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SKELETAL EXTENSION, DENSITY AND CALCIFICATION

OF THE REEF CORAL, M O N TA ST R E A A N N U LA R IS :

ST. CROIX, U,S. VIRGIN ISLANDS

R ic h a rd E D o d g e a n d G a rre tt W B ra s s

ABSTRACT

Parameters of the annual and subannual skeletal growth of 61 M on ta s tr e a a n n u la r is corals,

collected at a variety of shallow depth sites on reefs of St. Croix, U.S. Virgin Islands, are

determined by X-radiography and scanning densitometry for each year in the IO-year period,

1970-1979. Extension (linear growth) of the coral skeleton is correlated negatively with bulk

density (mass per unit volume) and positively with calcification (mass addition). Density and

mass are slightly positively correlated. No one parameter, however, is a perfect predictor of

another. At least two parameters, from which the third can be calculated, are required for

complete description of coral growth. The variations of parameters of subannual density

bands in this study do not convey information additional to those of annual bands.

When compared to a pristine site in St. Croix, coral from Round Reefwithin Christiansted

Harbor (a location of past dredging and sewage pollution) have equivalent (and high) extension

but significantly lower density and calcification. On the south coast, corals from a location

of major dredging activity in the past have relatively low extension and calcification. These

growth anomalies are probably pollution related. Collections of corals from one south coast

site may have been biased by hurricane effects to nonrepresentative samples.

The island of St. Croix, U.S. Virgin Islands, is located in the northeastern

Caribbean sea at 17°45'N and 64°52'W. Surrounding the island on most sides are

coral reefs, some of which have been described (Ogden, 1972; Adey, 1975; Adey

et aI., 1977). This study evaluates annual and subannual skeletal growth ofa major

coral species, M on ta s tr e a a n n u la r is . from various reef areas. Relationships of the

parameters-extension, density, and calcification-are investigated. Growth is typ-

ically considered an index of viability of an organism and for corals can be an

important indicator oftheir state of health. 51. Croix is not highly developed, but

sources of pollution do exist. We have found that coral growth in certain areas

appears to reflect the presence of environmental degradation.

A number of methods are available to measure skeletal growth of scleractinian

corals and a variety of studies have been done (Buddemeier and Kinzie, 1976).

We wished to evaluate natural in situ growth over a decade and used the

X-radiography method (Buddemeier, 1978; Dodge and Vaisnys, 1980) to reveal

annual and subannual skeletal density variations or bands (Knutson et al., 1972;

Dodge et al., 1974; Macintyre and Smith, 1974; Hudson et aI., 1976). Width of

growth increments measures extension of the coral skeleton. Bulk density measures

the distribution of CaC03 within the skeleton. The mass of CaC03 deposited

(over time) is the calcification (rate) of the coral. If any two of the parameters are

known, the third can be calculated. A variety of studies have been done on the

individual variability of at least two of these parameters (e.g., for extension: Weber

and White, 1977; Weber et al. 1975; Glynn and Stewart, 1973; Isdale, 1977;

Dodge et aI., 1974; Hudson, 1981; and for calcification: Goreau and Goreau,

1959; Jokiel and Coles, 1977; Coles and Jokiel, 1978; Bak, 1974; 1978). The

inter-relationships and simultaneous variability of each of the parameters are only

beginning to be understood (Dodge and Thomson, 1974; Buddemeier et aI., 1974).

Barnes and Taylor (1973), Dustan (1975), and Baker and Weber (1975) have
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investigated parameter changes over depth with sometimes conflicting results.

We have compared skeletal extension, density, and calcification for many indi-

vidual colonies ofthe same species over the same time periods between locations

(2-8 m depth range) within a reef system. This has proved valuable to assess the

information content of each parameter as well as for adequate characterization

of the growth of corals.

METHODS AND MATERIALS

S p e c ie s o j J ll le r e s t .-M o n ta s tr e a a n n u la r is was chosen as the species of investigation because of its

abundance on St. Croix reefs and its general ecological importance on reefs of the Atlantic and

Caribbean (Goreau, 1959). M . a n n u la r is contains well-defined annual density bands (Dodge et aI.,

1974; Macintyre and Smith, 1974; Hudson et aI., 1976). The high density portion of the annual cycle

forms some time in the late summer and fall (Hudson et aI., 1976; Fairbanks and Dodge, 1979; Stearn

et aI., 1977). Extension growth of this species has been studied in St. Croix (Baker and Weber, 1975;

Gladfelter et aI., 1978) and elsewhere in the Atlantic and Caribbean (Aller and Dodge, 1974; Dodge,

1978; Dustan, 1975; Hudson, 1981).

C o lle c tio n .-S p e c im en s of M . a n n u la r is were obtained in early Dec. 1980 by snorkel divers using

hammer and chisel to break corals from the substrate or parent colony. Corals were collected at a

variety of sites (Fig. I, Table I) over a total depth range of 2-8 m.

M . a n n u la r is can occur as three gradational morphological types: hemispherical (colony very round-

ed, tissue covers most of visible skeleton), columnar (colony with rounded tissue-covered top but often

with long sides which are sometimes devoid of tissue), and platy (colony flattened and may occur as

shingle-like plates overlapping each other, or as part of the basal or side portions of more massive

colonies). The platy form is generally most common in depths below the range of this study. Lewis

(1960) has discussed the origin of columnar colonies on the shallow seaward slope of Barbados reefs

(5-6 m depths) and indicates that as hemispherical colonies grow closer together over time, individual

colonies become elongated so that each hemisphere forms a cap of living tissue on top of a long

column of dead skeleton. In this explanation, space limitation at the sides of colonies produces the

eventual shape. Graus and Macintyre (1976) suggest that light level is responsible for colony shape

producing a gradation of hemispherical, columnar, to platy forms with increasing depth and decreasing

light. At most of our sites we observed hemispherical, columnar, and forms transitional between these

two. We restricted collection to primarily the columnar, but transitional varieties were sometimes

obtained. Table I provides information on the type of colony growth forms collected at each site.

Sites were chosen as representative of general reef areas and some were in proximity to known or

suspected pollution influences (Fig. I). Table I provides information on site abbreviations, locations,
depths of sampling, and numbers of specimens collected. Sites are further described below.

North

CHF (Christiansted Harbor Fore-Reef)

Long Reef protects Christiansted Harbor. The fore-reef zone (Fig. I, upper inset) is populated

primarily by A c ro p o ra p a lm a ta from 0 to 5 m. A head coral zone occurs below. Specimens were

collected in 5-8 m depth, seaward of the reef crest and approximately 0.5 km east of a municipal raw

sewage outfall which exits in 7 m depth on the fore-reef zone on Long Reef. Prevailing wind and

currents distribute sewage solids along the reef itself but dissolved material is carried over the reef-

crest and back into the harbor (Adams, 1974; Dong et aI., 1972). The collection site was probably

sufficiently removed from the outfall to be outside the influence of its pollution.

CHB-RR (Christiansted Harbor Back-Reef)

The major back-reef area of Christiansted Harbor (Fig. I, upper inset) runs along the western portion

of Long Reef and is composed of shallow sand and hard ground with low living coral coverage. In

several hours of reconnaissance only one suitable M . a n n u la r is (#C-97) was found (Fig. I). The bulk

of sampling was conducted in 2-3 m water depths at Round Reef (Fig. I, upper inset), a patch reef

on the eastern margin of Christians ted Harbor. At collection time this site was turbid from resuspended

sediment.

Christiansted Harbor has often been disturbed by the activities of man. Dredging for sand mining

between 1962 and 1968 removed over 2 million cubic yards of sand (Adams, 1974) primarily for

cement production. In addition, dredging has continued for construction and maintenance of several
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Figure I. (Center) Sketch map of St. Croix, U.S. Virgin Islands. Collection sites are designated by

X. Station initials are described in the text. (Top) Expansion of Christians ted Harbor area. 0 indicates

the position of the sewer outfall on the fore-reef of Long Reef. (Bottom) Expansion of the Hess-

Manchenil Bay area.

channels within the Harbor, apparently during the 1970's. Several studies (Dong et aI., 1972; Nichols

et aI., 1972) have documented detrimental effects from dredging within the harbor. Sewage pollution

also exists from the community of Christiansted. Until 5 years ago, a major portion of its raw sewage

was piped across the harbor to an outfall on the seaward side of Long Reef. Today the pipe carries
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city storm drainage as well as sewage overload, Dissolved material, being typically less dense than

seawater, rises and is carried back into the harbor (Dong et aI., 1972), Additional sources of sewage

exist along the water front area of Christiansted (Nichols et aI., 1972).

A current analysis (Dong et aI., 1972) indicates that a counter-clockwise pattern results from the

northeast trades pushing water over the western and major portion of Long Reef. This water exits

primarily to the east through the ship channel and also over Round Reef(CHB-RR). Sewage discharge

and/or dredging-induced sedimentation and turbidity might be expected to contact Round Reef in

this way.

TBF (Tague Bay Fore-Reef)

The reefat Tague Bay (Fig. I, center) is a well-developed Caribbean bank-barrier structure dominated

at the crest by A c ro p o ra p a lm a ta , and grading with depth into a M on ta s tr e a a n n u la r is zone (Ogden,

1972). This site was not expected to be influenced by man-induced pollution. Specimens were collected

in approximately 6 m depth.

TBB (Tague Bay Back-Reef)

A back-reef portion of the Tague Bay reef (Fig. I, center) (leeward of the crest and terminating at
the lagoon margin) was sampled in approximately 2-3 m depth. This site is not expected to be affected

by pollution; however, it is subject to higher degrees of natural resuspended sediment than the fore-

reef.

BI (Buck Island)

The fore-reef zone (Fig. I, center) of the reef surrounding the eastern margin of Buck Island was

sampled at approximately 8 m depth. M . a n n u la r is was abundant, growing in large columnar clusters.

Our sampling site was outside the boundary of the Buck Island National Monument and seaward of

the well-defined A . p a lm a ta zone. The site is expected to be the most pristine, being located at the

extreme eastern and windward portion of St. Croix. The site has been described in detail by Adey et

aI. (1977).

South

The reefs of St. Croix were exposed to the force of Hurricanes David and Frederic in 1979 (Rogers

et aI., 1982). The storms caused considerable damage and the common reef crest zone of A . p a lm a ta

is frequently missing, having been destroyed and reduced to rubble in many locations. Other species

were probably killed and damaged in the high wave energy of the storms. South coast reefs were more

greatly affected by the hurricanes. South collection sites were chosen at what were judged to be back-

reef areas and in those locations where living corals were still relatively abundant.

A (Back-Reef Area, Seaward of Airport)

M . a n n u la r is were collected in 5-7 m depth. Site A (Fig. I, center) is well offshore and far down

current from the effluent or dredging effects from the land-based Hess refinery and the Martin Marietta

Alumina plant (Fig. I). This site was observed to have had only relatively minor hurricane damage.

H (Hess Reef)

In this area was formerly located Krause Lagoon (Fig. I, lower inset) which was dredged and filled

for the construction of the Hess oil refinery. Another industry, the Martin Marietta Alumina plant, is

located nearby to the east in Limetree Bay. Major dredging of the lagoon and shelf for harbor con-

struction was conducted in the area from 1963-1964 for Martin Marietta and from 1965 to 1967 for

the Hess turning basin and a channel 22 m deep. Dredging for channel maintenance and deepening

is still occurring (1970-197 I for Hess deepening), although settling ponds have been introduced to

reduce turbidity (Adams, 1974).

A reef-crest is located approximately midway between the dredge cut channels for the Hess refinery

on the east and Martin Marietta on the west (Fig. I). The fore-reef and crest were devoid of living

corals, probably due to past dredging effects complemented by hurricane influence. Reconnaissance

of the extensive back-reeflagoon revealed two large columnar clusters of M . a n n u la r is (approximately

10- 15m in diameter by 5 m in height) from each of which eight colonies (16 total) were sampled at
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Figure 2. (Left) Typical densitometer output from a scan of an X-radiograph negative. The location

of the scan transect is depicted on the lower X-radiograph (positive) for illustration. Skeletal density

bands have been dated from the known date of collection. The vertical scale is coral skeletal density

(g/cm'), obtained from calibration of film optic density (Fig. 3). Measurement and calculation procedure

for annual and subannual extension, density, and mass for the year 1977 is shown and further described

in the text.

Figure 3. (Right) Densitometer scan of X-radiograph of calcium carbonate wedge. The vertical axis

is optic density. The horizontal axis is distance along the scan transect of the wedge from thin end to

thick. The upper horizontal scaling is given as the height of the wedge in cm. The lower horizontal

scaling is a conversion to skeletal bulk density (g/cm3
) using a slab thickness of 0.64 cm, values of

mass absorption coefficients at 30 Kev for the standard (CaC03 wedge) of 1.80 and for the coral

(CaC03 + 2% CH20 + 0.8% Sr) of 1.95 as provided by Buddemeier (1974), and a density of the wedge
of 2.71 g1cm'. The optic density values can be converted to bulk density values through use of the
curve. This has been done in Figure 2.

3 m depth (Table I). We were unable to locate a living reef immediately to the west of the Martin

Marietta plant.

M (Manchenil Bay)

The eastern-most south coast site sampled was Manchenil Bay (Fig. I, lower inset). Reefs here were

heavily affected by hurricane action. A . p a lm a ta was rare and only in scattered and relatively protected

areas were remnants of the former lush stands. Site M was chosen for availability of M . a n n u la r is

corals, but was near or in a former A . p a lm a ta zone. Specimens were collected in 3-5 m depth. The

site has no obvious influences from pollution.

S am p le P re p a ra tio n a n d M ea su rem en ts .-A fte r collection and labeling, specimens were cut with a

large masonry saw to obtain at least one 0.5 to 0.7 cm thick parallel sided slab which included (as far

as possible) the plane intersecting the colonies' origin and points of highest relief on the growth surface.

Each slab was X-radiographed on Kodak AA-2 Industrex X-ray film using a non-collimated dental

unit X-ray source (70 KVP, 15 rna, 127 cm source to subject distance, typical exposure time 10-20

seconds). A wedge of CaC03 (calcite) of known dimensions was included on each X-radiograph for

later calibration of film optic density to skeletal density (Buddemeier, 1974; Dodge, 1980).

X-ray negatives were contact printed on photographic paper and positives were inspected for quality

of density banding. Some specimens were discarded from further analysis (Table 1) because of errors

in cutting (poor section), obvious changes in orientation resulting from prior breakage (rolled), poor
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Table 2.
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Parameter

Extension

Density

Mass
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Time Span Abbreviation Explanation

subannual HW width (cm) of the high density band por-

tion (high width)

subannual LW width (cm) of the low density band portion

(low width)

annual TW width (cm) of the entire annual band (total

width)

subannual HD average density (glcmJ
) of the high density

band portion (high density)

subannual LD average density (glcmJ
) of the low density

band portion (low density)

annual TD average density (glcmJ
) of the entire an-

nual band (total density)

subannual HM calculated mass (glcm 2) of the high density
band portion (high mass)

subannual LM calculated mass (glcm2) of the low density

band portion (low mass)

annual TM calculated mass (glcm2) of the entire band

(total mass)

banding or banding obscurred from boring organisms (unclear bands), or too few annual growth bands

recorded (too small). Of the 91 M. a n n u /a r is corals collected, 61 were retained for further analysis.

On the X-radiographs of these retained specimens, annual growth bands, each composed of a high

and low (H and L) density portion, were assigned appropriate years of formation from the known

date of collection.

A scanning densitometer was used to obtain quantitative information on annual and subannual

extension, density, and mass (Dodge and Thomson, 1974; Buddemeier, 1974; Buddemeieret aI., 1974;

Dodge, 1978). Each coral X-radiograph negative was scanned along a straight line coincident with the

axis of maximum growth and normal growth band boundaries. This provided a curve of variations

in X-ray film optic density along the scan transect (Fig. 2). The CaCOJ (calcite) wedge included in

each X-radiograph was also scanned to calibrate the film optic density to coral skeletal density or bulk

density (Fig. 3). Scan distance along the wedge was scaled as wedge height. This was converted to

coral bulk density (glcmJ
) using the formula and mass absorption coefficients of Buddemeier (1974)

at 30 KeY for the calcite wedge (CaCO,) and for the coral (CaCO, + 2% organics + 0.8% Sr), and the

appropriate coral slab thickness. Given uncertainties in the actual wedge and coral composition, we

estimate a possible systematic error of estimate to be ±5%. The procedure provides a calibration

curve of optic density versus skeletal density for each coral. Figure 3 illustrates a typical calibration

for a coral slab of 0.64 cm thickness.

Figure 2 shows a typical densitometer output with a coral X-radiograph positive attached to illustrate

the orientation of the skeletal scan transect. The vertical axis is optic density calibrated to skeletal

density according to the relationships of Figure 3. Each peak of the scan trace corresponds to an H

band portion and each valley represents an L band. Years offormation were assigned to H-L couplets

by comparison to the coral X-radiograph positive and are indicated on the curve. Data were extracted

forthe IO-year inclusive period 1970-1979 (1980 was omitted because surface reliefon some specimens

did not allow a complete and accurate scan of that year). Subannual and annual parameters of growth

measured for each year were: extension (HW, LW, TW), density (HO, LO, TO) and mass (HM, LM,

TM). Table 2 lists these parameters, their abbreviations, and an explanation for convenience.

The average skeletal density for each subannual and annual band (HO, LO, TO) was determined

from the densitometer scan of each coral X-radiograph, as shown for example in Figure 2. The

calibrated densitometer output was a chart recorder trace of continuous density variations (glcmJ)

along the scan transect. To find the average density of a portion of the skeleton, it was necessary to

integrate over that portion of the curve corresponding to the skeletal area of interest along the scan

transect. We used a simplified method as illustrated for year 1977 in Figure 2. The peak identified as

point B is equivalent to the maximum density of the high density (HO) band for 1977. Similarly the
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valley at point D is the minimum density of the 1977 low density (LD) band. The average density

for the 1977 HD band was calculated as the average of the values of three points: A, B, and C. Point

A is the density midway between 1978 minimum density and 1977 maximum density. Point C is the

density midway between 1977 maximum density and 1977 minimum density. An analagous procedure

was performed to determine average low density (LD). The valley about point D is the curve portion

of interest. The three values averaged for 1977 LD density were the points C, D, and E. Point C is

the density midway between 1977 maximum density and 1977 minimum density. Point D is the

minimum density of the 1977 LD band. Point E is the density midway between 1977 minimum

density and 1976 maximum density. Accuracy of this three point averaging method was confirmed

by comparing results on selected corals calculated in the above way to a more detailed graphical

integration at 1/2 mm intervals (Dodge, 1978).

Extension of band portions (HW and LW) was measured by the horizontal linear distance (appro-

priately scaled to cm) between youngest and oldest values of a peak (for 1977: distance between A to

C) or valley (for 1977: C to E) of the scan for a particular year. Annual extension (TW) was the sum

of the HW and LW for that year.

The mass ofCaCO) accumulated for subannual bands (HM and LM) was calculated by the product

of band portion density and band portion extension to provide a value in g/cm2 (i.e., HM = HW·

HD; LM = LW·LD). Annual mass (TM) was the sum ofHM and LM for a given year. Finally, annual

density (TD) for each year was calculated by dividing TM (g/cm') by TW (em).

Only extension and mass for annual bands can be considered as rates. For subannual portions a

precise time interval of formation is not yet known. It is still valid to compare characteristics of the

Hand L bands, but their actual rates could be quite different. For annual bands, rates are valid because

their characteristics are representative for their time of formation: I year.

RESULTS

Table 3 presents for each of the 61 corals: averages of growth parameters for

the subannual and annual bands over the lO-year period 1970-1979. Averages

by site over all measurements within the site for each parameter are also presented

in Table 3.

To assess relationships, correlation coefficients (r) were calculated and are pre-

sented in Table 4. Within each parameter grouping, subannual bands are positively

related to their annual counterparts. For density, correlations are very high, in-

dicating that annual and subannual bands have nearly identical variations. For

extension and mass, the L bands are more strongly related to the annual values
than are the H bands, and the Hand L bands are not highly correlated.

Comparisons between parameter groupings indicate that extension is correlated

negatively to density and, in general, positively to mass. This means that wide

annual (or subannual) bands, although typically less dense, still have greater mass

than thin ones. For example, TW is negatively correlated to TO and positively

correlated with TM. Figure 4 presents scatter plots of the relationships between

the annual parameters (a) TW:TO, (b) TM:TW and (c) TM:TD. The straight line

drawn in each is the functional or geometric mean (G.M.) regression (Ricker,

1973). Each G.M. regression is significant (P < 0.05) based on the appropriate r

value (Table 4) and calculations of the two linear regressions for each paired data

set. Although the regressions are significant, their predictive ability is not high.

The correlation coefficient squared (r2) indicates the percent of variance that one

variable can explain of another. For TW:TO and TM:TW this is 31% and 36%

respectively. For TM:TD, the value is 8%. It should be noted that if there is a

linear relationship between two of the three variables, the relationship between

anyone of these two and the third will n o t be linear because of the product

equation defining calcification or mass (i.e., TM = TW· TO). The curved lines in

Figure 4b and c are the calculated functional relationships of one variable on

another using the linear relation of annual extension and density (Fig. 4a). These

curves are obtained using one of the equations for extension and density and
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TABLE 3. AVEAAGE MD STANOMlD DEVIATION OF EACH GROWTH PARAMETER FOR EACH CORAL (OVER THE lQ-YEAR PERIOD 1970-1979) AND FOR EACH

SITE (AVERAGE OF ALL MEASUREMENTS)

CORAL EXTENSION (em) DENSITY (g/cll'.' l MASS (g/cm 2)

SITE L HW s.d. LW s.d. TW s.d. HD s.d. LD s.d. TO s.d.

"'
s.d. LM s.d. TM s.d.

TBF .46 .14 .46 .14 .95 .23 1.19 .11 1.11 .07 1.14 .DB .54 .16 .53 .19 1.e8 .25

.41 .21 .50 .16 .94 .10 1.61 .12 1.53 .10 1.5ll .15 .69 .38 .8D .21 1.49 .21

.<7 .3' .62 .25 1.08 .33 1.41 .13 1.25 .11 1.34 .09 .66 .48 .78 .3' 1.44 .45

.23 .D6 .38 .10 .61 .13 1.35 .12 1.23 .00 1.2a .09 .32 .10 .47 .13 .78 .19

.35 .11 .49 .:20 .84 ." 1." .11 1.3~ .07 1.37 .07 .50 .28 .f5 .31 1.1f .35

.31 .15 .65 .27 .96 .20 1.38 .13 1.31 .10 1.33 .11 .43 .22 .85 .35 1.28 .29

n •• 60 .37 .21 .51 .21 .90 ·26 1.40 .17 1.30 .15 1.34 ·16 .52 .31 .68 .29 1.21 .38

CHf 17. .31 .15 .63 .12 .94 .21 1.54 .11 1.43 .08 1.46 .09 .4' .27 .90 .16 1.38 .36

l7B .29 .04 .70 .17 1.00 .16 1.45 .09 1.36 .06 1.41 .D' .'3 .0' .96 .23 \.40 .21

19 .48 .29 .55 .26 1.03 .23 1.47 .12 1.39 .11 1.44 .11 .70 .41 .76 .35 1.47 .26

10 .44 .21 .46 .23 .9D .39 1.68 .12 1.59 .11 1.63 .12 .74 .37 .73 .36 1.47 .65

21 .16 .15 .81 .15 1.07 .12 1.47 .12 1.35 .0' 1.39 .09 .3' .22 LOg .19 1.47 .14

24 .24 .09 .42 .1e .66 .25 1.66 .11 1.55 .09 1.59 .09 .40 .15 .64 .25 l.03 .35

26 .33 .19 .75 .25 1.09 .22 1.12 .09 1.05 .01 1.03 .06 .37 .10 .• 0 .27 1.17 .13

n •• 70 .34 .19 .61 .13 .95 .26 1.48 .20 1.39 .19 1.43 .19 .50 ·29 .84 ·29 1.34 .37

". 31 .69 .33 .71 .14 1.39 .13 1.05 .08 .97 .D6 1.01 .06 .7D .29 .69 .16 1.39 .20

34 .31 .11 .51 .09 .82 .08 1.45 .05 1.36 .06 1.39 .D5 .44 .16 .69 .13 1.13 .13

35 .50 .18 .46 .14 .96 .1' 1.41 .08 1.34 .07 1.38 .06 .71 •. 27 .61 .17 1.32 .37

'9 .24 .1D .55 .19 .79 .1' 1.24 .09 1.21 .10 l.JD . 10 .31 .12 .67 .,. .97 .20

90 ." .10 .47 .20 .EO .27 1.52 .01 1.49 .D' 1.57 .lD .51 .15 .71 .29 1.21 .42

91 .29 .lD .50 .09 .79 .11 1.33 .11 1.22 .09 1.26 .09 .38 .13 .62 .11 .99 .13

93 .<7 .15 .43 .15 .90 .21 1.60 .11 1.53 .09 1.57 .0' .15 .20 .66 .23 1.41 .29

" • 70 .40 .21 .51 .17 .91 .1, 1.37 .19 1.30 .19 1.35 .20 .54 .24 .66 .20 1.20 .30

81 38 .63 .25 .57 .21 1.25 .10 1.16 .05 1.16 .05 1.21 .03 .79 .30 .67 .33 1.46 .13

39 .64 .25 .67 .31 1.31 .23 1.17 .0' 1.08 .09 1.12 .08 .14 .27 .73 .35 1.46 .22

4D. .54 .14 .67 .12 1.21 .21 1.22 . 07 1.1 • .n6 1.23 .01 .69 .29 .79 .21 1.48 .16

'08 .42 .16 .7' .34 1.19 .24 1.31 .14 1.23 .ID 1.26 .10 .54 .31 .96 .41 1.50 .29

42 .33 .D9 ." .17 1.14 .15 1.34 .09 1.25 .05 1.28 .05 .44 .11 1.02 .20 1.46 .16

43 .36 .16 .61 .11 .98 .16 1.41 .09 1.30 .08 1.35 .08 .51 .23 .80 .17 1.32 .22

44 .30 .24 1.02 .21 1.31 .22 1.25 .07 1.16 .08 1.18 .06 .36 .30 1.18 .3' 1.55 .26

46 .30 .11 •• 0 .19 1.10 .16 1.42 .D6 1.33 .05 1.35 .0' .42 .17 1.06 .25 1.48 .23

47 .49 .13 .5D .11 1.00 .20 1.38 .08 1.30 .09 1.32 .11 .65 .1' .65 .26 1.30 .22

n -90 .45 .24 .71 .27 1.16 .11 1.31 .12 1.22 .11 1.26 .10 .57 .28 .87 .33 1.44 .23

54 .37 .20 .60 .17 1.01 .28 1.43 .10 1.36 .07 1.33 .1' .52 .2' ." .24 1.33 .30

56 .39 .22 .56 .2' .95 .24 1.28 .11 1.18 .05 1.23 .08 .50 .2' .66 .33 1.17 .32

58 .• 8 .23 .61 .36 1.00 .31 1.26 .08 1.19 .01 1.22 .01 .61 .18 .61 .43 1.22 .37

59 .34 .25 .50 .13 .• 4 .21 1.31 .12 1.28 .16 1.30 .14 .44 .31 .64 .20 1.09 .2'

6D .33 .18 .48 .11 •81 .15 1.2 • .10 1.23 .D8 1.26 .09 .43 .16 .59 .26 1.02 .11

61 .35 .0' .<7 .17 .81 .17 1.52 .08 1.46 .06 1.49 .01 .53 .14 .68 .24 1.20 .24

62 .25 .20 .48 .16 .71 .15 1.32 .10 1.26 .09 1.28 .lD .32 .27 .6D .23 ,92 .20

63 .28 .17 .<7 .16 .75 • 1 ~ 1.36 .14 1.28 .11 1.32 .11 .3' .22 .60 .19 .98 .17

" • III
.35 .10 .51 .11 .• 6 .13 1.35 .13 1.2. .11 1.30 .13 .47 .26 .65 .17 1.12 .29

substituting the known relationship that calcification equals density times exten-
SIOn. For example, one of the G.M. regression equations in Figure 4a is TW =

-1.06 TD + 2.33. We have defined TM = TW' TD or TW = TM/TD. Substi-
tuting the latter form, we arrive at TM/TD = -l.06TD + 2.33 or TM = 2.33TD
- I.06TD2 as the equation of the curve in Figure 4c.

Magnitude characteristics of the subannual growth increments can be sum-
marized from the averages over all corals and sites at the end of Table 3. HW is
less than LW, HD is greater than LD (also by definition), and HM is less than

LM. In other words, a typical H band portion has less extension and mass than

an L band.

For comparison of growth characteristics among and within sites, a one-way

nested analysis of variance (Sokal and Rohlf, 1969) was performed on the data
sets of each growth parameter. We used a mixed model, assuming fixed effects
among sites and random effects for corals within sites and for measurements

within corals. For each parameter the analyses provide evidence for a significant

variance component among sites and if there are significant added variance com-

ponents among corals within the sites. Prior to analysis of variance, an F max
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TABLE J. (Continued)

CORAL EXTENSION (em) DENSITY (g/em ) MSS (9/om )

-~!!~ .L ~, s.d. LW s.cI. TW s.d. HD s.d. LO s.d. TO S.d. HM ">.d. lM s.d. TM S.d .

67 .27 .DB .45 .1B . 72 .21 1.37 .07 1.32 .09 1.34 .OB .37 .11 .59 .22 .96 .27

6" .35 .16 .39 .14 .75 .17 1.33 .06 1.27 .06 1.29 .06 .47 .20 ,49 .16 .96 .11

69 ..\ .1B .'2 .19 .B' .\' 1.44 .09 1.40 .OB 1.42 ,08 .59 .24 .59 .27 1.19 .21

10 .53 .24 .40 .19 .9' .33 1.19 .05 1.14 .06 1.11 .06 .64 .30 .46 .22 1.10 .41

72 .39 .1B .47 .15 .BS .13 1.37 .07 1.32 .06 1.36 .OB .53 .25 .62 .20 1.15 .15

13 .27 .14 .54 .15 .Bl .27 1. SO .10 1.43 .OB 1.46 .OB .42 .23 .77 .20 LIB .• 0

14 .2B .07 .3' .09 .61 .11 1.33 .OB 1.22 .01 1.27 .08 .36 .09 .40 .09 .77 .12

n '" 70 .36 .1B .43 .16 .79 ·22 1.35 .12 1.30 .12 1.33 .12 .4B .23 .56 .22 1.04 .30

77 .26 .13 .ti8 .12 .95 .12 1.51 .05 1.42 .06 1.45 .05 .39 .1B .91 .1B 1.37 .18

7B .45 .29 .60 .16 1.04 .29 Ul .07 1.32 .OB 1.36 .OB .63 .41 .79 .23 1.42 .40

19 .49 .33 .64 .36 1,13 ,OB 1.24 .06 1.17 .0' 1.21 .05 .61 .4\ .75 .• 1 1.35 .06

81 .26 .13 .51 .19 .7B .17 1.14 .OB 1.05 .09 1.09 .OB .31 .16 .53 .16 .B3 .15

82 .• 3 .26 .52 .20 .95 .17 1.41 .14 1.33 .12 1.36 .15 .62 .43 .70 .2B 1.32 .36

84 .'9 .23 .47 .24 .95 .30 1.25 .10 1.16 .10 1.19 .09 .60 .27 .54 .'9 1.14 .38

85 .37 .37 .71 .29 1.0B .22 1.31 .09 1.20 .07 1.24 .01 .'B .46 .B6 .36 1 ..13 .27

86 .42 .28 .73 .31 1. IS .10 1.44 .01 1.35 .06 1.38 .01 .60 .40 .9B .41 1.58 .11

------
" " 80

.40 ." .61 .1~ 1.00 .,2 1.34 .1. 1.25 .\' 1.28 .1. .53 .36 .76 ·33 1.29 .33
--~~-

eHB'RR 97 .55 .31 .72 .44 1.77 .34 1.\1 .08 1.07 .OB 1.09 .06 .60 .39 .78 .'8 1.3B .34

100 .'B .11 .66 .24 1.14 .22 .91 .06 .81 .OS .8S .OS .43 .09 .53 .19 .96 .16

101 .39 ,n .SB .15 .96 .26 1.33 .06 1.27 .0' 1.29 .05 .51 .23 .73 .19 1.24 .34

102 .34 .00 .54 .20 .8B .23 1.42 .12 1.34 .13 1.3B .12 .'B .\1 .71 .22 1.19 .25

103 .59 .20 .71 .17 1.30 .29 .81 .06 .77 .05 .7B .05 .• 7 .15 .5' .13 1.01 .21

1e. .46 .1' .75 .21 1.21 .24 .87 .06 .78 .07 .81 .06 .39 .11 .58 .15 .97 .16

le5 .49 .18 .57 .24 1.06 .15 1.07 .06 1.02 .0' 1.04 .05 .52 .19 .58 .23 1.\0 .13

lC6 .45 .16 .74 .17 1.19 .20 1.00 ,OS .93 .06 ,96 .05 .46 .18 .68 .15 1.14 .20

107 .66" .2\ .83' .22 1.44+ .18 .99" .06 .92' .06 .99* .\5 .66" .22 .76' .19 1.36" .19

.48 .20 .6B .25 1.15 .2B 1.06 .21 .99 .21 1.02 .21 .50 .21 .65 .24 1.14 ,27

BB 87 87 88 87 87 88 87 87

GRAND MEAN .39 .22 .58 .24 .98 .2B 1.32 .20 1.24 .19 1.2B .'0 .51 .28
,,,

.30 1.23 .33

n' 608 607 607 60B 607 607 608 607 607

1979·1973"·

1979-1972"

Table 4. Correlation coefficient matrix (Each parameter contains 61 values, i.e., the mean values of

each coral) (N = 61, d.f. = 59, if r ~+0.25 or .:s-0.25, P is at least .:s0.05)

Extension Density Mass

HW LW TW HD LD TD HM LM TM

Extension HW

LW 0.17

TW 0.69 0.82

Density HD -0.47 -0.38 -0.54

LD -0.46 -0.41 -0.57 0.99

TD -0.44 -0.41 -0.56 0.99 0.99

Mass HM 0.78 -0.02 0.45 0.08 0.09 0.11

LM -0.15 0.76 0.47 0.30 0.26 0.26 0.05

TM 0.35 0.56 0.62 0.30 0.28 0.29 0.61 0.80

test (Sokol and Rohlf, 1969) was performed to verify that each group (site) con-

tained either homogeneity of variance or only moderate heterogeneity. The nested

ANOV A is insensitive to moderate heterogeneity when sample size is large and

nearly the same among groups, as in the case for our data.

Table 5 presents results. Parameter abbreviations are listed at the top and

sources of variation determined by the nested ANOV A's are listed at the side.

An asterisk (*) indicates significance at least at the P < 0.01 level. The numbers
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Figure 4. Scatter plot of: a, annual extension (TW) versus annual density (TO); b, annual calcification

(TM) versus annual extension (TW); c, annual calcification (TM) versus annual density (TO), In each

the straight line designated at G.M. is the geometric mean regression of the indicated variables. Both

equations for this line are provided as well as the correlation coefficient squared (r2) value. The curved

line in Figure 4b and in 4c is the calculated relationship between the indicated parameters derived

from the equation of Figure 4a and the TM = TW·TO relation, as described in the text. The equation

of each curved line is presented in the figure.

are the percentage of total variance that may be ascribed to individual components.

The results indicate that within each site and for each parameter, there is significant

variability among corals. For parameters other than HW and HM, significant

differences among sites are also indicated,

To evaluate specific site differences for those parameters which were indicated

as portraying site differences by the ANOV A, we employed the SNK test (Zar,

1974; Sokal and Rohlf, 1969). This test uses the error variance of each one way

ANOV A and assigns a significance to differences between site means. Site means

are calculated as the average of all measurements for a parameter at a site (Table

3); however, the ANOVA error variance has been adjusted for variability asso-

ciated with differences among corals within the site. Table 6 lists results at least

at the P < 0.0 1 level for each parameter. These are described in more detail

below.
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Table 5. One-way nested ANOVA (Mixed model: fixed effects for sites, random effects for subgroups)

(Sakal and Rohlf, 1969)

Pam meters

Source of Variation HW LW TW HO LO TO HM LM TM

Among Sites NS I * II * 18 * 29 * 27 * 28 NS a * 9 * II

Among Corals, within Sites * 16 * 12 * 22 * 50 * 55 * 53 * II * 13 * 20
Within Corals (error) 83 77 60 21 18 20 89 77 68

Total % lOa lOa lOa lOa 100 lOa 100 100 100

• Signiflcanl at least at the P < 0.0 t level; NS = not significant; numbers are the percentage each variance component contributes to
the tota),

Extension

The sites of highest annual extension rate (TW) are BI (Buck Island) and CHB-

RR (Round Reef in Christiansted Harbor) at 1.16 cm/yr and 1.15 em/yr. Both

are statistically indistinguishable and significantly greater than other sites. There

are differences among other sites. Site A (airport) is greater than site Hand M

(Manchenil Bay). Site H (Hess) located near the Hess Oil Refinery and Martin

Marietta Alumina plant is relatively low in extension rate and is significantly

different from site M which has the lowest extension rate of all sites.

Relationships of LW between sites are similar to those for TW. There are no

differences among sites for HW.

Density

For density parameters, the ordering of sites from highest to lowest changes

dramatically in comparison to that for extension. This is reasonable given the

negative correlation of density and extension in Table 4. Site ordering is similar

for each density parameter, which is expected because of the high positive cor-

relation of HD, LD, and TD.

Sites CHF, TBB, and TBF have highest density while sites A, HI and CHB-RR
have lowest. Site CHF is significantly greater than all other sites. CHB-RR (e.g.,
TD = 1.02 glcm3 ) has a significantly lower density than all others including the

next to lowest, site BI (e.g., the range in TD is 1.43 glcm3 for CHF to 1.26 glcm3

for BI). Differences among sites for the parameters ofHD and LD are very similar

to those for TD.

Mass (Calcification)

Ordering of sites from highest to lowest annual calcification rate (TM) is similar

to that for extension (TW) with an important exception. Whereas CHB-RR has

the second highest extension, its TM is among the lowest sites. These lowest sites

(CHB-RR, H, M, respectively) are significantly less than the highest TM sites (BI,

CHF, and A).

Site ordering and significant differences for LM are similar to those for TM

with somewhat fewer differences noted. There are no significant differences be-

tween sites for HM.

DISCUSSION

Relationships of Subannual and Annual Bands

The density characteristics of sub annual and annual bands are highly correlated.

For extension and mass parameters, characteristics oflow density (L) and annual
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Table 6. SNK test results for differences between site means (for annual growth parameters, sites are

arranged from highest to lowest mean; left to right and top to bottom)

EXTENSION

BI CHB-RR A CHF TBB TBF H M

~ -----------------------------------------------

~ ----------------------------------------
A *t * --------------------------------

CHF * * --------------------------

TBB *t *t --------------------

TBF *t *t --------------

H *t *t *t --------

M *1- *t *t *t *

CHF

DENSITY

TBB TBF M H A BI CHB-RR

CHF

TBB

TBF

M

H

A

BI

SHB-

RR

* --------------------

*t *Ot *t --------------

*Ot *Ot *Ot *t --------

*Ot *Ot *Ot *Ot *Ot *Ot ---

BI

MASS

CHB A TBF TBB CHB-RR H M

BI

CHF

A

TBF

BB
CHB-

RR

H

M

*
*t

*t

*t

*t

*t

t

t

*t

*t

*t

*

*

*t * *

• For TW. TO, TM; t for LW, LO, LM; and' for HW, HO, HM indicate difference belween indicaled slalions at leasl at the P < 0 .0 1

level.
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(T) bands are also highly correlated (those of high density (H) bands are more

independent but, as indicated in the between site comparisons, are relatively

constant between sites). These results suggest that subannual band characteristics

over the lO-year (1970-1979) period evaluated in St. Croix do not supplement

information from annual bands.

In other studies Hudson et al. (1976) and Hudson (1981) have discussed stress

bands as subannual band anomalies of often high density occurring within the

normal low density band formation, where for Florida this condition is most likely

caused by thermal environmental stress. In such a context subannual bands would

indeed supplement and extend information from annual bands. In our case we

examined normal subannual bands and found variability in characteristics to be

approximately the same or slightly less than for annual bands. It is possible at

certain, as yet unexamined, sites, or over longer or different time spans than the

1970-1979 (lO-year) period we examined, that subannual band characteristics
might assume more importance and provide information additional to that from

annual bands.

As previously discussed, our parameterization of subannual extension and cal-

cification (mass) are not rates because the exact time duration over which they

formed is not known. Relationships between true rates of subannual extension

and calcification may be different than for characteristics given above. For ex-

ample, the results indicate H bands have less extension and mass, but greater

density than L bands. If, as indicated by some studies (Hudson et al., 1976; Stearn

et al., 1977) H bands form over a very short period, their extension and calcifi-

cation ra te s may be significantly higher than those of L bands.

Relationships of Growth Parameters

In general, extension is correlated negatively to density and positively to mass.

For annual parameters, the correlations are significant but not high, indicating
that any single parameter is not an especially good predictor of another. This is

graphically shown in Figure 4 where the scatter of data points about the G.M.
regression lines is high and the r 2 values are low. If a linear relation with high

predictive ability (e.g., r2 > 0.90) had been found between two of the three pa-

rameters, then anyone of these two and the third parameter would be related but

not linearly because of the equality of mass as the product of extension and density.

We used the G.M. regression of TW:TD (Fig. 4a-because each was a measured

parameter) and then substituted the appropriate form ofTM = TW·TD to arrive

at the equations of the curves in Figure 4b and 4c. As is evident the curves do

not fit the data appreciably better than the G.M. regression lines calculated for

the indicated paired data sets. The results suggest that knowledge of one parameter

alone is not sufficient for a complete description of coral growth. One variable

would be enough only if that variable was highly correlated with another (and the

predictive relationship known). We have found parameters to be correlated, but

not highly. In addition, we have found that all three parameters vary and are not

constant.

A negative relationship between extension and density has been found in other

corals. Buddemeier et al. (1974), suggested for Eniwetok corals that because

parameters of extension and density varied by roughly equal amounts, their prod-

uct (mass) would be the least variable of the three. Dodge and Thomson (1974)

suggested for Bermuda corals that because extension was found to be more variable

than density, the product of the two (mass) would be correlated with extension

variations. Given the M = W' D relation, if any two parameters are highly cor-
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related and linearly related, the third parameter will vary with the square of any
of the other two. The exact variability will depend both upon the slope and

constant of the linear relationshps between the original two parameters. The curves

of Figure 4b and 4c indicate the relationship between TM and TW, and TM and

TD respectively, assuming the G.M. line of Figure 4a described TW and TD

completely. In both cases the curves show less range with respect to the TM axis

than do the appropriate G.M. lines. Our actual data (Table 3) show, however,

that the mass is as variable as extension, and that both mass and extension are

more variable than density. Part of this variability is accounted for by measure-

ment error, although the contribution is assumed to be small. (Our estimation

procedure for density determination of subannual and annual bands might be

improved by image analysis techniques where graphical integration would be

facilitated.) Some of the variability arises from the curvilinear relationships but

much probably results from environmental factors to be discussed.

Coral Growth in St. Croix

P re v io u s W o rk .-G la d fe lte r et al. (1978) determined extension rate on 30 M .

a n n u la r is corals from the reef off the east of Buck Island to be 0.76 cm/yr. Their

site was similar in depth and location to site BI ofthis study, however, our results

of 1.16 cm/yr are different. Gladfelter et at. (1978) used a staining methodology

to extrapolate each coral's annual growth from only a 3 to 5 month interval during

one calendar year. The values obtained in the present study measured extension

rate over 10 years on each coral and differences between studies may be explained

in this way.

Baker and Weber (1975) reported extension, density, and calcification results

determined on St. Croix M . a n n u la r is corals from an unspecified location and at

various depths of collection. Within 0-9 m depths their annual extension values

fall within the range of our results. Their average densities are greater than for

any of our sites and consequently their average calcification values are also greater.

The lack of information on collection location, coupled with their use of a slightly

different measurement method for density and mass, precludes a complete un-

derstanding of reasons for the differences.

T h is S tu d y . - Corals from Buck Island (BI), one of the most pristine fore-reef

environments of S1. Croix had as high an extension rate as those corals primarily

from Round Reef within Christiansted Harbor (CHB-RR), a back-reef area under

at least some influence of pollution (dredging-induced turbidity and sedimenta-

tion, sewage). However, corals at CHB-RR were significantly less dense giving

rise to a calcification rate among the lowest of all sites. In comparison, the cal-

cification rate of corals from BI was the highest of any site. It is clear that coral

growth at different areas may be similar in certain parameters (in this case ex-

tension) but significantly different in others (density and mass) and that mea-

surement of only one parameter does not provide complete information. This

result is particularly important but has received only limited attention (Dustan,

1975; Buddemeier et aI., 1974). Barnes and Crossland (1980) have shown that

subdaily extension rate in the branching coral A c ro p o ra a cum in a ta does not vary

in phase with calcification rate. Gladfelter et al. (1978), demonstrated differential

rates of calcification and extension in S1.Croix A . p a lm a ta . Few field or laboratory

coral studies, however, determine more than one parameter of skeletal growth

sometimes under the implied assumption that extension and calcification rates

are equivalent (apparently relying on density as a constant conversion factor).

Density is neither constant over time, between corals, nor between sites. Had
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extension rate alone been considered in this study, no significant differences be-

tween two of the most dissimilar St. Croix sites (CHB-RR and BI) would have

been detected.

It should be noted that the results do not indicate and we are not suggesting a

rejection of the use of extension rate to characterize coral growth. The significant

point to be drawn is that other parameters (density and mass) are available and,

at least for this study, provide additional information on growth. Evaluation of

a single growth parameter therefore should not be taken as equivalent to analysis
of all parameters.

For complete clarification of issues it should also be noted that this study has

evaluated growth within individual corals over the same lO-year growth period.

Size and age relationships, from which size-frequency distributions and survi-

vorship/mortality curves might be derived, are not considered here. Thus, the

cautions about colony partial mortality, fission, and fusion expressed by Hughes

and Jackson (1980) do not apply. Rather than size, we have assessed a most direct

means of coral growth, internal time-dependent skeletal banding which can record

the growth processes of the coral over many years in the past.

Reasons for variability between growth parameters and between sites are not

completely understood. Water temperature is considered a major control on coral

growth (Weber and White, 1977); however, we lack a detailed temperature history

of each site over time. The general Caribbean setting and relatively rapid rates of

water mixing around St. Croix would, however, seem to argue against any sub-

stantial average temperature difference between sites. Light level, necessary for

coral zooxanthellae photosynthetic activity, is well known to control coral cal-

cification to some extent (Goreau and Goreau, 1959). A comparison of growth

parameters with collection depth of a site reveals no obvious depth relationship.

This is not unreasonable given that Baker and Weber (1975) found fairly ho-

mogenous growth characteristics (extension, density, and calcification) within sites

9 m or less in depth, but more pronounced changes over greater depth ranges.

Finally, we are aware of no quantitative comparison of growth rate differences

between hemispherical and columnar growth forms of M . a n n u la r is sampled at
similar locations. In this study we restricted attention to columnar forms and
those forms transitional between hemispherical and columnar (Table 1). There

was no obvious relationship between site growth parameters and general colony

growth form; however, slightly differing growth forms may introduce extra vari-

ability into the results.

For the case of CHB-RR, with low density and calcification, it is possible that

the environment is a major influence promoting growth anomalies. Massive dredg-

ing within the Harbor has occurred many times for sand mining and channel

construction and maintenance. A sewage outfall is present seaward of Long Reef

and raw sewage also enters the Harbor directly along the city waterfront. Wind-

forced circulation results in sewage and natural and/or dredge-related sedimen-

tation and turbidity exiting the Harbor through the western ship channel and over

Round Reef(Dong et aI., 1972), the site of our collection for CHB-RR. Bak (1978)

has shown that dredging-induced turbidity can depress coral calcification. Phos-

phate is also considered a detriment to calcification in reef corals (Simkiss, 1964)

and elevated levels are present in the Harbor from sewage. It is unclear why

extension rate at CHB-RR is high. Turbidity and sedimentation can depress coral

extension under some conditions (Dodge et aI., 1974; Dodge and Vaisnys, 1977;

Loya, 1976); however, this effect is not observed in the CHB St. Croix corals.

Harbor conditions may have been only sufficiently adverse to have depressed

calcification while extension was unaffected (or possibly promoted). In other words,
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corals could have maintained extension rates but were unable to calcify normally

because of dredging and/or sewage pollution. This does not satisfactorily explain

why CHB extension rates should be among the highest of any group of corals

examined in S1. Croix. Several alternatives are possible. The high extension of

CHB corals could be a response to moderately adverse Harbor conditions where

the corals are maximizing extension in an attempt to gain elevation (and distance

away from irritants-either or both sedimentation and sewage) as rapidly as pos-

sible. Barnes and Crossland (1980) have indicated extension is dependent upon

the form of the architectural elements of the skeleton while calcification is more

controlled by their bulk or size. Certain stress situations may promote scaffold

building (extension), even while bricks and mortar (calcification) are relatively

unavailable to shore up the structural framework. Another possibility is that the

high extension rate is a response to increased nutrient loading from sewage, even

in the face oflowered calcification rates. Several other studies (Dodge and Vaisnys,

1975; Glynn, 1977) have shown that coral extension appears positively correlated
to nutrient supply. Perhaps for site CHB-RR, increased phosphate levels are in-
hibiting calcification while general increased nutrients are at the same time pro-

moting extension. Continued analysis will be necessary to more precisely identify

causation of the observed growth anomalies.

Limitations on coral growth between sites along the south coast of St. Croix

are more complex. The force of Hurricanes David and Frederic in 1979 was

concentrated on the south coast and caused widespread, but patchy, damage and

mortality (Rogers et al., 1982; personal observation). Woodley et al. (1981) has

described the effects of a similar storm (Hurricane Allen in 1980) on Jamaican

reefs as impressive for their speed, magnitude and patchiness. Our collection

locations of M and A were originally chosen as possible controls for site H. Site

M was, however, the most clearly affected by storm damage, while site A was the

least. Hurricane effects have allowed collection of only those corals which survived

the storms. The growth of these corals probably does not represent prior average

reef conditions, but rather is related to factors promoting survival. Such factors

could have included a habitat overshadowed by former lush A. palmata stands

which, however, was not conducive to optimum growth for protected understory

head corals. If site M is omitted from comparisons, site H (near the location of

massive prior dredging, possible oil spills, and industrial effluent) has the lowest

extension and calcification of any site.

Depressed growth at site H may be the result of pollution effects. Our collection

area in the back-reef lagoon did not include a former A. palmata community and

storm-induced coral breakage and mortality was not obvious. Corals collected at

site H also had the highest rejection rate from analysis (Table 1). At one of the

columnar clumps that we sampled, 7 of the 8 collected corals were acceptable.

At the other clump, 7 of the 8 collected specimens were discarded because of

unclear banding. We are unable to provide a satisfactory explanation for this

because the collections were in the same general environment and water depth.

In addition to the low calcification and extension of corals measured at site H,

we have identified elevated levels of trace metals within the skeletons of selected

specimens. The chemical pollution indicators appear related to dredging events

(Brass and Dodge, in preparation).

Further growth studies would be helpful to assess relationships of pollution and

corals. Given the variability within sites found in this study, it would be prudent

to include both an increased number of sites, depth intervals, and specimens per

site and perhaps a comparison between growth forms. It should be noted that the

results presented here are only valid for the lO-year period, 1970-1979. For
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Christiansted Harbor large-scale environmental degradation began in the mid-

1960's with sand mining; however, dredging and sewage pollution have also been

a feature of the 1970's. The corals are recording both 1970's activities and cu-
mulative effects from earlier times including disruption of natural bottom, char-

acteristics which have created greater mobilization of sediment and turbidity.

Similarly for the Hess lagoon site, maintenance dredging in the 1970's as well as

cumulative effects from the large-scale disturbance in the 1960's are probably

influencing the coral growth record. For more confidence in assessing coral/en-

vironmental relations, a longer span of growth data is desirable.

Further growth studies would also be helpful for understanding the linkages

between extension, density, and calcification of the coral skeleton. This study has

shown there are relationships between the three parameters but that no one pa-

rameter alone is a perfect predictor of another. Genetic and/or environmental

factors are the ultimate controls on each aspect of coral growth and continued
investigation is necessary for complete understanding.

CONCLUSIONS

The low density portion of the annual band cycle in M on ta s tr e a a n n u la r is has

greater extension, lower density, and greater mass than the corresponding high

density portion. Variability is concentrated in annual and low density bands,

characteristics of which are highly correlated. The high density band portion is

relatively less variable (for extension and mass) and its characteristics are not well

correlated to the other bands. The characteristics of the parameters of annual

bands contain as much or more information than those of the subannual bands.

Skeletal extension, density, and mass of M . a n n u la r is corals are correlated. No

parameter alone, however, is a perfect predictor of another. At least two, from

which the third can be calculated, are required for a complete description of coral

growth.
Coral growth at separate sites can have similar magnitudes in one parameter

but can be different in other parameters. While the extension rates of sites BI and
CHB are similar, site CHB has significantly reduced density and calcification rate.

Depressed calcification and density at CHB is probably related to environmental

pollution (dredging and sewage) within Christiansted Harbor. Dredging and/or

other pollution effects near site H are possibly reflected in the relatively low

extension and calcification of its corals. Hurricane effects may have biased some

south collections, thus complicating the interpretation of the south coast data.
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