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SKEIN MODULES AND THE NONCOMMUTATIVE TORUS

CHARLES FROHMAN AND RĂZVAN GELCA

Abstract. We prove that the Kauffman bracket skein algebra of the cylinder
over a torus is a canonical subalgebra of the noncommutative torus. The
proof is based on Chebyshev polynomials. As an application, we describe the
structure of the Kauffman bracket skein module of a solid torus as a module
over the algebra of the cylinder over a torus, and recover a result of Hoste
and Przytycki about the skein module of a lens space. We establish simple
formulas for Jones-Wenzl idempotents in the skein algebra of a cylinder over
a torus, and give a straightforward computation of the n-th colored Kauffman
bracket of a torus knot, evaluated in the plane or in an annulus.

1. Introduction

This paper introduces a new direction in the study of skein modules. The Kauff-
man bracket [9] is a knot invariant associated to quantum field theory. The noncom-
mutative torus is an algebra of functions that appears in noncommutative geometry
[6]. In this paper we explicate the relationship between the two.

When the variable of the Kauffman bracket is −1, the Kauffman bracket skein
algebra of the 2-dimensional torus is isomorphic to the algebra of SL2C-characters
of the fundamental group of the torus. You can think of this as a subalgebra of the
algebra of continuous functions on the torus. For an arbitrary value of the variable,
the Kauffman bracket skein algebra of the torus can be viewed as a deformation of
this particular subalgebra. Similarly, the noncommutative torus is a deformation of
the algebra of functions on the torus. The main result of the paper states that the
Kauffman bracket skein algebra of the torus is isomorphic to a subalgebra of the
noncommutative torus. That is, the two algebras arise from the same deformation.

The functions we are working with are in fact trigonometric functions, and hence
iterative techniques for dealing with Chebyshev polynomials are a central technique
for establishing the results here. Their presence in this context is natural if one
thinks of the relation between trigonometric functions and quantum physics.

Although a presentation of the Kauffman bracket skein algebra of the torus ap-
peared before (see [5]), the multiplicative structure of this algebra remained mys-
terious. Chebyshev polynomials with variables simple closed curves on the torus
enable us to give a complete description of the multiplication operation, by the
product-to-sum formula given below.

Some applications of the approach follow. First, we analyze the structure of the
Kauffman bracket skein module of the solid torus as a module over the Kauffman
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bracket skein algebra of the torus. Then, we give a short algebraic proof of the
result of Hoste and Przytycki describing the Kauffman bracket skein module of a
lens space. Finally, we show how to write, in terms of generators, the element of
the Kauffman bracket skein algebra of the torus obtained by placing a Jones-Wenzl
idempotent on a simple closed curve.

2. Skein Modules

Throughout this paper t will denote a fixed complex number. A framed link
in an orientable manifold M is a disjoint union of annuli. In the case where the
manifold can be written as the product of a surface and an interval, framed links
will be identified with curves, using the convention that the annulus is parallel to
the surface (i.e., we consider the blackboard framing). Let L denote the set of
equivalence classes of framed links in M modulo isotopy, including the empty link.

Consider the vector space CL with basis L. Define S(M) to be the smallest
subspace of CL containing all expressions of the form

and © + t2 + t−2, where the framed links in each expression are identical outside
the balls pictured in the diagrams. The Kauffman bracket skein module Kt(M) is
the quotient

CL/S(M).

Skein modules were introduced by Przytycki [12] as a way to extend the new
knot polynomials of the 1980’s to knots and links in arbitrary 3-manifolds. They
have since become central in the theory of invariants of 3-manifolds. The idea
that they could be used to quantize algebras of functions on surfaces is due to
Turaev [19]. They were then used as a tool for constructing quantum invariants by
Lickorish [11], Kauffman and Lins [10], Blanchet, Habegger, Masbaum, and Vogel
[1], Roberts [16] and Gelca [7]. Finally, the connection between skein modules and
characters of the fundamental group of the underlying manifold was explained by
Bullock [2], Przytycki and Sikora [14] and Sikora [18]. The connection between
skein algebras and the algebras of observables arising in lattice gauge field theory
has been studied by Bullock, Frohman and Kania-Bartoszyńska [3]. There are also
higher skein modules that were introduced in [4].

The Kauffman bracket skein module of the cylinder over a torus has a multiplica-
tive structure, induced by the topological operation of gluing one cylinder on top
of the other. The product α ∗β is the result of laying α over β. This multiplication
makes Kt(T 2× I) into an algebra, which we will call the skein algebra of the torus.

The skein module of a manifold that has a torus boundary has a left Kt(T 2× I)-
module structure induced by gluing the zero end of the cylinder over a torus to that
boundary component. In particular, this is true for Kt(S1 × D2), the Kauffman
bracket skein module of the solid torus. Note that S1 × D2 is homeomorphic with
the cylinder over an annulus; hence Kt(S1 × D2) is itself an algebra. However, the
algebra structure of the skein module of the solid torus is not related to the algebra
structure of the skein module of the cylinder over the torus. In fact Kt(S1 × D2)
is isomorphic to C[X ] under the isomorphism that takes the simple closed curve α,
which runs once around the torus, into the variable X . Consequently, a basis of
Kt(S1 × D2) as a C-vector space is given by the elements αn.
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3. The Noncommutative Torus

The noncommutative torus is a “virtual” geometric space whose algebra of func-
tions is a certain deformation of the algebra of continuous functions on the classical
torus. One usually identifies the noncommutative torus with its associated algebra
of functions.

The most natural way in which the noncommutative torus arises is by exponen-
tiating the Heisenberg non-commutation relation pq − qp = hI. One then obtains
an algebra generated by two unitary operators u and v which satisfy uv = λvu,
where λ ∈ C is some constant. The noncommutative torus is the closure of this
algebra in a certain C∗-norm.

As Rieffel [15] pointed out, the noncommutative torus can be obtained as a
strict deformation quantization of the algebra of continuous functions on the torus
in the following way. Let t be the deformation parameter (denoted this way to
be consistent with the rest of the paper). For the space of Laurent polynomials
of two variables C[l, l−1,m,m−1] (here l = exp(2πix) and m = exp(2πiy) are the
“longitude” and the “meridian” of the torus), one considers the basis over C given
by the vectors ep,q = t−pqlpmq. Define the multiplication ∗, which depends on the
parameter t, by

ep,q ∗ er,s = t|
p,q
r,s |ep+r,q+s.

The space of Laurent polynomials becomes a noncommutative algebra which we
denote by Ct[l, l−1,m,m−1]. This is the algebra of Laurent polynomials on the
noncommutative torus. In order to construct the algebra Aθ of continuous func-
tions on the noncommutative torus (where t = e2πiθ), one considers the left regular
representation of the algebra Ct[l, l−1,m,m−1] on L2(T2) induced by this product,
and takes the closure in the operator norm defined by this representation. Let us
mention that the above construction corresponds to the deformation of the usual
product of functions in the direction of the Poisson bracket associated to the sym-
plectic form θdx ∧ dy. In the physical setting mentioned at the beginning, the
unitary operators are u = e1,0 and v = e0,1.

There is a large body of literature devoted to the algebra Aθ. In the case where θ
is irrational, this algebra is called the irrational rotation algebra, and has appeared
in the works of operator theorists. It has been shown that Aθ is the C∗-algebra
naturally associated to the Kronecker foliation of the torus dy = θdx [6]. Also
Weinstein explained how Aθ can be obtained through a geometric quantization
procedure applied to the groupoid of this foliation [20].

In the present paper we are interested only in the algebra of Laurent polynomials
on the noncommutative torus. Consider the algebra morphism

Θ : Ct[l, l−1,m,m−1]→ Ct[l, l−1,m,m−1], Θ(ep,q) = e−p,−q,

and let Ct[l, l−1,m,m−1]Θ be its invariant part. Note that Ct[l, l−1,m,m−1]Θ is
spanned by the noncommutative cosines ep,q+e−p,−q, p, q ∈ Z. In the next section,
we will show that this algebra has a significant role in the study of invariants
of knots. As Θ has order two, its only eigenvalues are 1 and −1. The algebra
Ct[l, l−1,m,m−1] then splits into the direct sum of its symmetric part and its
antisymmetric part with respect to Θ. The subalgebra Ct[l, l−1,m,m−1]Θ is the
symmetric part.
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4. The Isomorphism

In this section we will prove that the Kauffman bracket skein algebra of the
torus can be embedded in the noncommutative torus. More precisely, we will prove
that Kt(T2 × [0, 1]) is isomorphic to the algebra Ct[l, l−1,m,m−1]Θ defined in the
previous section. The proof is based on a multiplication formula, which is the
object of Theorem 4.1, and which is important in its own respect. This formula
describes explicitly the multiplication in the Kauffman bracket skein algebra of the
torus. Let us point out that a presentation of this algebra was given in [5]. The
elements that enable us to clear the picture and obtain a neat, compact formula for
the multiplication are Chebyshev polynomials.

For two integersm,n we denote by gcd(m,n) their greatest common divisor, with
the convention gcd(0, 0) = 0. We denote by Tn the n-th Chebyshev polynomial,
defined recursively by T0 = 2, T1 = x and Tn+1 = Tn · T1 − Tn−1.

For p, q relatively prime and n ≥ 0, we denote by (p, q) the (p, q)-curve on the
torus. For (p, q) not necessarily relatively prime, we define

(p, q)T = Tgcd(p,q)

((
p

gcd(p, q)
,

q

gcd(p, q)

))
,

which is the element of Kt(T2×I) obtained by replacing the variable of the Cheby-
shev polynomial by the curve on the torus.

For
∑
αiDi and

∑
βjD

′
j two elements of the Kauffman module of the torus,

written as an algebraic combination of link diagrams, we define their intersection
number to be maxi,jDi ·D′j , where Di ·D′j is the geometric intersection number of
the diagrams Di and D′j .

Remark 1. For m,n > 0 and gcd(p, q) = 1, gcd(r, s) = 1, the geometric intersection
number of Tn(p, q) and Tm(r, s) is the absolute value of mn|pqrs|, where |pqrs| is the
determinant.

Theorem 4.1 (the product-to-sum formula). For any integers p, q, r, s one has

(p, q)T ∗ (r, s)T = t|
pq
rs |(p+ r, q + s)T + t−|

pq
rs |(p− r, q − s)T .

Proof. The proof will be by induction on the intersection number of (p, q)T and
(r, s)T . If the intersection number is 0 or ±1, the relation obviously holds, by one
application of the skein relation. The case p = q = 0 or r = s = 0 is also trivial.

Case 1. gcd(p, q) = gcd(r, s) = 1.

We must show that

(p, q) ∗ (r, s) = t|
pr
qs |(p+ r, q + s)T + t−|

pr
qs |(p− r, q − s)T .

By applying a homeomorphism of the torus, this can be transformed into the
equivalent identity

(p, q) ∗ (0, 1) = tp(p− 1, q)T + t−p(p+ 1, q)T
with 0 ≤ q < p.

If p = 1, 2, or if q = 0, the latter equality is obvious. To prove it for p ≥ 3 we
use the following result.

Lemma 4.2. Given p ≥ 3, 0 < q < p with gcd(p, q) = 1 there exist integers
u, v, w, z satisfying u + w = p, v + z = q, |uvwz| = ±1, 0 < w < p, 0 < u < p − 1,
0 < v, z.
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Proof. The equation

uz + vw = 1

can be rewritten as u(q− v)− v(p−u) = 1 or uq− vp = 1. From the general theory
of linear Diophantine equations it follows that there exists a solution (u, v) with
0 < u < p and 0 < v < q. Let w = p− u and z = q − v. If u = p − 1 exchange u
and w, and also v and z.

Returning to the proof of the theorem, the relations u + w = p, v + z = q and
|uvwz| = ±1, together with the skein relation, imply

(p, q) = t−|
uv
wz|(u, v) ∗ (w, z)− t−2|uvwz|(u− w, v − z).

Since |wz0 1 | = w < p and |u vwz+1| = |uvwz|+u = u±1 < p, we can apply the induction
hypothesis to write

(p, q) ∗ (0, 1) = t−|
uv
wz|(u, v) ∗ (w, z) ∗ (0, 1)− t−2|uvwz|(u− w, v − z) ∗ (0, 1)

= t−|
uv
wz|(u, v) ∗ [tw(w, z + 1)T + t−w(w, z − 1)T ]

−t−2|uvwz|[tu−w(u− w, v − z + 1)T + tw−u(u− w, v − z − 1)T ]

= tw+u(u+ w, v + z + 1)T + t−2|uvwz|+w−u(u − w, v − z − 1)T

+t−2|uvwz|−w+u(u− w, v − z + 1)T + t−w−u(u+ w, v + z − 1)T

−t−2|uvwz|+u−w(u− w, v − z + 1)T + t−2|uvwz|−u+w(u− w, v − z − 1)T

= tp(p, q + 1)T + t−p(p, q − 1)T .

Case 2. One of gcd(p, q) or gcd(r, s) is greater than 1.

Assume that gcd(p, q) ≥ 2, and let n = gcd(p, q), p′ = p/n, q′ = q/n. Then, an
induction on n gives

(p, q)T ∗ (r, s)T = Tn(p′, q′) ∗ (r, s)T
= Tn−1(p′, q′) ∗ (p′, q′) ∗ (r, s)T − Tn−2(p′, q′) ∗ (r, s)T

= Tn−1(p′, q′) ∗ (t|
p′r
q′s |(p′ + r, q′ + s)T + t−|

p′r
q′s |(p′ − r, q′ − s)T )

−t(n−2)|p
′r
q′s |((n− 2)p′ + r, (n− 2)q′ + s)T

+t−(n−2)|p
′r
q′s |((n− 2)p′ − r, (n− 2)q′ − s)T

= t
|p
′r
q′s |+(n−1)|p

′r
q′s |(np′ + r, nq′ + s)T + t

−|p
′r
q′s |−(n−1)|p

′r
q′s |(np′ − r, nq′ − s)T

= t|
pr
qs |(p+ r, q + s)T + t−|

pr
qs |(p− r, q − s)T

and the theorem is proved.

Theorem 4.3. There exists an isomorphism of algebras

φ : Kt(T2 × [0, 1])→ Ct[l, l−1,m,m−1]Θ

determined by

φ((p, q)T ) = e(p,q) + e(−p,−q), p, q ∈ Z.
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Proof. The fact that the map is a morphism follows from Theorem 4.1 and the fact
that

(ep,q + e−p,−q) ∗ (er,s + e−r,−s)

= t|
pr
qs |(ep+r,q+s + e−p−r,−q−s) + t−|

pr
qs |(ep−r,q−s + e−p+r,−q+s).

As C-vector spaces the two algebras have the basis (p, q)T , p ∈ Z+, q ∈ Z,
respectively ep,q + e−p,−q, p ∈ Z+, q ∈ Z, which proves that the map is an isomor-
phism.

Let us point out that in the above results we never used the fact that t was a
fixed complex number, so they are true even is t is some indeterminate. We prefered
to fix t ∈ C, since this is the convention in the case of the noncommutative torus.

The referee pointed to us that the existence of the isomorphism from Theorem
4.3 follows also from the work of Sallenave in [17].

5. The Solid Torus

In this section we explain how to obtain the skein module of the solid torus from
the skein algebra of the torus, and explicate its module structure.

The solid torus is obtained by adding a 2-handle and a 3-handle to T2 × [0, 1];
hence Kt(S1 × D2) is obtained by factoring Kt(T2 × [0, 1]). As mentioned before,
Kt(T2 × [0, 1]) acts on the left on the Kauffman bracket skein module of the solid
torus by the gluing map, so the latter is a Kt(T2 × [0, 1])-module. Hence the skein
module of the solid torus is the quotient of the skein algebra of the torus by a left
ideal. The basis for Kt(S1 × D2) as a C-vector space is given by {αn}n, and these
elements are the images of (1, 0)n, n ≥ 0, through the quotient map. However, for
a better understanding of the module structure, it is better to work with the basis
{αn}n, αn = Tn(α). We denote by · the left action of Kt(T2 × [0, 1]) on the skein
module of the solid torus.

Let I be the left ideal that is the kernel of the epimorphism

π : Kt(T2 × [0, 1])→ Kt(S1 × D2).

We want to show that (0, 1) + t2 + t−2 and (1, 1) + t−3(1, 0) form a minimal set of
generators for I. For this let J be the ideal generated by these two elements.

Lemma 5.1. Every element in Kt(T2 × [0, 1]) is of the form P ((1, 0)) + u, where
P ∈ C[X ] and u is in the left ideal J .

Proof. Since as a vector space Kt(T2 × [0, 1]) is spanned by (p, q)T , p, q ∈ Z, it
suffices to prove the statement for elements of this form.

If p = 0, since (0, q)T is a polynomial in (0, 1),

(0, q)t = a ∗ ((0, 1) + t2 + t−2) + b, a ∈ Kt(T2 × [0, 1]), b ∈ C.
If p = 1, then from Theorem 4.1 we get

(1, q)T = t−q+1(1, 1) ∗ (0, q − 1)T + t−2q+2(1, q − 2)T ,

and the previous argument, together with an induction on q, shows that there exist
u, u′ in J , c ∈ C and a polynomial P such that

(1, q)T = u+ c(1, 1) + u′ + P ((1, 0))

= u+ u′ + c((1, 1) + t−3)(1, 0)− t−3(1, 0) + P ((1, 0)),

which proves this case, too.
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For p ≥ 2 Theorem 4.1 gives

(p, q)T = t−q(1, 0) ∗ (p− 1, q)T + t−2q(p− 2, q)T ,

and an induction on p gives the desired conclusion.
Finally, the case p < 0 follows from

(p, q)T = tpq(0, q)T ∗ (p, 0)T − t2pq(−p, q)T .

Lemma 5.2. The elements (0, 1) + t2 + t−2 and (1, 1) + t−3(1, 0) are irreducible in
Kt(T2 × [0, 1]).

Proof. Assume

(0, 1) + t2 + t−2 = (
∑
k

ak(pk, qk)T ) ∗ (
∑
j

bj(rj , sj)T )

for some distinct pairs (pk, qk), and distinct pairs (rj , sj) in Z+×Z. By Theorem 4.1
we have

(0, 1) + t2 + t−2 =
∑
k,j

akbj(t|
pk,qk
rj,sj |(pk + rj , qk + sj)T

+ t−|
pk,qk
rj,sj |(pk − rj , qk − sj)T ).

If we order pairs lexicographically, we see that the maximum of (pk + rj , qk + sj) is
attained for exactly one pair (k, j). Since in the above sum the term corresponding
to this maximum does not cancel, it follows that the corresponding pk and rj are
zero; hence all other pk and rj are zero. Thus

(0, 1) + t2 + t−2 =
∑
k,j

akbj((0, qk + sj)T + (0, qk − sj)T ).

So the problem reduces to checking the irreducibility in the subring generated by
(0, 1); but here it is obvious since the subring is isomorphic to C[X ] and X+t2+t−2

is irreducible. The proof of irreducibility for (1, 1) + t−3(1, 0) is similar.

Theorem 5.3. I = J .

Proof. It is easy to see that (0, 1) + t2 + t−2 is in I. On the other hand, in the solid
torus, (1, 1) has framing −1, so (1, 1) = −t−3(1, 0), from which it follows that the
second generator of J is in I as well; hence J ⊂ I.

Since the restriction of π to the subring of Kt(T2 × [0, 1]) is generated by (1, 0),
the first lemma shows that I ⊂ J .

The fact that the system of generators is minimal follows from the fact that I
is not principal. Indeed, by the previous lemma, this ideal contains two irreducible
elements, and the ideal would be principal only if one of these irreducibles were the
product of the second irreducible with a unit. But the only units are the scalars, and
it is easy to see that one cannot get (0, 1)+ t2 + t−2 by multiplying (1, 1)+ t−3(1, 0)
by a complex number.

Let us now describe the action of Kt(T2 × [0, 1]) on Kt(S1 ×D2). Define xp,q in
Kt(S1 × D2) by xp,q = t−pqyp,q, where yp,q satisfies

yp,q = α · yp−1,q − yp−2,q,

y0,q = (−t2)q + (−t−2)q,
y1,q = (−t−2)qα.
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Lemma 5.4. The element xp,q is the image of (p, q)T in Kt(S1 × D2).

Proof. Since

(1, 0) ∗ (p, q)T = tq(p+ 1, q)T + t−q(p− 1, q)T ,

it follows that

xp+1,q = t−q(1, 0) · xp,q − t−2qxp−1,q,

from which the desired reccurence is obtained by multiplication by t(p+1)q. The
initial condition is a consequence of the properties of Chebyshev polynomials.

Corollary 5.5. For any two integers p and q, the element xp,q is a polynomial of
|p|-th degree in α.

If we formally solve the equation x+1/x = α, then the general theory of recurrent
sequences shows that

xp,q = t−pq
(−t−2)q(xp+1 − x−p−1)− (−t2)q(xp−1 − x1−p)

x− x−1
.(5.1)

This formula for the case when p and q are relatively prime was obtained by Przy-
tycki [13], and its original proof is very complicated. If we denote by f (n)(α)
the curve α decorated with the n-th Jones-Wenzl idempotent (for the definition
of these idempotents see Section 7 below), then we can rewrite this formula as
xp,q = t−pq((−t−2)qf (p)(α)− (−t2)qf (p−2)(α)). If we evaluate xp,q in the plane, by
projecting the solid torus on the plane determined by its core, we get

t−pq

−t2 + t−2
(t2p+2q + t−2p−2q − t−2p+2q − t2p−2q).

But when p and q are coprime, the image of xp,q through this projection is the
diagram of the (p, q)-torus knot. Hence by multiplying by −t3 raised to the power
equal to the writhe of this knot diagram, dividing by (−t2 − t−2) and making the
change of variable u = t−4 one gets the well known formula

t(p−1)(q−1)/2(1− t2)−1(1− tp+1 − tq+1 + tp+q)

for the Jones polynomial of a torus knot.

Theorem 5.6. The action of the skein algebra of the torus on the skein module of
the solid torus is given by

(p, q)T · αn = t−nqxp+n,q + tnqxp−n,q.

Proof. The theorem is a consequence of Lemma 5.4 and the equality

(p, q)T ∗ (n, 0)T = t−nq(p+ n, q)T + tnq(p− n, q)T .

6. Lens Spaces

In this section we will give an alternate short proof of a result of Hoste and
Przytycki [8] showing that the Kauffman bracket skein module of the lens space
L(p, q), p, q 6= 0, is spanned by [p/2] + 1 elements.

Let (
a p
b q

)
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be the gluing matrix of the two tori, which produces the lens space. Since the
gluing map reverses orientation, the determinant of this matrix is −1. Any link in
the lens space can be pushed off the cores of the two tori, thus

Kt(L(p, q)) = Kt(S1 × D)⊗Kt(T2×[0,1]) Kt(S1 × D),

where the tensor product structure is defined by

xm,n ⊗ 1 = 1⊗ xam+pn,bm+nq.

Note in particular that Kt(L(p, q)) is spanned by the elements 1⊗ 1, 1⊗α, 1⊗α2,
· · · . We will prove that in fact Kt(L(p, q)) is spanned by 1⊗ 1, 1⊗α, · · · , 1⊗α[ p2 ].
To this end let V be the span of these elements.

We start by noting that Theorem 5.3 implies that

1⊗ xp,q = ((0, 1) · 1)⊗ 1 = (−t2 − t−2)⊗ 1

and

1⊗ xp+a,q+b = ((1, 1) · 1)⊗ 1 = −t−3((1, 0) · 1)⊗ 1 = −t−3 ⊗ xa,b.

Lemma 6.1. For every k ∈ Z, there exists a constant ck ∈ C such that for all
u ∈ Kt(S1 × D) one has the identity

1⊗ ((a+ kp, b+ kq) · u) = ck ⊗ ((a, b) · u).

Proof. The property is true for k = 0 and k = 1. Since by Theorem 4.1

1⊗ ((a+ kp, b+ kq) · u)
= taq−bp ⊗ ((p, q) ∗ ((k − 1)p+ a, (k − 1)q + b) · u)

−t2(aq−bp) ⊗ (((k − 2)p+ a, (k − 2)q + b) · u)
= taq−bp(−t2 − t−2)⊗ (((k − 1)p+ a, (k − 1)q + b) · u)

−t2(aq−bp) ⊗ (((k − 2)p+ a, (k − 2)q + b)) · u),

the property follows by induction on k.

Lemma 6.2. For every m, k ∈ Z, one has 1⊗ xma+kp,mb+kq ∈ V .

Proof. We will induct on m. For m = 0, 1 the property is true, as a consequence of
Lemma 5.4 and the fact that 1⊗ xkp,kq = (−t2 − t−2)k ⊗ 1.

Let k0 be the integer that minimizes the absolute value of ma + k0p. Clearly
this minimum is at most [p2 ], and so xma+k0p,mb+k0q is in V . On the other hand,
by using Theorem 4.1, we get that, for an arbitrary k,

xma+kp,mb+kq = t−(m−1)k−mk0 ⊗ ((a+ (k − k0)p, b+ (k − k0)q)
∗((m− 1)a+ k0p, (m− 1)b+ k0q) · 1)

−t−2(m−1)k−2mk0 ⊗ x(m−2)a−(k−2k0)p,(m−2)b−(k−2k0)q.

From Lemma 5.4 and Theorem 4.1 it follows that

1⊗ (a+ (k − k0)p, b+ (k − k0)q)
∗((m− 1)a+ k0p, (m− 1)b+ k0q) · 1)

= ck ⊗ ((a, b) ∗ ((m− 1)a+ k0p, (m− 1)b+ k0q)
= ckt

−1xma+k0p,mq+k0q + cktx(m−2)q+k0p,(m−2)b+k0q.

So, from the induction hypothesis and the fact that xma+k0p,mb+k0q ∈ V we get
that xma+kp,mb+kq ∈ V , which completes the induction.
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Theorem 6.3 (Theorem 4. in [8]). The space Kt(L(p, q)) is spanned by 1⊗ 1, 1⊗
α, · · · , 1⊗ α[ p2 ].

Proof. Every natural number n can be written in the form ma+ kp. From Corol-
lary 5.5 it follows that

1⊗ xma+kp,mb+kq = c⊗ αma+kp + 1⊗ f(α)

where f is a polynomial of degree strictly less than ma + kp, and c is a nonzero
constant, hence by applying Lemma 6.2 and inducting on n we deduce that αn ∈ V
for every n, which proves the theorem.

7. Jones-Wenzl idempotents

Jones-Wenzl idempotents appeared for the first time in the study of operator
algebras, but they are best known to topologists because of their use in the con-
struction of topological quantum field theories ([11], [1], [16], [7]). By placing
Jones-Wenzl idempotents on simple closed curves on a torus one obtains certain
elements of the skein algebra of the torus. We show below how one can make use
of the embedding of this algebra in the noncommutative torus to give a pleasing
formula for these skeins.

For a positive integer n, the n-th Jones-Wenzl idempotent f (n) lives in the
Temperley-Lieb algebra TLn, which, let us remember, is the algebra of diagrams
of non-intersecting strands joining 2n points on the boundary of a rectangle, with
multiplication defined by juxtaposition of rectangles. Jones-Wenzl idempotents are
denoted by empty boxes, and are defined inductively as in Figure 1. Here the con-
vention is that a number k written next to a strand means k parallel strands, and
∆k = (−1)k[k + 1], where [k + 1] is the quantized integer

t2k+2 − t−2k−2

t2 − t−2
.

Recall that if t is not a root of unity, then the Jones-Wenzl idempotents are defined
for all n, while if t = eiπ/2r, with r an integer greater than 1, then the Jones-Wenzl
idempotents are defined only for n = 0, 1, · · · , r − 2.

We will denote by (p, q)JW the element of Kt(T2×I) obtained by taking gcd(p, q)
parallel copies of the ( p

gcd(p,q) ,
q

gcd(p,q) )-curve and inserting on them the gcd(p, q)-th
Jones-Wenzl idempotent.

Theorem 7.1. If p and q are relatively prime and n is a positive integer less than
r − 2, then

(np, nq)JW = (np, nq)T + ((n− 2)p, (n− 2)q)T + · · · ,

where the sum ends in 1 if n is even and in (p, q)T if n is odd.
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Proof. By using the well known identities from Figure 2 we deduce that the follow-
ing recurrence relation holds:

(np, nq)JW = (p, q) ∗ ((n− 1)p, (n− 1)q)JW − ((n− 2)p, (n− 2)q)JW .

By Theorem 4.3, the image of the (p, q)-curve in the noncommutative torus is
ep,q + e−p,−q. In the noncommutative torus the elements

emp,mq + e(m−2)p,(m−2)q + · · ·+ e−(m−2)p,−(m−2)q + e−mp,−mq

with m ≥ 0 satisfy the same recurrence relation as (mp,mq)JW . Since the image of
f (0) is 1, and the image of (p, q)JW is ep,q + e−p,−q (p and q are relatively prime),
the conclusion of the theorem follows by induction.

Corollary 7.2. If p, q are relatively prime and n is a positive integer, then

(np, nq)T = (np, nq)JW − ((n− 2)p, (n− 2)q)JW .

Note that both (np, nq)T and (np, nq)JW satisfy the recurrence relation of Cheby-
shev polynomials. Also the term corresponding to n = 1 is the same in both cases.
However, the term corresponding to n = 0 is 2 in the first case, and 1 in the second,
which makes them very different.

It is a well known fact that the trace of a Jones-Wenzl idempotent is

(−1)n[n+ 1] = (−1)n t
2n+2−t−2n−2

t2−t−2

= (−1)n(t2n + t2n−2 + · · ·+ t−2n+2 + t−2n)

As the theorem and its proof show, the elements (np, nq)JW are obtained by re-
placing (−t2)k + (−t−2)k in this formula by (kp, kq)T .

If we denote by x
(n)
p,q the image of (np, nq)JW in the solid torus (i.e. the (p, q)-

knot in the solid torus colored by the n-th Jones-Wenzl idempotent), then as a
consequence of 5.1 and Theorem 7.1 we get

Corollary 7.3.

x(n)
p,q =

[n2 ]∑
k=0

t−(n−2k)2pq

x− x−1
((−t−2)(n−2k)q(x(n−2k)p+1 − x−(n−2k)p−1)

− (−t2)(n−2k)q(x(n−2k)p−1 − x1−(n−2k)p)).

The n-th colored Kauffman bracket of the (p, q)-torus knot is obtained by re-
placing x in this formula by (−t2).

Corollary 7.4. The n-th colored Kauffman bracket of the (p, q)-torus knot is given
by
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∑
k≤ n2

(−1)n(p+q)−t(n−2k)2pq

t2 − t−2
(t2(n−2k)(p+q)+2 + t−2(n−2k)(p+q)−2

− t2(n−2k)(p−q)+2 − t2(n−2k)(q−p)−2).
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