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Abstract 

Gait analysis is commonly addressed through inverse dynamics. However, forward 

dynamics can be advantageous when descending to muscular level, as it allows that 

activation and contraction equations are integrated with motion thus providing better 

dynamic consistency, or when studying assisted gait, as it enables the estimation of the 

interaction forces between subject and devices even if the motion capture process doesn’t 
provide enough resolution to distinguish the motions of limb and device. Control-based 

methods seem to be the most natural choice to carry out the forward-dynamics analysis 

of an acquired gait, but several options exist in their application. The paper explores such 

options for healthy and assisted gait, and concludes that the computed torque control of 

all the subject's degrees of freedom is the alternative that provides the most accurate 

results. Moreover, the study of its more problematic underactuated variant accompanied 

by contact models showed to be connected to neighbor challenging topics as gait 

prediction or walking simulation of humanoids. 

1 Introduction 

The use of multibody models of humans has become more and more popular in the last 

decades. Basically, the objective can be to analyze the real motion performed by a subject 

[1] or to predict the motion that a subject would develop under certain conditions [2].

Both objectives are of great relevance for medical, sport and ergonomical applications,

among others. Being less difficult, the analytic objective was addressed first, while its

predictive counterpart has received attention in the present century. On the other hand,

gait is possibly the human motion that has attracted the most interest among researchers,

as it represents a key capability in healthy subjects, while its alteration or elimination due

to illness or accident causes a relevant reduction in the quality of life of the affected

person. This paper addresses the topic of carrying out gait analysis by means of multibody

human models.

Usually, to perform gait analysis, a more or less accurate multibody model of the subject 

is built. This model is then animated using the real motion, optically captured during an 

experiment. Afterwards, as the motion of the model is known, an inverse-dynamics 

analysis is applied to solve for the external reactions and the net joint torques that 

generated the motion. This approach works perfectly for the single-support phase of gait, 

since the only external reactions are the three components of force and the three 

components of moment due to the foot-ground contact, i.e. six reactions in all. However, 

during the double-support phase, the external reactions increase to twelve, as the two feet 

are in contact with the ground, thus leading to an indeterminacy. To overcome this 
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problem, the foot-ground contact reactions are typically measured during the experiment 

by means of force plates, and introduced in the equations of motion, so that only the net 

joint torques are kept as unknowns. Unfortunately, due to the various sources of error in 

both the experimental and computational processes, some discrepancies are usually found 

between the total external reactions yielded by the inverse dynamic analysis and those 

experimentally measured, which leads to some inconsistency in the results. To mitigate 

that, many solutions have been proposed in the literature which basically modify the 

acquired motion or the model parameters so that the mentioned discrepancies are 

minimized [3]. This inverse-dynamics based method of gait analysis at skeletal level is 

usually accompanied, at musculo-skeletal level, by static optimization methods to 

estimate muscle forces [4]. 

 

An alternative way of addressing gait analysis is by means of forward-dynamics analysis. 

This may sound strange, since motion is known and, hence, the obvious approach to solve 

for the external reactions and net joint torques would be inverse dynamics. However, the 

problem can be arranged in such a way that the equations of motion are integrated with 

respect to time. This option can be advantageous in some cases. For example, when 

descending to muscular level, the forward-dynamics based solution enables muscle 

activation and contraction equations to be integrated in time along with the equations of 

motion [5]. Although activation, or even activation and contraction dynamics, can also be 

considered through inverse-dynamics based approaches [6-9] to avoid physiologically 

impossible histories of the muscle forces, an ulterior simulation having as inputs the 

obtained excitation histories would drift from the captured motion in unstable cases like 

gait. Also, when the subject employs assistive devices to walk, as orthoses or 

exoskeletons, a forward-dynamics approach makes it possible to separately consider the 

dynamics of the subject and of the assistive devices, thus enabling the estimation of 

subject-device interaction forces when the motion capture process doesn’t provide 
enough resolution to distinguish the motions of limb and device in order to apply an 

inverse-dynamics based approach [10]. However, some disadvantages arise too when the 

forward-dynamics approach is applied: since it implies the time integration of the model 

equations of motion, the inherent challenges of gait dynamics (intermittent contact, 

stability, etc.) must be faced. In fact, the problem has much in common with the 

simulation of walking humanoids [11], and may even be perceived as an intermediate 

step towards human gait prediction [12], with a lower level of difficulty as the resulting 

motion is known beforehand. 

 

Some works can be found in the literature that use a forward-dynamics approach for gait 

analysis. For example, in [5] the computed muscle control (CMC) method for gait 

analysis at neuro-musculo-skeletal level is presented: at the skeletal stage, the method 

applies the computed torque control (CTC) method to the muscle-actuated degrees of 

freedom of the model, while the six degrees of freedom of the base body are governed by 

a kind of proportional-derivative controllers with variable gains acting at the feet. Another 

example is [10], where the interaction forces between the subject's limb and an ankle-foot 

orthosis are sought to be estimated: most subject's degrees of freedom (except the ankle 

angle which is left to its own dynamics) are kinematically guided, as is the orthotic ankle 

motion. Summarizing, in previous contributions several strategies are present, such as 

controllers of different natures aimed at tracking joint trajectories or base body motion, 

kinematic guidance of some degrees of freedom of the model, and allowance of free 

motion for others. 
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If the motion is known and the model dynamic equations have to be integrated in time as 

required by the forward-dynamics approach, the most obvious procedure seems to be the 

application of control-based methods that seek to track the acquired gait. Imposing the 

acquired value to some model coordinates cannot be considered forward dynamics, while 

kinematic guidance through rheonomic constraints could be equivalent to control-based 

methods, depending on the method used for constraint enforcement. However, such a 

control scheme can be applied to all the degrees of freedom in the subject's model, or just 

to those corresponding to the joints (the ones that can actually be controlled by the 

subject) while the six degrees of freedom of the base body receive the measured ground 

reactions, either directly or through contact models. Hence, there are several options that 

must be studied, in order to clarify which is the most appropriate method to conduct the 

forward-dynamics analysis of an acquired gait, for the cases when it proves to be 

advantageous with respect to the inverse-dynamics approach. Therefore, the objective of 

this paper is to explore, in a systematic and consistent way, the available control-based 

options to carry out the forward-dynamics approach for both healthy and assisted gait 

analysis at skeletal level, and to give some criteria about their use. 

 

The remaining of the paper is organized as follows. Section 2 describes the experiments 

of healthy gait along with the planar and three-dimensional models that were developed 

for the study. In Sections 3 and 4, respectively, the multibody formulation used and its 

application to the inverse-dynamics analysis of gait are briefly described. Section 5 

addresses the forward-dynamics analysis of healthy gait in the case of full actuation, in 

which all the degrees of freedom of the model are controlled. In Section 6, only the joint 

degrees of freedom are controlled (underactuation), while several options to account for 

the ground reactions are considered. The strategies adopted in Sections 5 and 6 are applied 

to assisted gait in Section 7 and, finally, Section 8 presents the discussion of the results 

obtained in the three preceding sections and gathers the conclusions of the work. 

 

2 Experiments and models 

 

In this paper two models for healthy gait were used, one planar and another one three-

dimensional. Although the three-dimensional model was used in all the cases along the 

paper, its planar counterpart was useful when addressing for the first time the most 

challenging approach, i.e. the underactuated model with ground reactions from a contact 

model. Both models correspond to the same subject and experiment. The 3D model 

presented here will be further complemented in Section 7 for assisted gait. 

 

2.1 Three-dimensional model 

 

A three dimensional model was created by the authors to represent a healthy adult male, 

27 years old, mass 84 kg and height 1.75 m, who was selected to carry out the following 

experiment. The subject walked on a walkway featuring two embedded force plates 

(AMTI, AccuGait sampling at 100 Hz), and his motion was captured by 12 optical 

infrared cameras (Natural Point, OptiTrack FLEX:V100 also sampling at 100 Hz) that 

computed the position of 37 optical markers. The study was approved by the institutional 

ethical committee and the subject gave his informed consent. 

 

The human body was modeled as a 3D multibody system formed by rigid bodies, as 

shown in Fig. 1. It consists of 18 anatomical segments: two hindfeet, two forefeet, two 

shanks, two thighs, pelvis, torso, neck, head, two arms, two forearms and two hands. The 
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segments are linked by ideal spherical joints thus defining a model with 57 degrees of 

freedom. The global axes were defined as follows: x-axis in the postero-anterior direction, 

y-axis in the medio-lateral direction, and z-axis in the vertical direction. The 

computational model was defined with 228 mixed (natural and angular) coordinates. The 

subset of natural coordinates comprises the three Cartesian coordinates of 22 points, and 

the three Cartesian components of 36 unit vectors, thus making a total of 174 variables. 

The points correspond to the positions of all the joints (white dots in Fig. 1), along with 

points of the five distal segments –head, hands and forefeet– (black dots in Fig. 1). Each 

one of the 18 bodies was defined by its proximal and distal points, plus two orthogonal 

unit vectors aligned at the postero-anterior and medio-lateral directions, respectively (red 

and green vectors in Fig. 1), when the model is in the standing posture. The remaining 54 

variables were the 18 sets of 3 angles that define the orientation of each body with respect 

to the inertial frame. 

 

The geometric and inertial parameters of the model were obtained, for the lower limbs, 

by applying regression equations from a reduced set of measurements taken on the 

subject, following the procedures described in [13]. For the upper part of the body, data 

from standard tables [14] were scaled according to the mass and height of the subject. In 

order to adjust the total mass of the subject, a second scaling was applied to the inertial 

parameters of the upper part of the body. 
 

 

 

Figure 1. Three-dimensional model. 

 

The kinematic information of the motion was obtained from the trajectories of the 37 

markers attached to the subject’s body (red dots in Fig. 1a), which were captured at 100 

Hz frequency by means of the 12 infrared cameras. Position data were filtered using an 

algorithm based on Singular Spectrum Analysis (SSA) and the natural coordinates of the 

model were calculated using algebraic relations. Afterwards, a minimization procedure 

ensured the kinematic consistency of the natural coordinates. From that information, the 

histories of a set of 57 independent coordinates –as many as the system degrees of 

freedom– formed by the Cartesian coordinates of the position vector of the lumbar joint 

(J1 in Fig. 1b) and the 18 x 3 angles that define the absolute orientation of each body, 

were kinematically obtained and approximated by B-spline curves. Analytical 
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differentiation yielded the corresponding velocity and acceleration histories. More detail 

about the treatment of the captured data can be found in [15]. 

 

2.2 Planar model 

 

The planar model was obtained as the projection on the sagital plane of a simplifed 

version of the three-dimensional model described before. The model features 12 segments 

and 14 degrees of freedom, as shown in Fig. 2. The global axes were defined as follows: 

x-axis in the postero-anterior direction, y-axis in the vertical direction. The computational 

model was defined with 38 mixed (natural and angular) coordinates. The subset of natural 

coordinates comprises the two Cartesian coordinates of 13 points, which means 26 

variables. The points correspond to the positions of all the revolute joints (white dots in 

Fig. 2 left), along with points of the five distal segments –head, forearms and feet– (black 

dots in Fig. 2 left). Each one of the 12 bodies was defined by its proximal and distal 

points. The remaining 12 variables are the angle that defines the orientation of the trunk 

with respect to the y-axis of the inertial frame, plus the 11 angles that define the 

orientation of each segment with respect to the previous one in the kinematic chain (Fig. 

2 right). 

 

 

 

Figure 2. Planar model. 

 

This planar model can be found in the Library of Computational Benchmark Problems 

[16] developed by the IFToMM Technical Committee for Multibody Dynamics. The 

benchmark problem, named Gait 2D, provides the geometrical and inertial parameters of 

the model, the histories of the markers used to optically capture the motion of the subject 

described above, and the ground reactions measured by force plates. The temporal 

evolution of the 14 independent coordinates defining the motion, i.e. the two Cartesian 

coordinates of the hip joint and the 12 angular variables shown in Fig. 2 right, obtained 

after the same processing as that explained for the 3D model, are supplied too. 

 

3 Multibody formulation 

 

In this work, the formulation in minimum number of coordinates proposed in [17] and 

called matrix-R formulation was used. In this formulation, two sets of coordinates are 
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considered: a set of dependent coordinates, q, and a set of independent coordinates, z. In 

the 3D model, vector q is formed by the 228 model coordinates, while vector z, of size 

57, is composed by the three Cartesian coordinates of the lumbar joint plus the 18 sets of 

three angles defining the orientation of the bodies. In the 2D model, vector q is formed 

by the 38 model coordinates, while vector z, of size 14, is composed by the two Cartesian 

coordinates of the hip joint plus the 12 angles shown in Fig. 2 right. The equations of 

motion are stated as, 

 

  T T R MRz R Q MRz  (1) 

 

where M  is the mass matrix referred to q, R is the matrix relating the dependent and 

independent velocities, q Rz , and Q  is the vector of generalized forces referred to q. 

Therefore, the equations of motion (1) can be written in a compact form as, 

 

 Mz Q  (2) 

 

with 
TM R MR  and  T Q R Q MRz  the mass matrix and vector of generalized 

forces referred to z, respectively. The number of equations in (2) is 57 in the 3D case and 

14 in the 2D case, as many as the number of degrees of freedom of the model. 

 

For the forward-dynamics analysis, the equations of motion (2) were numerically 

integrated in time by means of the single step, fixed time step, trapezoidal rule. 

 

4 Inverse dynamic analysis 

 

First of all, an inverse-dynamics analysis (IDA) of the experimentally measured motion 

was performed (both for the 2D and 3D cases). As explained before, the histories of 

positions, velocities and accelerations of the independent coordinates, , , ,z z z  and of the 

dependent coordinates, , , ,q q q  were already known from the processing of the motion 

capture data. Then, writing the equations of motion (2) as, 

 

 m  rMz Q Q  (3) 

 

where mQ  is the vector of generalized motor forces and rQ  is the vector grouping all the 

remaining generalized forces, the unknown vector mQ  can be obtained as, 

 

  m r Q Mz Q  (4) 

 

which provides the net joint torques and the ground reactions that produced the acquired 

motion. 

 

The obtained ground reactions and net joint torques correspond to considering the pelvis 

(or trunk in the 2D case) as the base body. They can easily be transformed to their 

counterparts when the supporting foot is considered as the base body, thus yielding the 

proper values of external reactions and net joint torques. However, when the two feet are 

contacting the ground, the external reactions must be distributed between them. In this 
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work, this was done in the same proportion shown by the reactions measured by means 

of force plates, following the approach presented in [15]. Therefore, the computed ground 

reactions are fully consistent with the motion, and no residual wrenches are present. 

 

5 Forward dynamics: fully actuated system 

 

In this work, the first approach to carry out a forward-dynamics analysis (FDA) of the 

acquired gait motion consisted of using trajectory tracking controllers associated to all 

the system degrees of freedom. This implies assuming that there exist actuators not only 

at joint level, which is indeed the case, but also for the six degrees of freedom of the base 

body (in the 3D case), which does not obviously correspond to reality. In fact, these 

external inputs come from the ground reactions, which are not modeled when using the 

present approach. They will appear in the next Section. 

 

The 3D model described before was used for this Section. The equations of motion (2) 

are written again as, 

 

 u r Mz Q Q  (5) 

 

where uQ  is the vector of the inputs provided by the controllers and rQ  is the vector of 

the remaining generalized forces. Three methods were considered within this first 

approach. 

 

5.1 Computed feedforward 

 

In the first method, the actuators associated to the system degrees of freedom introduce 

as inputs the external reactions and net joint torques previously calculated through inverse 

dynamics, so that, 

 

 u  mQ Q  (6) 

 

Ideally, the solution should be coincident with the original acquired motion but, as pointed 

out in the literature [14], it is not, due to the unstable character of human gait and to the 

integration errors. Initially, a time step of 10 ms was adopted for the FDA, but the 

simulation was completely unstable. Then, the time-step size was reduced to 1 ms. Since 

the IDA had been performed at 100 Hz, additional points had to be generated, which was 

straightforward as B-splines had been adjusted to the adquired motion, as explained in 

Section 2. Using the time step of 1 ms, the FDA was able to reproduce the motion until 

the 90% of the gait cycle and then drifted away. 

 

5.2 PD control with computed feedforward 

 

The second method consisted of using the same inputs as in the previous case, but 

including now a proportional-derivative (PD) control of the external reactions and the net 

joint torques so as to follow the acquired motion and avoid instabilities. The inputs 

provided by the controllers are in this case, 

 

    u m D ref P ref+   Q Q K z z K z z  (7) 
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where refz  is the vector containing the reference signals of the controllers, which are the 

measured values of the independent coordinates, and z is the vector containing the actual 

values of the independent coordinates. The gains of the controllers are gathered in the 

diagonal matrices PK  and DK , whose values, Pi
k  and Di

k , associated to each 

independent coordinate, were adjusted by trial and error. The gain values for the different 

degrees of freedom of the system are shown in Table 1 as functions of two basic 

parameters, Pk  and Dk , and the masses of the corresponding body segments, 

, 1,..., # of bodiesjm j  . 

 

Table 1. Selected gains for the PD controllers. 

 

P D350   ,   1k k   P /i jk m  D /i jk m  

Translation of 

the lumbar joint 

x Pk  Dk  

y 6 Pk  Dk  

z 8 Pk  8 Dk  

Rotation of body j 0.009 Pk  0.003 Dk  

 

As it happened for the first method, if a time step of 10 ms was used, the simulation was 

completely unstable. However, using again a time step of 1 ms, the FDA was able to 

reproduce the entire motion, although the results are very sensitive to the values selected 

for the gains of the controllers. Discrepancies between measured and calculated values 

for this method are in the order of 710  m for the translational coordinates (x, y, z of the 

lumbar joint), 510  rad for the angular coordinates, 210  N for the force components of 

the ground reaction, and 410  Nm for the moment components of the ground reaction and 

for the net joint torques. 

 

5.3 Computed Torque Control 

 

The third method consisted of using only, as input of the FDA, the actuation provided by 

the so-called computed torque control (CTC) [18]. The reference signals of the controllers 

are the same as those already explained for the previous method. Then, the inputs 

provided by the controllers are, 

 

    u ref D ref P ref r       Q M z C z z C z z Q  (8) 

 

where PC  and DC  are diagonal matrices containing the gains, Pic  and Di
c , associated 

to each independent coordinate. As explained in [18], the error dynamics of this control 

method is represented by a system of second order differential equations, having PC  and 

DC  as coefficients of the proportional and first derivative terms, respectively. Therefore, 

imposing the relation, 

 

 D P2i ic c  (9) 
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between the gains associated to a certain coordinate, critical damping is achieved, so that 

only one gain value should be tuned by coordinate. In this case, the Pic  values were 

adjusted. 

 

Unlike the previous method, this one proves to be very robust with respect to the selected 

gains, so that the same value can be given to all the elements of PC , as each controller is 

affected by the corresponding inertia, as shown in (8). Gain values for PC  ranging 

between 110  and 510  were tried, leading to stable simulations in all cases. 

 

This time, the method was able to complete the simulation even with a time step of 10 

ms, which represents an additional confirmation of its robustness. Although with such a 

time step the position errors were small, the errors in force/moment were notable. 

However, if the time step was set to 1 ms the results were excellent. For example, for a 

value of the Pic  elements of 310 , errors were in the order of 610  m for the translational 

coordinates (x, y, z of the lumbar joint), 410  rad for the angular coordinates, 1 N for the 

force components of the ground reaction, and 110  Nm for the moment components of 

the ground reaction and for the net joint torques. These errors are greater than those 

yielded by the previous method, but they can be reduced by increasing the gain values. 

However, some noise appears in the solution as the gains are increased. 

 

6 Forward dynamics: underactuated system 

 

As pointed out at the beginning of the previous Section, the human body does not possess 

actuators governing the degrees of freedom of the base body. Therefore, a new step is 

given towards reality in this Section, by assuming that there can be actuation in the joints, 

but not in the base body. From a mechanical point of view, this means that now the system 

is considered as underactuated. Controllers governing the actuators are to track a number 

of outputs, which can be trajectories, forces or a combination of both. In what follows, a 

CTC-like approach for underactuated systems is described [19-21], which provides the 

inputs of the controllers as functions of the mentioned outputs. To begin with, the 

equations of motion of the system (5) are reproduced here for clarity, 

 

 u r Mz Q Q  (10) 

 

where uQ  is the vector of the inputs provided by the controllers and rQ  is the vector of 

the remaining generalized forces. Since now the controllers are less than the number of 

degrees of freedom of the system, equation (10) is rewritten as, 

 

 r Mz Bu Q  (11) 

 

where u is the vector of actuations, which is projected into the space of independent 

coordinates through projection matrix B. 

 

The required outputs, y, are considered to be either functions of the coordinates (e.g. joint 

trajectories), 1y , or functions of the coordinates and their first derivatives (e.g. ground 

reactions produced by a contact model), 2y , 
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1

2 ,

    
  

y z
y

y z z
 (12) 

 

Differentiating (12) with respect to time (twice for 1y  and once for 2y ), and substituting 

then z  from (11) yields, 

 

 

 
 

 

1 11 1 1

2 22 2 2

1

r

ˆ
,



                     
         

    

zz z z

zz z z

y z HzH H H
y z z

y z z HzH H H

Az Dz Az DM Bu Q

 (13) 

 

so that the vector of actuations u can be worked out from Eq. (13) as, 

 

    1
1 1

r
ˆ

   u DM B y Az DM Q  (14) 

 

Now, calling 
1P DM B , and considering that feedback is introduced for the outputs, it 

results, 
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y K y y
 (15) 

 

where super-index ref indicates the desired values of the outputs, different from the 

current ones (without super-index), and DC , PC  and PK  are diagonal matrices 

containing the gains associated to each output. 

 

If the number of outputs is equal to that of actuators, matrix P is square and the required 

inputs can be determined from (15). If the number of outputs is greater than that of 

actuators, the required outputs can be satisfied in a minimum squares sense only, the 

system of equations to be solved being, 
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u P WP P W Az DM Q

y K y y
 (16) 

 

with W the weight diagonal matrix which assigns more weight to more relevant outputs. 

 

6.1 External reactions from inverse-dynamics analysis 

 

Since actuation can be provided at joints only, the external reactions should be supplied 

by a foot-ground contact model that evaluates them during the simulation as functions of 

feet position and velocity. However, this approach is highly challenging, since the 

discrepancies between the reactions yielded by the contact model and the true ones can 

be substantial, thus compromising control stability. Therefore, to start addressing the 

problem in a more feasible way, the external reactions obtained from IDA (Section 4) 

were introduced to the feet. The 3D model was considered in this case. The inputs were 
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the actuations at the 51 angular degrees of freedom associated to the joints, and the 

outputs were the corresponding angular coordinates, i.e. inputs and outputs affect to the 

same model coordinates. The gain values in matrix PC  of (15) were all set to 310 , while 

the values in matrix DC  were obtained by imposing relation (9), yielding a value of 63.24. 

Given that the outputs were coordinates, only the upper part of (15) was required. 

 

With a time step of 10 ms, the simulation failed. However, using a time step of 1 ms, the 

simulation worked well. RMS errors were of 6.09e-4 m for the translational coordinates 

(x, y, z of the lumbar joint), 8.87e-4 rad for the angular coordinates, and 1.5e-3 Nm for 

the net joint torques (errors in the external reactions do not apply to this case as they were 

imposed). 

 

6.2 External reactions from inverse-dynamics analysis with perturbation 

 

In order to go one step further and take into account that discrepancies are to be introduced 

when a contact model is used, a perturbation was added to the external reactions obtained 

from IDA. The perturbation consisted of a constant force of 1 N applied on the lumbar 

joint of the 3D model in the positive longitudinal direction (x-coordinate), which 

approximately represents 1% of the total longitudinal force.  

 

Initially, the inputs and outputs adopted were the same as in the previous sub-section, as 

were the values of the gains. The simulation could be run with a time step of 1 ms, leading 

to RMS errors below 1e-3 rad in the outputs. Since the motion of the base body was not 

considered as output, the perturbation had the effect of accelerating the longitudinal pelvis 

motion with respect to the acquired motion. In Fig. 3 left, it can be seen that the error in 

this magnitude grows with time, as this coordinate was not a control output, and the 

perturbed model overtakes its unperturbed counterpart. However, the error in, for 

example, the flexion angle between pelvis and trunk was kept very low, as a consequence 

of being a control output. 

 

      
 

Figure 3. Postures of the model at the end of the simulation without control of the 

longitudinal coordinate of the lumbar joint (left) and in the case of substituting, in the 

list of control outputs, the flexion angle between pelvis and trunk by the longitudinal 
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coordinate of the lumbar joint (right). In both pictures, the two superimposed images 

correspond to the same time point. 

 

Secondly, the x-coordinate of the lumbar joint was included in the list of control outputs 

but, in order to keep as many outputs as inputs, the flexion angle between pelvis and trunk 

was removed from the list. Again, the simulation could be completed for a time step of 1 

ms, yielding RMS errors below 1e-3 m or rad in the outputs at configuration level. This 

means that the longitudinal motion of the lumbar joint was correctly reproduced, since it 

had been included as a control output. However, the flexion angle between pelvis and 

trunk experimented a drift, as a result of not having been considered as a control output. 

These behaviors are represented in Fig. 3 right. 

 

6.3 External reactions from contact model 

 

In this sub-section, a contact model was considered at the interface between foot and 

ground to generate the external reactions. Two options are typically available for the 

contact model: a force model or a constraint model. If a force model is chosen, the system 

is certainly underactuated, and control methods for such types of systems must be used, 

as the one described at the beginning of this Section, facing the problem of the unstable 

nature of gait. If a constraint model is selected seeking to have a fully-actuated system at 

all times, constraints must be alternatively imposed to the feet (thus perturbing the 

continuous motion they experience during gait, even at the stance phase), and the impact 

at landing must be dealt with in some way. Therefore, a force model was applied in this 

work because it seems to be more consistent with reality. 

 

Moreover, there is a problem that must be faced when using foot-ground force contact 

models in the FDA of acquired gait motions: the selection of the contact model parameters 

and, more importantly, of the feet boundaries. A not sufficiently good location of feet 

boundaries can yield huge contact forces that make the simulation fail. Therefore, an 

optimization method to select the mentioned characteristics of the contact model, similar 

to the one proposed in [22], is required to be applied as a pre-processing stage, prior to 

the FDA, to ensure reasonable contact forces during the simulation. 

 

Given the challenging character of the objective pursued in this sub-section, it was firstly 

addressed for the 2D model, for which several choices of outputs and their corresponding 

weights were evaluated. Then, the 3D case was addressed. 

 

6.3.1 2D human model 

 

The planar model described in sub-section 2.2 is used in this sub-section. It is reminded 

here that the configuration vector z of 14 independent coordinates that was selected for 

this model is formed by the two Cartesian coordinates of the hip and the angle between 

vertical axis and trunk (three degrees of freedom of the base body), along with the 11 

relative angles illustrated in Fig. 2 right, 

 

  T

4 4 0 1 2 3 4 5 6 7 8 9 10 11x y            z  (17) 

 

Regarding the foot-ground force contact model, the nonlinear volumetric contact model 

proposed in [23] was used, for which the normal and tangential contact forces are defined 

as, 
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n h h cn

t ct n ct f ct s   ;   arctan

h
f k V a Vv

f v f v v v  
 

  
 (18) 

 

where V is the interpenetration volume, hk  is the hyper-volumetric pseudo-stiffness, h is 

an exponent which depends on the volumetric stiffness and geometrical properties, ha  is 

the foundation stiffness multiplied by the damping, cnv  and ctv  are the normal and 

tangential velocities at the centroid of the deformed volume, respectively,  is the friction 

coefficient, f  is the asymptotic friction coefficient, and sv  is a shape factor. Reasonable 

values of parameters h, f , and sv  where taken from [23], whereas values for hk  and ha  

were obtained by trial and error, bearing in mind that interpenetration areas are considered 

in the 2D case instead of volumes. The values of all the parameters are listed in Table 2. 

 

Table 2. Parameters of the foot-ground contact model. 

 

hk  h ha  f  sv  

510  0.79 62 10  0.34 0.034 

 

The optimization pre-process to set the feet boundaries is as follows. For each foot, a local 

reference system  ,x y  was defined as shown in Fig. 4, with the origin at the ankle and 

the -axisx  horizontal in the support position. Then, 10 equally-spaced points spanning 

the whole foot were taken along the -axisx . The -coordinatesy  of these points, 

,    1,2,...,10iy i  , which served to define the foot boundary through cubic splines, were 

the design variables of the optimization problem. The cost function to be minimized was 

the discrepancy between the histories of the ground reactions provided by the foot-ground 

contact model and those obtained from the IDA, when imposing to the foot the same 

recorded motion. Normal and tangential forces, as well as the reaction moment, were 

considered in the cost function, scaling the reaction moment by a factor of 100 in order 

to balance the weight of the three components. The ga genetic algorithm from Matlab 

[24] was used, for which no initial guess is required, and the resulting feet boundaries are 

depicted in Fig. 5. 

 

 
 

Figure 4. Foot boundary definition in the 2D case. 
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Figure 5. Feet boundaries obtained from the optimization pre-process. 

 

Once the model was completely defined, the formulations for underactuated systems 

described at the beginning of this Section were applied. 

 

Several alternatives in the choice of the outputs were investigated, looking for the one 

that yielded the best agreement between the result of the forward-dynamics simulation 

and the acquired motion. Here, the most representative options are described. The gain 

values in matrix PC  of (15) and (16) were all set to 310 , while those in matrix DC  were 

obtained by imposing relation (9), thus resulting in a value of 63.25; the values in matrix 

PK  were all set to 310 . In all cases, the simulations were run with a constant time step of 

1 ms. Remember that the human model considered had 14 degrees of freedom and 11 

inputs (joint actuators). 

 

The first strategy tested (case 1) was to define as many outputs as inputs, i.e. 11, choosing 

as outputs some 11 coordinates from the configuration vector z defined in (17). The 

selected outputs were the joint relative angles, while the three coordinates of the base 

body (trunk) were left free. The upper part of (15) was used to calculate the required 

inputs along the simulation. 

 

The second strategy tested (case 2) was to define more outputs than inputs, choosing as 

outputs the 14 coordinates of the configuration vector z defined in (17). The upper part 

of (16) was used to calculate the required inputs along the simulation. In this case, the 

weights for the outputs had to be decided, and used to build the weight matrix W. An 

equal weight value of 1 was chosen for all the outputs (other distributions were tested, 

but no significant differences were observed). 

 

The third strategy tested (case 3) was to define more outputs than inputs, as in case 2, but 

choosing as outputs the 14 coordinates of the configuration vector z defined in (17) plus 

the three ground reaction components (normal and tangential forces, and reaction 

moment) at each foot, i.e. 6 ground reaction components, leading to a total number of 20 

outputs [21]. The whole equation (16) was used to calculate the required inputs along the 

simulation. In this case, the weights required to build matrix W had to be decided too: the 

kinematic outputs were assigned a weight value 1, the ground normal reaction forces were 

assigned a weight value 310 , and both the ground tangential reaction forces and the 

reaction moments were assigned a weight value of 210 , so that the 20 outputs had a 

similar order of magnitude (as in case 2, other distributions were tested without relevant 

changes observed). 

 

The RMS errors between the acquired motion (reference) and the result of the forward-

dynamics simulation (cases 1, 2 or 3) are presented in Table 3. 
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Table 3. RMSE of the forward-dynamics simulation with respect to the acquired 

motion. 

 

RMSE Case 1 Case 2 Case 3 

Translational coordinates (m) 1e-2 9.7e-3 7.79e-2 

Angular coordinates (rad) 3.2e-3 2.7e-3 0.6 

Reaction forces (N) 163.99 164.66 139.36 

Reaction moments (Nm) 32.83 32.97 38.55 

Net joint torques (Nm) 27.09 27.14 288.82 

 

More detailed results are presented in the following. Figure 6 shows the histories of the 

three coordinates of the base body (trunk) and the right hip angle, for the three cases 

studied, and compares them with the result of the IDA, taken as reference. 

 

 
 

Figure 6. Coordinates of the base body (trunk) and right hip angle, obtained with 

different control strategies (case 1, solid; case 2, dotted; case 3, dashed) vs reference 

(IDA, grey solid). Plots of cases 1 and 2 are almost coincident. 

 

Figure 7 gathers the histories of the normal ground reaction force at the left foot for the 

three cases studied, and compares them with the result of the IDA, taken as reference. 

Note that the simulation started with the toe-off of the left foot. 
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Figure 7. Normal ground reaction force obtained with different control strategies vs 

reference (IDA). Plots of cases 1 and 2 are almost coincident. 

 

In the last two figures, it can be seen that cases 1 and 2 provide good motion correlation, 

although some peaks can be observed in the ground reactions. Conversely, case 3 yields 

an excellent correlation of the ground reactions, at the prize of being far from following 

the motion and making the model fall. Therefore, it was found that the best motion results 

were obtained when the ground reactions were not considered as outputs. 

 

To provide a clearer illustration of the obtained gaits, Fig. 8 compares the resulting model 

motion for case 2 with the acquired motion. 

 

 

 
Figure 8. Model motion in case 2 (black) vs reference (IDA, grey). 

 

Although, looking at Fig. 8, it could be thought that discrepancy between the acquired 

and simulated motion could have been caused by the existence of some sliding between 

foot and ground due to the adopted contact force model, implementation of a stick-slip 

model led to similar results. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 

6.3.2 3D human model  

 

The three-dimensional human model described in sub-section 2.1 was used in this sub-

section. It is reminded here that the configuration vector z of 57 independent coordinates 

that was selected for this model was formed by the three Cartesian coordinates of the 

lumbar joint plus the 18 sets of three angles defining the orientation of the bodies (Fig. 

1). 

 

The foot-ground force contact model was the same described for de 2D case, with the 

difference that in this case the feet boundaries were 3D spline surfaces. 

 

The optimization pre-process to set the feet boundaries was also analogous to that of the 

2D case. Splines were generated from a grid of 7x3 points, whose local -coordinatesz  

were optimized. However, in the 3D case it was very difficult to obtain feet boundaries 

which led to a stable behavior of the model in forward dynamics: small differences in the 

feet boundaries caused drifts in moments or foot placement that made the model fall. 

Therefore, some tiny hand-made adjustments to the optimization results were necessary 

to finally achieve a stable behavior in the forward-dynamics simulation. Figure 9 shows 

the shapes of the 3D spline boundaries obtained, and the points of the grid. 

 
Figure 9. Feet boundaries with 3D splines obtained from optimization for the right foot 

(right) and left foot (left). 

 

In this case, the strategy adopted was the one which provided the best motion tracking in 

the planar case, i.e. to define more outputs than inputs choosing as outputs the 57 

coordinates of the configuration vector z. The upper part of (16) was used to calculate the 

required inputs along the simulation, assigning to the gains in matrix PC  a value of 310

, and obtaining the gains in matrix DC  by application of (9), yielding a value of 63.25. 

All the weights needed to build matrix W were set to 1. The time step used to run the 

simulation was 1 ms. 
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Figure 10. Comparison of contact reactions (forces and moments) obtained from 

forward-dynamics simulation (black) and from IDA (grey) for the right foot (right) and 

left foot (left). 

 

As can be seen in Fig. 10, big discrepancies were found between the ground reactions 

generated when the model is run in forward dynamics and those obtained from the IDA. 

Despite this, the controllers managed to follow the acquired motion without falling during 

an entire gait cycle, with RMS errors of 0.0476 m for the translational coordinates (x, y, 

z of the lumbar joint), 0.0117 rad for the angular coordinates, 110.84 N for the force 

components of the resultant external reaction, 14.08 Nm for the moment components of 

the resultant external reaction and 14.66 Nm for the internal net joint torques. It must be 

noted that discrepancies grow with time, being greater for the left foot, which is second 

in touching down. 
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Figure 11. History of the left-foot normal contact force provided by forward-dynamics 

simulation (black) and IDA (grey) for the 2D (left) and 3D (right) models. 

 

In Figure 11, the history of the normal contact force for the left foot provided by Figure 

7 for the planar model (case 2) is compared with the history of the same foot provided by 

Figure 10 left for the 3D model. Since the experiment is the same, the comparison gives 

an idea of how the different modeling affects to the results. 

 

       
 

Figure 12. Postures of the model at the beginning (left), half (center) and end (right) of 

the forward-dynamics simulation compared with those of the acquired motion. In the 

three pictures, the two superimposed images correspond to the same time point. The feet 

boundaries considered are also illustrated. 

 

Figure 12 shows the comparison between the motion obtained by forward-dynamics 

simulation and the acquired motion. 
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7 Application to assisted gait 

 

The previously described approaches were also applied to the forward-dynamics analysis 

of the gait of a spinal cord injured subject assisted by orthoses and crutches. The subject 

was an adult female 41 years old, mass 65 kg and height 1.52 m with injury at thoracic 

vertebra 11 (T11). In the experiment, she was wearing a pair of passive knee-ankle-foot 

orthoses while walking over two embedded force plates (AMTI, AccuGait sampling at 

100 Hz) with the help of two instrumented crutches. Her motion was captured by 12 

optical infrared cameras (Natural Point, OptiTrack FLEX:V100 also sampling at 100 Hz) 

that computed the position of 43 optical markers, as illustrated in Fig. 13 (left). The study 

was approved by the institutional ethical committee and the subject gave her informed 

consent. 

 

    
 

Figure 13. Gait of spinal cord injured subject assisted by passive orthoses and crutches: 

acquired motion and computational model. 

 

The orthoses were a pair of standard leg braces that allow knee locking during gait so as 

to avoid knee flexion under the subject's weight in the support phase, and feature 

polymeric parts at ankle-foot level that provide ankle stiffness to prevent foot drop in the 

swing phase. One of them is shown in Fig. 14. 
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Figure 14. Passive left orthosis. 

 

Instrumented crutches were used in order to measure the ground reactions. For this 

purpose, extensometry was the selected technique by means of strain gauge-based load 

cells. Assuming that only a force reaction exists at the tip center, four Wheatstone bridges 

were required at each crutch to measure the three components of the force at the tip and 

the cuff reaction on the subject's forearm. Additionally, three reflective markers were 

placed on each crutch to provide its position for the optical motion capture. The location 

of load cells and markers is illustrated in Fig. 15. More details about the instrumentation 

of the crutches can be found in [15]. 

 

 
Figure 15. Instrumented crutch. 

 

The computational model used was the same three-dimensional model described in sub-

section 2.1 to which some additions were made in order to include orthoses and crutches. 

 

The crutches were introduced in the model as rigid bodies in natural coordinates. They 

were modeled using two points, one located at the intersection between the crutch bar and 

the handle (shared with the hand and, hence, already in the model), and another one 

located at the center of mass of the crutch, and two orthogonal unit vectors, one pointing 

forward and another one orthogonal to the first unit vector and to the crutch axis, thus 

adding a total of 18 variables to the model (two points and four unit vectors). The 
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inclusion of the crutches did not add any degree of freedom to the system, since they were 

considered as clamped to the hands. 

 

Regarding the orthoses, two options were considered, depending on whether the orthoses 

were fused with the models of the subject's legs or modeled as independent bodies. 

 

7.1 Orthosis model embedded in lower limb model 

 

In the first option, the orthoses were taken into account in the model by altering the inertia 

properties of the thighs, calves and feet accordingly, and by including torsional spring-

damper elements at knee and ankle levels to represent the locking and anti-foot-drop 

mechanisms, respectively. 

 

Therefore, the resulting 3D human model including orthoses (as embedded links) and 

crutches possessed 57 degrees of freedom and was defined by a total of 246 mixed 

(natural and angular) dependent coordinates. As in the previous cases where the 3D 

human model was used, the configuration vector z of 57 independent coordinates was 

formed by the three Cartesian coordinates of the lumbar joint plus the 18 sets of three 

angles defining the orientation of the bodies (Fig. 1). 

 

7.1.1 Fully actuated system 

 

The first approach to carry out the FDA of the acquired gait motion consisted of using 

trajectory tracking controllers associated to all the system degrees of freedom and, more 

specifically, the CTC algorithm explained in sub-section 5.3. 

 

Eq. (8) was used to calculate the required inputs along the simulation, assigning to the 

gains in matrix PC  a value of 310  and obtaining the gains in matrix DC  by application 

of (9), yielding a value of 63.25. The simulation was run with a constant time step of 1 

ms. 

 

The obtained results showed the same accuracy levels as those obtained for the healthy 

subject in sub-section 5.3. 

 

Figure 16 gathers the torques at knee and ankle levels exerted by the controller and the 

passive elements, and compares their addition with the total torques obtained from IDA: 

plots of both magnitudes cannot be distinguished in the graphs due to their good 

agreement. 
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Figure 16. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 

by orthosis (dotted), torque exerted by controller (dashed), total torque (addition of the 

former two, black solid), torque obtained from IDA (reference, grey solid). The black 

solid and grey solid plots are coincident. 

 

7.1.2 Underactuated system 

 

The alternative approach to carry out the FDA of the acquired gait motion is to use 

controllers acting at the joints only, and not in the base body, thus considering the system 

as underactuated, as explained in Section 6. This approach implies defining contact 

models for the system bodies interacting with the environment, i.e. the subject's feet and 

the crutches. 

 

Given that this assisted gait is more stable than the healthy one, due to the stabilizing 

effect of the crutches, a simpler foot-ground contact model could be applied. A set of four 

spheres (one attached to the forefoot and three to the hindfoot) featuring the Hunt-

Crossley normal contact force model and the bristle tangential force model proposed in 

[25] was used. The parameters of the contact model (for each sphere: local coordinates of 

the center, radius and contact parameters), were found by optimization using the ga 

genetic algorithm from Matlab according to the approach proposed in [22]. 

 

Regarding the crutch-ground contact, it was modeled as a sphere at the tip of the crutch 

to which the normal contact force presented in [26] and the bristle tangential contact force 

proposed in [25] were applied. The contact model parameters were found by optimization 

using the ga genetic algorithm from Matlab as described in [22]. 

 

In this case, the strategy adopted was the same applied in the 3D gait of a healthy subject 

in sub-section 6.3.2, i.e. to define more outputs than inputs, choosing as outputs the 57 

coordinates of the configuration vector z. Therefore, the upper part of (16) was used to 

calculate the required inputs along the simulation, assigning to the gains in matrix PC  a 

value of 310  and obtaining the gains in matrix DC  by application of (9), yielding a value 

of 63.25. The weights for the outputs needed to build weight matrix W were all set to 1. 

The time step used to run the simulation was 1 ms. 
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Figure 17. Comparison of ground reactions (forces and moments) obtained from 

forward-dynamics simulation (black) and from IDA (grey) for the right foot (right) and 

left foot (left). 

 

Unlike what happened with the healthy subject, the more stable nature of the gait of the 

injured subject provided by the additional contacts at the crutches, made it possible that 

the foot-ground and crutch-ground contact models obtained through optimization were 

directly usable in forward dynamics, yielding a good trajectory tracking without the 

necessity of any hand-made tuning. As can be seen in Fig. 17, notable discrepancies were 

found between the ground reactions generated when the model was run in forward 

dynamics and those obtained from the IDA. Despite this, the controllers managed to 

follow the acquired motion without falling, as illustrated in Fig. 18, with RMS errors of 

0.017 m for the translational coordinates (x, y, z of the lumbar joint), 4.1. 310  rad for the 

angular coordinates, 46.03 N for the force components of the external reaction, 11.08 Nm 

for the moment components of the external reaction and 16.57 Nm for the net joint 

torques. 
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Figure 18. Postures of the model at the beginning (left), half (center) and end (right) of 

the forward dynamic simulation compared with those of the acquired motion. In the 

three pictures, the two superimposed images correspond to the same time point. 

 

Figure 19 shows the torques at knee and ankle levels exerted by the controller and the 

passive elements, and compares their addition with the total torques obtained from IDA. 

Unlike what happened in sub-section 7.1.1, where full actuation was applied, this time 

the total torques present significant discrepancies with their respective references. 

 

 
 

Figure 19. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 

by orthosis (dotted), torque exerted by controller (dashed), total torque (addition of the 

former two, black solid), torque obtained from IDA (reference, grey solid). 

 

7.2 Orthosis model as independent body 

 

In the second option, the orthoses were considered as independent bodies (see Fig. 20). 

The lower link of each orthosis was connected to the subject's ankle by a revolute joint in 

the direction of the ankle axis, obtained upon processing of the acquired motion, while 

the upper link was connected to the lower link by another revolute joint at knee level, so 
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that each orthosis added two degrees of freedom. Inertial properties were assigned to the 

corresponding bodies. Moreover, torsional spring-damper elements were included in the 

revolute joints at knee and ankle levels to represent the locking and anti-foot-drop 

mechanisms, respectively. The limb/orthosis connecting elements were modeled by linear 

spring-dampers linking points of the limb and the orthosis, both at hip and knee levels. 

 

Additional natural coordinates were required this time to include the new four bodies in 

the 3D human model of sub-section 7.1. As illustrated in Fig. 20, for each orthosis one 

new point was defined at knee level (p1) and another one at hip level (p2), while the point 

at ankle level was simply shared with that already defined in the joint of the human model. 

Moreover, three new unit vectors were required for each part: v1 (shared with the foot) 

in the direction of the orthotic ankle axis, v2 and v3 for the lower link; v4 (shared with 

the lower link) in the direction of the orthotic knee axis for the upper link. Unit vector v1 

is calculated from the acquired motion, as it is not known a priori. Also, it must be noted 

that the orthotic ankle and knee axes can be different, and in fact they were in the case 

addressed, so that v1 and v4 might not be the same unit vector. Finally, the relative angles 

between foot and lower link, and between lower and upper links, respectively, were also 

added to the list (they are not drawn in Fig. 20 due to the lack of space). Therefore, a total 

increment of four points, twelve unit vectors and four angles was registered for the two 

devices, so that the resulting 3D human model including orthoses as independent bodies 

and crutches possessed 61 degrees of freedom and was defined by a total of 298 mixed 

(natural and angular) dependent coordinates. The configuration vector z of 61 

independent coordinates was formed by the three Cartesian coordinates of the lumbar 

joint plus the 18 sets of three angles defining the orientation of the bodies (Fig. 1), plus 

the two sets of two relative angles locating each orthotic open chain starting at the 

corresponding subject's ankle. 

 

 
 

Figure 20. Modeling of the orthoses as independent bodies: additional natural 

coordinates (points and unit vectors) required. 

 

7.2.1 Fully actuated system 

 

The first approach to carry out the FDA of the acquired gait motion consisted of using 

trajectory tracking controllers (the CTC algorithm explained in sub-section 5.3) 
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associated to all the subject's degrees of freedom. However, it must be noted that no 

control was exerted over the degrees of freedom of the orthoses. 

 

Eq. (8), but limited this time to the subject's degrees of freedom, was used to calculate the 

required inputs along the simulation, assigning to the gains in matrix PC  a value of 310  

and obtaining the gains in matrix DC  by application of (9), yielding a value of 63.25. The 

simulation was run with a constant time step of 1 ms. 

 

The obtained results were similar in accuracy to those obtained for the case when the 

orthoses were modeled as embedded in the subject's legs (sub-section 7.1.1). However, 

this time histories of limb/orthosis misalignments and interaction forces could be 

calculated too. 

 

Figure 21 shows the histories of the torques exerted by the right orthosis at knee and ankle 

levels. It can be seen that the addition of the torques exerted by the orthosis and the 

controller does not exactly match the torque obtained from IDA for the model with 

orthoses embedded in the legs (as it happened in sub-section 7.1.1), since now 

misalignment can exist between leg and orthosis. 

 

 
 

Figure 21. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 

by orthosis (dotted), torque exerted by controller (dashed), total torque (addition of the 

former two, black solid), torque obtained from IDA (reference, grey solid). 

 

Figure 22 shows the histories of the misalignments and the interaction forces between 

limb and orthosis, both at knee and hip levels. It can be seen that they are notably higher 

on the left side, thus indicating a strong asymmetry of the gait. Furthermore, while 

misaligment is higher at hip than at knee level for the left side, force interaction works 

the other way around. However, a different behavior is found on the right side, where 

misalignment and force interaction are more similar at both levels, and there is some kind 

of proportionality between both magnitudes. 
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Figure 22. Limb/orthosis misalignment (left) and interaction force (right): left hip level 

(solid), right hip level (dotted), left knee level (dashed), right knee level (dashed-

dotted). Grey areas correspond to swing phases of right (first) and left foot. 

 

 

7.2.2 Underactuated system 

 

The second approach to carry out the FDA of the acquired gait motion was to consider 

the system as underactuated, i.e. with controllers acting at the subject's joints only, but 

not on the base body (Section 6). As in sub-section 7.2.1, the orthoses degrees of freedom 

were not controlled. 

 

The contact models for the subject's feet and the crutches were the same used in sub-

section 7.1.2, i.e. when the orthoses were modeled as embedded in the subject's legs. 

 

The control strategy adopted was the same applied in the 3D gait of a healthy subject in 

sub-section 6.3.2, i.e. to define more outputs than inputs, choosing as outputs the 57 

coordinates of the subject's configuration vector z. Therefore, the upper part of (16) was 

used to calculate the required inputs along the simulation, assigning to the gains in matrix 

PC  a value of 310  and obtaining the gains in matrix DC  by application of (9), yielding 

a value of 63.25. The weights for the outputs needed to build weight matrix W were set 

to 1. The time step used to run the simulation was 1 ms. 
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Figure 23. Comparison of contact reactions (forces and moments) obtained from 

forward dynamic simulation (black) and from IDA (grey) for the right foot (right) and 

left foot (left). 

 

Again, as it happened for the case when the orthoses were modeled as embedded in the 

subject's legs (sub-section 7.1.2), the foot-ground and crutch-ground contact models 

obtained through optimization were directly usable in forward dynamics, yielding a good 

trajectory tracking without the necessity of any hand-made tuning. Also again, notable 

discrepancies were found between the ground reactions generated when the model was 

run in forward dynamics and those obtained from the IDA, as illustrated in Fig. 23. 

Despite this, the controllers managed to follow the acquired motion without falling, as 

illustrated in Fig. 24, with RMS errors of 0.023 m for the translational coordinates (x, y, 

z of the lumbar joint), 5.2. 310  rad for the angular coordinates, 48.38 N for the force 

components of the external reaction, 11.12 Nm for the moment components of the 

external reaction and 27.24 Nm for the net joint torques. 
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Figure 24. Postures of the model at the beginning (left), half (center) and end (right) of 

the forward-dynamics simulation compared with those of the acquired motion. In the 

three pictures, the two superimposed images correspond to the same time point. 

 

Figure 25 shows the histories of the torques exerted by the right orthosis at knee and ankle 

levels. While results at ankle level are very similar to those obtained in the previous sub-

section (7.2.1), although a little bit noisier, the torque exerted by the controller exhibits 

more extreme values at knee level, which translates to the total torque. Again, as it 

happened in sub-section 7.2.1, the addition of the torques exerted by the orthosis and the 

controller does not match the torque obtained from IDA for the model with orthoses 

embedded in the legs due to the misalignment that may exist between leg and orthosis. 

 

 
 

Figure 25. Torques in the right leg: knee level (left), ankle level (right). Torque exerted 

by orthosis (dotted), torque exerted by controller (dashed), total torque (addition of the 

former two, black solid), torque obtained from IDA (reference, grey solid). 
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Figure 26 shows the histories of the misalignments and the interaction forces between 

limb and orthosis, both at knee and hip levels. It can be seen that the plots are very similar 

to those obtained in sub-section 7.2.1. 

 
 

Figure 26. Limb/orthosis misalignment (left) and interaction force (right): left hip level 

(solid), right hip level (dotted), left knee level (dashed), right knee level (dashed-

dotted). Grey areas correspond to swing phases of right (first) and left foot. 

 

8. Discussion and conclusions. 

 

Sections 5-7 have addressed the forward-dynamics analysis of human gait at skeletal level 

by means of control methods: full actuation was applied in Section 5, using three control 

methods; underactuation was considered in Section 6, with several strategies in the 

selection of the outputs to be tracked, and in the way the ground reactions were included; 

both previous approaches were tested in Section 7 for the case of a gait assisted by 

orthoses and crutches, with two options for modeling the orthoses. Most relevant results 

are summarized in Table 4, where values are approximated to streamline comparison. 
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Table 4. Summary of results of Sections 5 (full actuation), 6 (underactuation) and 7 (full 

actuation and underactuation applied to assisted gait). Time step of integration 1 ms. 

 

Sec. 
Type 

of gait 

Control 

actuation 

RMSE 

trans. 

coord. 

RMSE 

ang. 

coord. 

RMSE 

react. 

forces 

RMSE 

react. 

mom. 

RMSE 

drive 

torq. 

Remarks 

5 normal full 

failed failed failed failed failed 
computed 

feedforward 

1.e-7 1.e-5 1.e-2 1.e-4 1.e-4 
PD with 

comp. f.f. 

1.e-6 1.e-4 1.e0 1.e-1 1.e-1 CTC 

6 normal underact. 

6.e-4 8.e-4 0.e0 0.e0 1.e-3 
ext. react. 

from IDA 

4.e-2 1.e-2 1.e2 1.e1 1.e1 
ext. react. 

cont. model 

7 
assisted 

 

full 

1.e-6 1.e-4 1.e0 1.e-1 1.e-1 
orthoses 

embedded 

1.e-6 1.e-4 1.e0 1.e-1 1.e-1 
orthoses as 

indep. bod. 

underact. 

1.e-2 4.e-3 4.e1 1.e1 1.e1 
orthoses 

embedded 

2.e-2 5.e-3 4.e1 1.e1 2.e1 
orthoses as 

indep. bod. 

 

From the obtained results (Section 5), it can be concluded that the CTC is a useful method 

to carry out the forward-dynamics analysis of an acquired gait motion at skeletal level, 

since it provides a good level of accuracy in both motion and external reactions, and 

requires almost no effort in tuning the gains of the controllers. Although, apparently, the 

approach has no advantages over an inverse-dynamics analysis for healthy gait at skeletal 

level, it can be exploited when descending to muscular level, as in that case the 

simultaneous integration of the equations of motion and the equations of muscular 

activation and contraction does provide better dynamic consistency than the inverse-

dynamics approach. 

 

Regarding the control strategy (Section 6), full actuation (i.e. actuation on all the subject's 

degrees of freedom) proved to be clearly superior to underactuation (i.e. actuation on the 

subject's joints only), although the underactuated case with input of the external reactions 

calculated from IDA yielded quite satisfactory results. When the external reactions come 

from a contact model, acceptable accuracy can be achieved at the configuration level only, 

while high errors appear at the force level since fitting the contact model revealed 

certainly problematic; higher resolution of the motion capture equipment could improve 

that (particularly critical for the feet), but it is not clear up to what extent [23]. It is true 

that the underactuated control strategies tested in this work were limited to the tracking 

of coordinates and ground reactions [21], and that perhaps other alternatives could be 

more successful: exploration of recent dynamic walking control methods for the gait of 

humanoid robots [27,28] or virtual characters [29,30] might be interesting in this sense. 

 

Perhaps the most meaningful application of the forward-dynamics analysis of an acquired 

gait at skeletal level is the estimation of the interaction behavior between the subject's 

body and assistive devices (Section 7), which can hardly be obtained through an inverse-

dynamics approach when the motion capture process doesn’t provide enough resolution 
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to distinguish the motions of limb and device. It has been shown that, in the case of lower-

limb orthotic devices, maximum information about the interactive behavior can be 

extracted when they are modeled as independent bodies, although additional work is 

required in this direction, as identification of the interface parameters and experimental 

validation of the results. 
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