A.80) in detail; the proof of (A.79) is similar. Let

��
m � arg max fj!�.m/j W � D 1; : : : ; qg : (A.93)

We have

j�2.m/=�1.m/j D
ˇ̌
ˇ̌
ˇ!��

m
.m/

"
!��

m
.m/

Pq
�D1 !�.m/

#(
qX

�D1

"
!�.m/

!��
m
.m/

#2

C
q�1X

�D1

qX

jD�C1

"
!�.m/

!��
m
.m/

#
�
"
!j .m/

!��
m
.m/

#) ˇ̌
ˇ̌
ˇ

� j!��
m
.m/j �

(
j!��

m
.m/j

jPq
�D1 !�.m/j

)
(A.94)

�

8
<
:

qX

�D1

ˇ̌
ˇ̌ !�.m/
!��

m
.m/

ˇ̌
ˇ̌
2

C
q�1X

�D1

qX

jD�C1

ˇ̌
ˇ̌ !�.m/
!��

m
.m/

ˇ̌
ˇ̌ �
ˇ̌
ˇ̌ !j .m/
!��

m
.m/

ˇ̌
ˇ̌
9
=
; :

Applying Lemma 1 to the f!�.m/g, we see that

lim
m!1

j!��
m
.m/j � lim

m!1

qX

�D1

j!�.m/j D
qX

�D1

h
lim
m!1

j!�.m/j
i
D 0 : (A.95)

Applying the regularity property (A.78) to the f!�.m/g, we see that

lim sup
m!1

j!��
m
.m/j

jPq
�D1 !�.m/j

� lim sup
m!1

qX

iD1

� j!i.m/j
jPq

�D1 !�.m/j

�

�
qX

iD1

�
lim sup
m!1

j!i .m/j
j
Pq
�D1 !�.m/j

�
<1 : (A.96)
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The third term in (A.94) is bounded above by

qX

�D1

ˇ̌
ˇ̌ !�.m/
!��

m
.m/

ˇ̌
ˇ̌
2

C
q�1X

�D1

qX

jD�C1

ˇ̌
ˇ̌ !�.m/
!��

m
.m/

ˇ̌
ˇ̌ �
ˇ̌
ˇ̌ !j .m/
!��

m
.m/

ˇ̌
ˇ̌

�
qX

�D1

1C
q�1X

�D1

qX

jD�C1

1 D q C .q � 1/q
2

for every m � m0 : (A.97)

Combining (A.94), (A.95), (A.96), and (A.97), we have

lim
m!1

j�2.m/=�1.m/j D 0 : (A.98)

A similar analysis shows that

lim
m!1

j��.m/=�1.m/j D 0 for � ¤ 1 : (A.99)

Thus asm!1, we see that fYj .m/g is approximately an ARMA(1; 1) process with variance

parameter



Y.m/

D VarŒY.m/�

�
1� '21.m/

1� 2'1.m/�1.m/C �21 .m/

� �
1 � �1.m/
1� '1.m/

�2
I (A.100)

see, for example, §3.4.3 of Box, Jenkins, and Reinsel [12]. We have

1 � 2'1.m/�1.m/C �21 .m/ D Œ1 � �1.m/�2 C 2�1.m/ � 2'1.m/�1.m/

� Œ1 � �1.m/�2 (A.101)

since the terms �1.m/ and �2'1.m/�1.m/ are negligible in comparison with Œ1 � �1.m/�2. Thus we

have



Y.m/

� VarŒY.m/�

�
1� '21.m/
Œ1� �1.m/�2

� �
1 � �1.m/
1 � '1.m/

�2

D VarŒY.m/�

�
1C '1.m/
1 � '1.m/

�
as m!1 : (A.102)

From the usual relation

VarŒY.m; k0/� �


Y.m/

k0
as m!1 (A.103)

and (A.102), we finally obtain the desired result (A.82).

Remark 5. This development suggests a minor revision in the computation of the correlation adjust-

ment A that could be applied to the estimation S2
m;k0=k

0 of the variance of the grand mean xY .m; k0/ of

the batch means, where we are now assuming that we have m � m0 for some “minimally” acceptable
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batch size m0. From the truncated, nonspaced batch means, we could calculate the lag-` correlations

for ` D 1; 2 as follows:

y�
Y.m/

.`/ D 1

k0 � `

k0�X̀

jD1

ŒYj .m/ � xY .m; k0/�ŒYjC`.m/ � xY .m; k0/�

S2
m;k0

: (A.104)

Then we could take

y'1.m/ D
y�
Y.m/

.2/

y�
Y.m/

.1/
; (A.105)

the usual moment-matching estimator of the autoregressive parameter if the fYj .m/g are an ARMA.1; 1/

process. In practice, however, we have found that at the batch sizes delivered by Skart, the values of

y�Y.m/.1/ and y�Y.m/.2/ are quite small and sometimes yield the anomalous result

y'1.m/ D
y�
Y.m/

.2/

y�
Y.m/

.1/
> 1 ; (A.106)

which is outside the region of stationarity and invertibility for an ARMA(1; 1) process; see, for example,

Figure 3.10 of [12]. This suggested using the reduced AR(1) model instead, which amounts to taking

y�1.m/ D 0 and y'1.m/ D y�Y.m/.1/ (A.107)

in Equations (A.100) and (A.102).

It should be noted that our use of the AR(1) approximation (A.107) to the final batch means

delivered by Skart is consistent with the use of an AR(1) model for the final batch means delivered by

ASAP3 and SBatch. In fact on p. 51 of Steiger et al. [54], we find the following statement:

On the i th iteration of step [3] of ASAP3, the use of the AR(1) time series model (4) to represent

the behavior of the truncated batch means is based on all our previous computational experience

with ASAP and ASAP2. Although the original ASAP algorithm was equipped to fit more general

autoregressive–moving average time series models to the batch means, for every application of

ASAP in which the batch means had first passed the Shapiro-Wilk test for . . . normality, the

simple AR(1) model fitted to the batch means exhibited no significant lack of fit as well as the

best fit of all the time series models tested.

(The emphasis in this statement has been added.) As documented in Steiger and Wilson [52], the

original ASAP procedure sought to identify and estimate the best-fitting ARMA time-series model for

the final sequence of truncated batch means from the following list of candidate models:

AR.1/I AR.2/I MA.1/I MA.2/I and ARMA.1; 1/;
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where standard IMSL routines were used for all parameter estimation and goodness-of-fit testing.

The main consequence of Theorem 3 is that this list of candidate models for the truncated

batch means delivered by Skart can be limited to AR(1), MA(1), and ARMA(1,1) models; and all our

computational experience with Skart and its predecessors ASAP, ASAP2, ASAP3, and SBatch support

our use of the correlation adjustment (1.11)–(1.12) based on an AR(1) model of the truncated batch

means delivered by Skart.
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Appendix B

Distribution of First Regular M=M=1

Queue Waiting Time X1 given N.0/ D c

Initial Nonregular Customers

In this appendix we first show that in an M=M=1 queue with arrival rate � and service rate �, the

conditional moment generating function and c.d.f. of the waiting time X1 for the first regular customer

to arrive after time zero, given c initial nonregular customers in the system at time zero is,

MX1
.t/ D

c�1X

jD0

.1�  / j � 1

.1 � t=�/c�j
C  c

D 1 �  
.1 � t=�/c �

c�1X

jD0

Œ .1 � t=�/�j C  c

D 1 �  
.1 � t=�/c �

1 � Œ .1� t=�/�c
1�  .1 � t=�/ C  

c; (B.1)

and

FX1
.w/ D

cX

jD0

.1 �  / j � FEr.wI c � j;�/C  cC1F0.w/; (B.2)

where  D �=.�C �/, and FEr.�/ is the c.d.f. for an Erlang distribution.

Regular customers enter the M=M=1 queue with an exponential rate �, so the probability that

the first regular customer observes c � j (0 � j � c/ nonregular customers in the system at arrival
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time is

.
�

�C �/.
�

�C �/
j D .1 �  / j : (B.3)

We also know that the total service time S for c � j nonregular customers in the M=M=1 queue, or

in other words the waiting time for the first regular customer knowing that c � j nonregular customers

remained in the system, has an Erlang distribution with mean

EEr.S I c � j;�/ D
c � j
�

; (B.4)

and a moment generating function

MS .t/ D
1

.1 � t=�/c�j
for t < �: (B.5)

Thus, in view of (B.3) and (B.5), we can easily derive the conditional moment generating

function (B.1) and c.d.f (B.2) of the waiting time X1.

In view of (B.2) and (B.4), the following equation for the mean of the waiting time X1 can

also be easily derived:

EŒX1� D
cX

jD0

 j .1�  / � c � j
�

: (B.6)

We can simplify Equation (B.6) as following:

EŒX1� D
1 �  
�

cX

jD0

.c � j / j

D 1 �  
�

8
<
:c �

1 �  cC1

1 �  �  �
cX

jD1

j j�1

9
=
;

D 1 �  
�

8
<
:c �

1 �  cC1

1 �  �  � d

d 

cX

jD0

 j

9
=
;

D 1 �  
�

�
c � 1 �  

cC1

1 �  �  � d

d 

�
1�  cC1

1 �  

��

D 1 �  
�

�
c � 1 �  

cC1

1 �  �  
��.c C 1/ c

1 �  C 1�  cC1

.1�  /2
��

D 1

�

�
c � c cC1 C .c C 1/ cC1 �  �  

cC2

1 �  

�

(B.7)
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D 1

�

�
c C  cC1 �  �  

cC2

1�  

�

D 1

�.1�  /
˚
c.1�  / �  C  cC1

�

D c

 
�  
�
�
�
1 �  c
1�  

�
: (B.8)

Hence, using Equation (B.8), the conditional mean of the the waiting time in an M=M=1

queue with arrival rate � D 0:9 and service rate � D 1:0 for the first regular customer to arrive after

time zero, given c D 113 initial customers in the system at time zero is EŒX1� D 111:889.

The Maple code for evaluating the expression .d2=dt2/MX1
.0/ in Equation (4.3) and then

computing the conditional variance of the waiting time in an M=M=1 queue with arrival rate � D 0:9

and service rate � D 1:0 for the first regular customer to arrive after time zero, given c D 113 initial

customers in the system at time zero is given in the following:

lambda:=0.9;

mu:=1.0;

psi:=mu/(lambda+mu);

c:=113;

s:=t/mu;

R:=psi*(1-s);

m:=((1-psi)/((1-s)^c))*((1-R^c)/(1-R)) + psi^c;

dm := diff(normal(m),t);

d2m := normal(diff(normal(m),t,t));

Dm := unapply(dm,t);

D2m := unapply(d2m,t);

EX := Dm(0);

VarX := D2m(0)-(EX^2);

sqrt(VarX);
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Appendix C

Skart and N-Skart User’s Manual

C.1 Downloading Skart and N-Skart

Both Skart and N-Skart procedures were built in the Visual Studio.Net 2003 programming

platform [22] and coded in the Visual Basic.Net programming language. The file SkartFiles.zip contains

two folders for the Skart and N-Skart procedures and can be downloaded from the following hyperlink:

<http://www.ise.ncsu.edu/jwilson/files/SkartFiles.zip>.

All the subroutines and functions of the Skart (respectively, N-Skart) procedure are saved under the

“Skart” (respectively, “N-Skart”) module in the Skart (respectively, N-Skart) project. The visual Ba-

sic.Net code for each of these subroutines and functions is given at the end of this appendix. In order to

run either of Skart or N-Skart procedure, the Visual Studio.Net 2003 or a newer version of this software

is required to be installed on the user’s computer.

C.2 Running Skart in Visual Basic

When you invoke the Skart procedure, the code written in the Main subroutine of the Skart

project, which is a call to the SkarProcedure subroutine, is initially executed. Thus, to select the desired

simulation model and the CI specifications, the user has to set the arguments of the SkarProcedure sub-

routine before invoking the Skart procedure. The list of the arguments required by the SkarProcedure

subroutine and a description of their acceptable values is given in Table C.1.
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Table C.1: Input arguments required for the SkarProcedure subroutine

Argument Description

model The argument model sets the name of the simulation model to be used

to generate the data.

precReq The argument precReq is set to “True” if a relative or absolute precision

requirement is desired for the final CI, otherwise precReq is set to “False”.

precisionType The argument precisionType specifies the type of precision requirement

and can either take the value “absolute” or “relative”. If precReq is set

to “False”, then the value of the argument precisionType is irrelevant.

alpha The argument alpha defines the desired confidence level for the final CI,

100.1�alpha/%, where 0 <alpha< 1.

hrstar The argument hrstar is used to set the desired value of the final CI half-

length. hrstar would take the value h� for the absolute precision requirement

and r� for the relative precision requirement as described in (3.16).

The output of the Skart procedure is saved in a Notepad file. The Notepad file is designed to

demonstrate the following details to the user of the Skart procedure:

� The simulation model name, precision requirement, precision type, confidence level, and preci-

sion requirement.

� The initial sample size and the sequence of sample sizes required in the randomness test and

precision requirement step.

� The final length of the warm-up period and the final sample size.

� The process sample mean and variance.

� The upper and lower confidence limits.

Figure C.1 shows a screen-shot of the output file of the Skart procedure when it is applied

to an M=M=1 queue-waiting-time process with an empty-and-idle initial condition, an interarrival rate

of � D 0:9 customers per-time-unit, and a service rate of � D 1:0 customers per-time-unit, asking

for a 90% CI with a relative precision requirement of ˙15%. In this system the steady-state expected
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waiting time is �X D 9:0 time units. Figure C.1 provides all above-mentioned details to the user for

the considered M=M=1 queue-waiting-time process.

Figure C.1: Screen-shot of the Notepad output window showing the result of applying Skart procedure

to an M=M=1 queue-waiting-time process

C.3 Running N-Skart in Visual Basic

When you invoke the N-Skart procedure, the code written in the Main subroutine of the N-

Skart project, which is a call to the NSkarProcedure subroutine, is initially executed. Thus, to select the

simulation model, confidence level, and total available sample size, the user has to set the arguments

of the NSkarProcedure subroutine before invoking the N-Skart procedure. The list of the arguments

required by the NSkarProcedure subroutine and a description of their acceptable values is given in

Table C.2.
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Table C.2: Input arguments required for the NSkarProcedure subroutine

Argument Description

model The argument model sets the name of the simulation model to be used

to generate the data.

alpha The argument alpha defines the desired confidence level for the final CI,

100.1�alpha/%, where 0 <alpha< 1.

sampleSize The argument sampleSize specifies the total available sample size.

The output of the N-Skart procedure is saved in a Notepad file. The Notepad file is designed

to demonstrate the following details to the user of the N-Skart procedure:

� The simulation model name, confidence level, and total available sample size.

� The initial sample size and the sequence of sample sizes required in the randomness test.

� If the randomness test could not be passed due to insufficient data, a warning message is issued

which provides the user with the total sample size required to continue the randomness test.

� If the user chooses to quit the procedure, the following message is generated: “The randomness

test could not be passed. The procedure ended without delivering a CI”.

� If the user chooses to continue with constructing a CI, a message is generated warning the user

that the delivered CI might not provide the target confidence level.

� The final length of the warm-up period and the final sample size.

� The process sample mean and variance.

� The upper and lower confidence limits.

� The relative precision level of the delivered CI.

� The following message is generated if the user neglected the warning for insufficient data: “A CI

with abnormally high relative precision should alert you regarding potential problems with the

delivered CI and a possible need for bigger sample size“.
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Figures C.2)–(C.3 show screen-shots of the output file of the N-Skart procedure asking for a

90% CI on 50,000 simulation-generated observations of an M=M=1 queue-waiting-time process with

an empty-and-idle initial condition, an interarrival rate of � D 0:9 customers per-time-unit, and a

service rate of � D 1:0 customers per-time-unit. In this system the steady-state expected waiting time

is �X D 9:0 time units. Figure C.4 shows the result of applying the N-Skart procedure to the same

process explained above only when the available sample size is 200,000.

Figure C.2 demonstrates the result window when the user decides to quit the N-Skart pro-

cedure due to insufficient data. In order to continue with the randomness test the user would have to

supply 53,611 observations. Figure C.3 shows the result window when the user chooses to continue

with delivering a CI knowing that the randomness test could not be passed. In this case, the delivered

CI might not provide the target confidence level. Finally, Figure C.4 demonstrates the result window

when there is enough observation available to deliver a CI.
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Figure C.2: Screen-shot of the Notepad output window showing the result of applying N-Skart pro-

cedure to an M=M=1 queue-waiting-time process when the user decides to quit the procedure due to

insufficient data
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Figure C.3: Screen-shot of the Notepad output window showing the result of applying N-Skart proce-

dure to an M=M=1 queue-waiting-time process when the user chooses to continue with delivering a CI

knowing that the randomness test could not be passed



128

Figure C.4: Screen-shot of the Notepad output window showing the result of applying N-Skart proce-

dure to an M=M=1 queue-waiting-time process when there is enough observation available to deliver a

CI
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C.4 Visual Basic Codes for Skart and N-Skart Functions and Subrou-

tines
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Public Sub ByVal AsSkartProcedure( model String ByVal As, precReq Boolean ByVal As _, precisionType
precType, alphaByVal As Double ByVal As, hrstar Double)

i, jDim As Integer
kDim As Integer = 1280 'initial batch count
kPrimeDim As Integer 'current batch count
mDim As Integer 'batch size
alphaRanDim As Double = 0.2 'randomness test size
dStarDim As Integer 'maximum number of batches allowed in a spacer
dDim As Integer 'current number of batches in a spacer
wDim As Integer 'spacer size
bDim As Integer 'number of times the batch count has been deflated
nonspacedbatch(k - 1), spacedBatch(k - 1)Dim As Double
sampleMean, sampleVar, standardErrorDim As Double
Skewness, halfLength, halfLengthStarDim As Double
ADim As Double 'correlation adjustment
G1, G2Dim As Double

xlsResultApp = (CreateObject("Excel.Application"), Excel.Application)CType
reportFile = StreamWriter("SkartCI.txt")New

reportFile.WriteLine("model = " & model )
reportFile.WriteLine("precision requirement = " & precReq)

precisionType = precType.absoluteIf Then
reportFile.WriteLine("precision Type = absolute")

Else
reportFile.WriteLine("precision Type = relative")

End If
reportFile.WriteLine("coverage probability = " & (1 - alpha) * 100 & "%")
reportFile.WriteLine("hrstar = " & hrstar * 100 & "%")
reportFile.WriteLine()

'generates initial sample of size 1,280
initialData()Dim As Double = {0}

data = runSimulation(model, initialData, 1, k)

'computes the sample skewness of the last 1024 observations in the sample: 1,024=1,280-256
Skewness = SkewnessFun(data, 256)

'sets the initial value of the batch size based on the computed sample skewness
Skewness <= 4If Then
m = 1
reportFile.WriteLine("initial sample size = " & m * k)

Else
m = 16
'collects data: 20,480=1,280*16
data = runSimulation(model, data, m, k)
reportFile.WriteLine("initial sample size = " & m * k)

End If
reportFile.WriteLine()

'computes the batch means
j = 0 k - 1For To

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next

reportFile.WriteLine("randomness test:")
'Applies the von Neumann test for randomness

randomnessStatusDim As Boolean
randomnessStatus =While False

'sets the maximum number of batches allowed in a spacer
Skewness = SkewnessFun(nonspacedbatch, k * 0.2)
dStar = 10

Math.Abs(Skewness) > 0.5If Then
dStar = 3

End If

randomnessStatus = vonNuemannTest(nonspacedbatch, alphaRan)
randomnessStatus =If False Then

(randomnessStatus = )While False
d += 1
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kPrime = 0
spacedBatch(Math.Floor(k / (d + 1)) - 1)ReDim

j = d k - 1 d + 1For To Step
spacedBatch(kPrime) = nonspacedbatch(j)
kPrime += 1

Next
randomnessStatus = vonNuemannTest(spacedBatch, alphaRan)

(d = dStar)If Then Exit While
End While

(randomnessStatus =If False And Thend = dStar)
m = Math.Ceiling(Math.Sqrt(2) * m)
k = Math.Ceiling(0.9 * k)
data = runSimulation(model, data, m, k)
reportFile.WriteLine("new sample size = " & m * k)
d = 0
b += 1

j = 0 k - 1For To
nonspacedbatch(j) = 0

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next

End If
Else

kPrime = k
End If

End While

'skips the warm-up period
w = d * m
data = runSimulation(model, data, m, kPrime, w)

kPrime = Math.Ceiling(kPrime * (1 / 0.9) ^ b)
m = Math.Max(m, Math.Floor(data.Length / kPrime))

nonspacedbatch(kPrime - 1)ReDim
m * kPrime > data.LengthIf Then
data = runSimulation(model, data, m, kPrime)
reportFile.WriteLine("new sample size = " & m * kPrime)

End If

'computes the current set of truncated, nonspaced batch means
j = 0 kPrime - 1For To

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next

'computes the sample mean and variance
j = 0 kPrime - 1For To
sampleMean += nonspacedbatch(j) / kPrime

Next
j = 0 kPrime - 1For To
sampleVar += (nonspacedbatch(j) - sampleMean) ^ 2 / (kPrime - 1)

Next

'computes the correlation adjustment and the CI's standard error
sigma, phiHatDim As Double
j = 0 kPrime - 2For To
sigma += (nonspacedbatch(j) - sampleMean) * (nonspacedbatch(j + 1) - sampleMean)

Next
phiHat = sigma / (sampleVar * (kPrime - 1))
A = (1 + phiHat) / (1 - phiHat)
standardError = Math.Sqrt(A * sampleVar / kPrime)

precReq =If True And ThenprecisionType = precType.relative
halfLengthStar = hrstar * sampleMean

Else
halfLengthStar = hrstar

End If
halfLength = SkewnessAdj(nonspacedbatch, kPrime, m, alpha, _

sampleMean, sampleVar, standardError, w, G1, G2)
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kPrimeNew, maxValDim As Double
reportFile.WriteLine()

precReq =If True Then reportFile.WriteLine("precision requirement:")
(halfLength > halfLengthStar precReq = )While And True

kPrimeNew = Math.Ceiling(((halfLength / halfLengthStar) ^ 2) * kPrime)
kPrime = 1024If Then
maxVal = Math.Max(1.02, ((halfLength / halfLengthStar) ^ 2))
m = Math.Ceiling(Math.Min(maxVal, 2) * m)

End If
kPrime = Math.Min(kPrimeNew, 1024)

nonspacedbatch(kPrime - 1)ReDim
data = runSimulation(model, data, m, kPrime)
reportFile.WriteLine("new sample size = " & m * kPrime)

j = 0 kPrime - 1For To
nonspacedbatch(j) = 0

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next
sampleVar = 0
sampleMean = 0
'computes the sample mean and variance

j = 0 kPrime - 1For To
sampleMean += nonspacedbatch(j) / kPrime

Next
j = 0 kPrime - 1For To
sampleVar += (nonspacedbatch(j) - sampleMean) ^ 2 / (kPrime - 1)

Next

'computes the correlation adjustment and the CI's standard error
sigma = 0

j = 0 kPrime - 2For To
sigma += (nonspacedbatch(j) - sampleMean) * (nonspacedbatch(j + 1) - sampleMean)

Next
phiHat = sigma / (sampleVar * (kPrime - 1))
A = (1 + phiHat) / (1 - phiHat)
standardError = Math.Sqrt(A * sampleVar / kPrime)

precReq =If True And ThenprecisionType = precType.relative
halfLengthStar = hrstar * sampleMean

Else
halfLengthStar = hrstar

End If
halfLength = SkewnessAdj(nonspacedbatch, kPrime, m, alpha, _

sampleMean, sampleVar, standardError, w, G1, G2)
End While

CIlb, CIubDim As Double
precReq =If True Then
CIlb = sampleMean - halfLength
CIub = sampleMean + halfLength

Else 'no precision requirement
CIlb = sampleMean - G1 * standardError
CIub = sampleMean - G2 * standardError

End If

reportFile.WriteLine()
reportFile.WriteLine("warm-up period = " & w)
reportFile.WriteLine("final sample size = " & kPrime * m)
reportFile.WriteLine()
reportFile.WriteLine("sample mean = " & Format(sampleMean, "0.00"))
reportFile.WriteLine("sample variance = " & Format(sampleVar, "0.00"))
reportFile.WriteLine()
reportFile.WriteLine("cil = " & Format(CIlb, "0.00"))
reportFile.WriteLine("ciu = " & Format(CIub, "0.00"))
reportFile.Close()

End Sub
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Public Sub ByVal AsNSkartProcedure( model String ByVal As, alpha Double ByVal As, sampleSize _
)Integer

i, jDim As Integer
kDim As Integer = 1280 'initial batch count
kPrimeDim As Integer 'current batch count
mDim As Integer 'batch size
alphaRanDim As Double = 0.2 'randomness test size
dStarDim As Integer 'maximum number of batches allowed in a spacer
dDim As Integer 'current number of batches in a spacer
wDim As Integer 'spacer size
bDim As Integer 'number of times the batch count has been deflated
nonspacedbatch(k - 1), spacedBatch(k - 1)Dim As Double

Dim AssampleMean, sampleVar, standardError Double
Skewness, halfLengthDim As Double
ADim As Double 'correlation adjustment
G1, G2Dim As Double
CIriskDim As Boolean

xlsResultApp = (CreateObject("Excel.Application"), Excel.Application)CType
reportFile = StreamWriter("N-SkartCI.txt")New

reportFile.WriteLine("model = " & model)
reportFile.WriteLine("coverage probability = " & (1 - alpha) * 100 & "%")
reportFile.WriteLine("given sample size = " & sampleSize)
reportFile.WriteLine()

'generates sample of given fix size
initialData()Dim As Double = {0}

data = runSimulation(model, initialData, 1, sampleSize)

'computes the sample skewness of the last 80% of the given sample
Skewness = SkewnessFun(data, sampleSize * 0.2)

'sets the initial value of the batch size based on the computed sample skewness
Skewness <= 4If Then
m = 1
reportFile.WriteLine("initial sample size = " & m * k)

Else
m = Math.Floor(Math.Min(16, sampleSize / 1280))
reportFile.WriteLine("initial sample size = " & m * k)

End If
reportFile.WriteLine()

'computes the batch means
j = 0 k - 1For To

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next

reportFile.WriteLine("randomness test:")
'Applies the von Neumann test for randomness

randomnessStatusDim As Boolean
randomnessStatus =While False

'sets the maximum number of batches allowed in a spacer
Skewness = SkewnessFun(nonspacedbatch, k * 0.2)
dStar = 10

Math.Abs(Skewness) > 0.5If Then
dStar = 3

End If

randomnessStatus = vonNuemannTest(nonspacedbatch, alphaRan)
randomnessStatus =If False Then

(randomnessStatus = )While False
d += 1
kPrime = 0

spacedBatch(Math.Floor(k / (d + 1)) - 1)ReDim
j = d k - 1 d + 1For To Step
spacedBatch(kPrime) = nonspacedbatch(j)
kPrime += 1

Next
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randomnessStatus = vonNuemannTest(spacedBatch, alphaRan)
(d = dStar)If Then Exit While

End While
(randomnessStatus =If False And Thend = dStar)
'check if the updates would cause the required sample size to get higher than _
'available(data)

Math.Ceiling(Math.Sqrt(2) * m * 0.9 * k) > sampleSizeIf Then
'issue a warning that the randomness test could not be passed

MessageBox.Show("The randomness test could not be passed due to _If
insufficient data. Do you want continue?", _to
"N-Skart Procedure", MessageBoxButtons.YesNo, MessageBoxIcon.Question) _
= DialogResult.Yes Then

randomnessStatus = True
reportFile.WriteLine("the randomness test could not be passed due to _
insufficient data ( continue required: " & _to
Math.Ceiling(Math.Sqrt(2) * m * 0.9 * k) & ")")
reportFile.WriteLine("the user choosed to continue with constructing _
a CI.")
reportFile.WriteLine("the delivered CI might not provide the target _
confidence level!!!")
reportFile.WriteLine()
CIrisk = True

Else
reportFile.WriteLine("the randomness test could not be passed. The _
procedure ended without delivering a CI.")
reportFile.WriteLine("the required sample size to continue the _
randomness test: " & Math.Ceiling(Math.Sqrt(2) * m * 0.9 * k))
reportFile.Close()
Exit Sub

End If

Else
m = Math.Ceiling(Math.Sqrt(2) * m)
k = Math.Ceiling(0.9 * k)
reportFile.WriteLine("new sample size = " & m * k)
d = 0
b += 1

j = 0 k - 1For To
nonspacedbatch(j) = 0

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next

End If
End If

Else
kPrime = k

End If
End While

'initial warm-up period
w = d * m

'reinflate the batch count
kPrime = Math.Min(Math.Ceiling(kPrime * (1 / 0.9) ^ b), k)

'increate the batch count and batch size to use all the given data
fDim As Double

f = Math.Sqrt((sampleSize - w) / (kPrime * m))
kPrime = Math.Min(Math.Floor(f * kPrime), 1024)

kPrime < 1024If Then
m = Math.Floor(f * m)

Else
m = Math.Floor((sampleSize - w) / 1024)

End If

'recompute the warm-up period
w = sampleSize - m * kPrime

nonspacedbatch(kPrime - 1)ReDim
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'Throw away the warm-up period
data = runSimulation(model, data, m, kPrime, w)

'computes the current set of truncated, nonspaced batch means
j = 0 kPrime - 1For To

i = 0 m - 1For To
nonspacedbatch(j) += data(j * m + i) / m

Next
Next

'computes the sample mean and variance
j = 0 kPrime - 1For To
sampleMean += nonspacedbatch(j) / kPrime

Next
j = 0 kPrime - 1For To
sampleVar += (nonspacedbatch(j) - sampleMean) ^ 2 / (kPrime - 1)

Next

'computes the correlation adjustment and the CI's standard error
sigma, phiHatDim As Double
j = 0 kPrime - 2For To
sigma += (nonspacedbatch(j) - sampleMean) * (nonspacedbatch(j + 1) - sampleMean)

Next
phiHat = sigma / (sampleVar * (kPrime - 1))
A = (1 + phiHat) / (1 - phiHat)
standardError = Math.Sqrt(A * sampleVar / kPrime)
halfLength = SkewnessAdj(nonspacedbatch, kPrime, m, alpha, _

sampleMean, sampleVar, standardError, w, G1, G2)

CIlb, CIubDim As Double
'no precision requirement
CIlb = sampleMean - G1 * standardError
CIub = sampleMean - G2 * standardError

reportFile.WriteLine("warm-up period = " & w)
reportFile.WriteLine("final sample size = " & kPrime * m)
reportFile.WriteLine()
reportFile.WriteLine("sample mean = " & Format(sampleMean, "0.00"))
reportFile.WriteLine("sample variance = " & Format(sampleVar, "0.00"))
reportFile.WriteLine()
reportFile.WriteLine("cil = " & Format(CIlb, "0.00"))
reportFile.WriteLine("ciu = " & Format(CIub, "0.00"))
reportFile.WriteLine()
reportFile.WriteLine("CI relative precision = " & Format(Math.Max(sampleMean - CIlb, _
CIub - sampleMean) * 100 / sampleMean, "0.00") & "%")

CIrisk =If True Then
reportFile.WriteLine()
reportFile.WriteLine("----------------------------------------------------------_
-------------------------------")
reportFile.WriteLine("A CI with abnormally high relative precision should alert _
you regarding potential problems")
reportFile.WriteLine("with the delivered CI and a possible need for bigger _
sample size!!!!!!")

End If
reportFile.Close()

End Sub
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'main subroutine for N-Skart procdure
Main()Sub
NSkartProcedure("MM1", 0.1, 50000)

End Sub

'main subroutine for Skart procdure
Main()Sub
SkartProcedure("MM1", , precType.relative, 0.1, 0.15)True

End Sub

Public Function ByVal AsSkewnessFun( myData() Double Optional, ByVal AscutOff Integer As= 0) _
Double

jDim As Integer
skewness, mean, mom2, mom3, mom4Dim As Double
dataLengthDim As Integer = myData.Length()

j = cutOff dataLength - 1For To
mean += myData(j) / (dataLength - cutOff)

Next
j = cutOff dataLength - 1For To
mom2 += (myData(j) - mean) ^ 2
mom3 += (myData(j) - mean) ^ 3

Next
SkewnessFun = ((dataLength - cutOff) ^ 2.5 * mom3) / (mom2 ^ 1.5 * ((dataLength - cutOff) - 1)_

* ((dataLength - cutOff) - 2))
End Function

Public Function ByVal AsvonNuemannTest( myData() Double ByVal As, alpha Double As) Boolean

jDim As Integer
dataSizeDim As Integer = myData.Length

'Compute the von Neumann test statistic
sampleMean, sampleVarDim As Double
j = 0 dataSize - 1For To
sampleMean += myData(j) / dataSize

Next
j = 0 dataSize - 1For To
sampleVar += (myData(j) - sampleMean) ^ 2

Next
'Compute the mean square successive difference

succDiffDim As Double
j = 0 dataSize - 2For To
succDiff += (myData(j) - myData(j + 1)) ^ 2

Next
ranTestStatDim As Double = 1 - (succDiff / (2 * sampleVar))

'take alpha=0.2 for the 2-sided test
PDim As Double
testDim As Double

P = xlsResultApp.Application.WorksheetFunction.NormSInv(1 - alpha / 2)
Math.Abs(ranTestStat) > P * Math.Sqrt((dataSize - 2) / (dataSize ^ 2 - 1))If Then
vonNuemannTest = False

Else
vonNuemannTest = True

End If
End Function
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Public Function ByVal AsSkewnessAdj( nonspacedbatch() Double ByVal As, kPrime Double, _
mByVal As Double ByVal As, alpha Double, _
sampleMeanByVal As Double, _
sampleVarByVal As Double ByVal As, standardError Double, _
wByVal As Integer ByRef As, G1 Double ByRef As, G2 Double As) Double

jDim As Integer
spacedBatch(kPrime - 1)Dim As Double

'computes spaced batch means to calculate the skewness adjustment
dPrimeDim As Integer = Math.Ceiling(w / m) 'number of batches in a spacer
kDoublePrimeDim As Integer

ReDim spacedBatch(Math.Floor(kPrime / (dPrime + 1)) - 1)
j = dPrime kPrime - 1 dPrime + 1For To Step
spacedBatch(kDoublePrime) = nonspacedbatch(j)
kDoublePrime += 1

Next

spacedSampleMean, spacedSampleVar, spacedMom3Dim As Double
j = 0 kDoublePrime - 1For To
spacedSampleMean += spacedBatch(j) / kDoublePrime

Next
j = 0 kDoublePrime - 1For To
spacedSampleVar += (spacedBatch(j) - spacedSampleMean) ^ 2 / (kDoublePrime - 1)
spacedMom3 += (kDoublePrime * (spacedBatch(j) - spacedSampleMean) ^ 3) / _

((kDoublePrime - 1) * (kDoublePrime - 2))
Next

betaDim As Double = (spacedMom3 / spacedSampleVar ^ 1.5) / (6 * Math.Sqrt(kDoublePrime))
t1Dim As Double = xlsResultApp.Application.WorksheetFunction.TInv(alpha, _

kDoublePrime - 1)
t2Dim As Double = -t1

(1 + 6 * beta * (t1 - beta)) < 0If Then
G1 = ((2 * beta) ^ (-1)) * (-(Math.Abs(1 + 6 * beta * (t1 - beta)) ^ (1 / 3)) - 1)

Else
G1 = ((2 * beta) ^ (-1)) * (((1 + 6 * beta * (t1 - beta)) ^ (1 / 3)) - 1)

End If
(1 + 6 * beta * (t2 - beta)) < 0If Then
G2 = ((2 * beta) ^ (-1)) * (-(Math.Abs(1 + 6 * beta * (t2 - beta)) ^ (1 / 3)) - 1)

Else
G2 = ((2 * beta) ^ (-1)) * (((1 + 6 * beta * (t2 - beta)) ^ (1 / 3)) - 1)

End If
SkewnessAdj = Math.Max(standardError * Math.Abs(G1), standardError * Math.Abs(G2))

End Function

Public Function ByVal AsrunSimulation( model String ByVal As, givenData() Double, _
batchsizeByVal As Integer ByVal As, batchcount Integer, _

Optional ByVal AsspacerLength Integer As= 0) Double()
model = "MM1"If Then
runSimulation = GenerateMM1(givenData, batchsize, batchcount, spacerLength)
'ElseIf model = "MH2" Then
' runSimulation = GenerateMH2(givenData, batchsize, batchcount, spacerLength)
'ElseIf model = "AR" Then
' runSimulation = GenerateAR1(givenData, batchsize, batchcount, spacerLength)
'ElseIf model = "ARTOP" Then
' runSimulation = GenerateARTOP(givenData, batchsize, batchcount, spacerLength)

End If
End Function


