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ABSTRACT
Skeletal muscle abnormalities are responsible for significant disability in the 

elderly. Sarcopenia is the main alteration occurring during senescence and a key 
public health issue as it predicts frailty, poor quality of life, and mortality. Several 
factors such as reduced physical activity, hormonal changes, insulin resistance, 
genetic susceptibility, appetite loss, and nutritional deficiencies are involved in 
the physiopathology of muscle changes. Sarcopenia is characterized by structural, 
biochemical, molecular and functional muscle changes. An imbalance between anabolic 
and catabolic intracellular signaling pathways and an increase in oxidative stress 
both play important roles in muscle abnormalities. Currently, despite the discovery 
of new targets and development of new drugs, nonpharmacological therapies such 
as physical exercise and nutritional support are considered the basis for prevention 
and treatment of age-associated muscle abnormalities. There has been an increase in 
information on signaling pathways beneficially modulated by exercise; nonetheless, 
studies are needed to establish the best type, intensity, and frequency of exercise to 
prevent or treat age-induced skeletal muscle alterations.

INTRODUCTION

With improved life conditions in the population 
and the availability of treatments for various diseases, 
particularly infectious and cardiovascular diseases, life 
expectancy and consequently the number of elderly 
in the population has increased [1]. Worldwide the 60 
years and over population is predicted to rise from 841 
million in 2013 to more than 2 billion by 2050 [2]. Muscle 
tissue has a wide range of functions and skeletal muscle 
abnormalities are responsible for significant disability 
in the elderly [3]. Sarcopenia is an important alteration 
occurring during senescence and a key public health issue 
as it predicts frailty, poor quality of life, and mortality 
[4-7]. The prevalence of low muscle mass is estimated 
to be between 8 and 40% depending on the population 
studied and the methods used to identify sarcopenia 
[8]. It ranges from 15% at 65 years to 50% at 80 years 

[6, 7, 9]. Although several factors can be involved, the 
physiopathology of muscle changes in healthy aging is not 
completely understood. Disruption of signaling networks 
involving systemic and skeletal muscle reactive oxygen 
species (ROS) has received increasing attention in recent 
decades [10]. Physical exercise is widely considered 
an important intervention for increasing longevity and 
promoting well-being and healthy aging.

In this review we first present the definition of 
sarcopenia. We then discuss the pathophysiological and 
molecular mechanisms underlying muscle changes during 
aging highlighting the role of oxidative stress. And finally, 
as strategies to prevent and treat age-associated muscle 
changes, we emphasize the role of physical exercise and 
introduce newer agents being developed. 
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DEFINITION OF SARCOPENIA

Sarcopenia is characterized by age-associated 
progressive and generalized skeletal muscle mass and 
function loss occurring in the absence of underlying 
diseases. The definition of sarcopenia is still a matter of 
controversy and an evolving concept. In accordance with 
the European Working Group on Sarcopenia in Older 
People, sarcopenia diagnosis requires documentation of 
both low muscle mass and low muscle function (strength 
or performance) [11]. Low muscle mass was established 
as lean appendicular mass corrected for height squared of 
2 or more standard deviations below the mean for healthy 
persons between 20 and 30 years of age from the same 
ethnic group [12, 13]. By using this definition diagnosis 
depends on laboratory investigation. Although dual-energy 
X-ray absorptiometry and bioelectrical impedance have 
been used to evaluate body composition and estimate total, 
lean and fat mass, computed tomography and magnetic 
resonance imaging are the gold standard for muscle mass 
assessment [14, 15]. As these techniques are expensive, 
the approach recommended by the International Working 
Group on Sarcopenia and the Foundation for the National 
Institutes of Health Sarcopenia Project requires the 
presence of either low physical performance or muscle 
strength as indications to measure muscle mass [9, 16]. 

For clinical purposes, ranges of cut-points were 
proposed to evaluate physical performance, muscle 
strength, and appendicular lean mass. A gait speed 
lower than 0.8 m/s to walk a set distance, such as 4 m, 
at usual pace has been used to determine low physical 
performance [11, 12]. Muscle strength can be evaluated 
by several different ways [11]. Grip strength is the most 
practical method in clinical settings and it correlates with 
lower limb physical performance measurements [17]. Grip 
strength cut-points have been proposed; they are 26-30 
kg in men and 16-19 kg in women [3, 18]. Interestingly, 
observations have shown that strength may predict the risk 
of disability and mortality better than muscle mass [19, 
20]. Cut-points for skeletal muscle mass vary according 
to population, medical societies and the methods used to 
normalize muscle mass, whether height squared or body 
mass index [18]. An appendicular skeletal muscle mass 
(kg) divided by height (m) squared below 7.26 kg/m2 in 
men and 5.45 kg/m2 in women has been used to diagnose 
sarcopenia [16, 21]. 

Sarcopenia should be differentiated from muscle 
loss associated with chronic disease, which is preferably 
called muscle wasting. Distinct syndromes with prominent 
muscle wasting include cachexia, frailty, and sarcopenic 
obesity [14, 22]. Cachexia is characterized by body 
weight, fat, and muscle loss due to an underlying illness 
[4]. Frailty, also associated with medical comorbidities, 
has been empirically characterized by weight loss, 
slowness, exhaustion, low physical activity, and weakness. 
Three of these frailty indicators are required to define the 

full frailty syndrome [23]. Sarcopenic obesity is the co-
existence of obesity and sarcopenia. Lipid infiltration 
in muscle tissues exacerbates sarcopenia by preventing 
amino acids incorporation and protein synthesis [24, 25].

AGING-ASSOCIATED SKELETAL MUSCLE 
ALTERATIONS

The main alteration associated with aging is 
muscle atrophy. Progressive muscle mass loss starts 
at approximately the age of 40 years; it is estimated at 
about 8% per decade until the age of 70 years and then 
it increases to 15% per decade [6]. Reduction in muscle 
mass is combined with an increase in body fat mass; 
consequently, body weight usually remains unchanged. 

Several underlying structural and biochemical 
changes in muscle have been described in the elderly. 
Muscle cross-sectional area can be up to 30% less at 
70 years than at 20 years old and is associated with an 
accumulation of fat within muscle [26, 27]. A shift in 
muscle fiber composition occurs in advancing age with 
a decrease in large fast-twitch glycolytic (Type II) fiber 
[9]. Changes in motor neurons have also been observed; 
with ageing, the number and activity of motor units are 
decreased impairing motor control [28, 29]. Alterations 
in the type of fibers may occur when type II myofibers 
are re-innervated by type I motor neurons [28]. However, 
whether this motor unit change is a cause of sarcopenia 
or a compensatory adaptive response to sarcopenia is 
unresolved [12]. 

As a consequence of structural and biochemical 
changes, muscle strength and functional capacity are 
reduced in the sarcopenic elderly [30]. The Health and 
Body Composition Study including 1880 older subjects 
showed a strong association between muscle mass and 
strength [31]. Leg strength decreases 10-15% per decade 
until 70 years of age, and then it declines 25% to 40% 
by decade [6]. Muscle strength is approximately 20-40% 
lower at 70 years than in young adults [27]. Reduction in 
muscle function is an important issue in clinical settings as 
it is independently associated with increased risk of falls, 
disability, and mortality in the elderly [32].

ETIOLOGY AND INTRACELLULAR 
PATHWAYS INVOLVED IN AGING-
ASSOCIATED MUSCLE CHANGES

Muscle loss is a multifactorial and not completely 
understood condition which occurs in the elderly and 
several systemic diseases [33, 35]. Although its main 
causative agents include reduced physical activity [36, 
37], hormonal changes [38], insulin resistance [39, 40], 
genetic susceptibility [41], appetite loss and nutritional 
deficiencies [42, 43], their contribution to the normal 
aging process has not been fully determined.
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Physiological maintenance of skeletal muscle 
mass depends on a delicate balance between anabolic 
and catabolic factors. Muscle loss results from a 
disproportionate decrease in muscle protein synthesis 
and/or an increase in protein breakdown (Figure 1) 
[9]. There is substantial evidence that anabolic drive is 
reduced in ageing [12]. An important anabolic pathway 
inducing protein synthesis involves activation of the 
phosphatidylinositol 3-kinase (PI3K)/serine threonine 
kinase (Akt), which stimulates mammalian target of 
rapamycin (mTOR) [44]. Most anabolic stimuli, such as: 
insulin and insulin-like growth factor 1 (IGF-1), exercise, 
and testosterone, upregulate this pathway [45]. As aging 
is associated with a sedentary lifestyle, IGF-1 and insulin 
resistance, and lower testosterone levels, this pathway 
is inhibited and muscle protein synthesis is blunted [4]. 
A vicious cycle can be observed in aging as muscle loss 
impairs physical capacity and immobility reduces muscle 

mass [12]. Furthermore, testosterone can also stimulate 
myoblasts and satellite cells [46]; and IGF-1 stimulates 
satellite cell proliferation [47, 48] and inhibits protein 
degradation [49, 50]. All these mechanisms which act in 
myocyte repair and muscle mass preservation are blunted 
in aging. 

The role of increased protein catabolism on muscle 
changes is less understood [51]. The main proteolytic 
pathways can be found in skeletal muscle: lysosomal, Ca2+ 
dependent, caspase dependent, and ubiquitin-proteasome 
dependent pathways [52]. The ubiquitin-proteasome 
system is one of the most important pathways responsible 
for intracellular degradation of striated muscle proteins 
[53-55]. However, its role remains controversial during 
aging; recent data suggests that protein degradation is 
more likely mediated by the Ca2+ dependent calpain and 
autophagy pathways than the ubiquitin-proteasome system 
[50, 56]. Under physiological conditions, autophagic 

Figure 1: The effects of aging on the signalling pathways associated with protein synthesis and protein degradation. 
Red: catabolic pathways. Blue: anabolic pathways. Dash lines: inhibition. Dotted lines: no stimulation. The main alteration associated with 
aging is muscle atrophy. Muscle loss results from a disproportionate decrease in muscle protein synthesis and/or an increase in protein 
breakdown. Protein synthesis and degradation are regulated by several different stimuli, which activate multiple signaling pathways. See 
the main text for further details.
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processes are closely regulated; autophagy inhibition 
leads to intracellular garbage accumulation, while its 
excessive activation is associated with autophagic cell 
death and loss of muscle mass [57]. The PI-3K/Akt/mTOR 
pathway, as well as stimulating protein synthesis, inhibits 
protein degradation [4]. PI-3K/Akt inhibits forkhead 
box transcription factor O (Fox-O), a potent inductor of 
the ubiquitin-proteasome system, and mTOR decreases 
caspases activity. Furthermore, physical inactivity 
stimulates Fox-O, which can also inhibit the mTOR 
pathway [4]. Also the reduction in number and activity of 
lower motor neurons contribute to inactivity and muscle 
breakdown [29].  

Satellite cells are a major source of muscle 
regeneration; however, it is unclear whether a decrease in 
their number or regenerative capacity is involved in aging 
muscle changes [50, 58]. Another pathway which may be 
involved in muscle atrophy is myostatin, a member of the 
transforming growth factor-β family. Myostatin is secreted 
by cardiac and skeletal muscle cells and acts locally by 
negatively modulating skeletal muscle mass. Myostatin 
inhibits the Akt/mTOR pathway, activates Fox-O, and 
decreases satellite cells number and regeneration [45, 50]. 
Despite all these effects, the role of myostatin on aging 
and different muscle wasting conditions is not completely 
clear [4, 59-61].

Mitochondria integrate several cell signals including 
energy supply, ROS generation, and apoptosis. A decrease 
in mitochondrial content and function was observed during 
ageing and may contribute to reduced mitochondrial 
bioenergetics and increased mitochondrial-derived ROS 
production and apoptotic cell death [56, 62-65]. Apoptosis 
decreases muscle size by reducing fiber number and 
decreasing the nuclear-to-cytoplasm ratio by targeted 
myonuclei removal [29]. Mitophagy, the removal and 
degradation of dysfunctional portions of mitochondria, 
is also changed during aging [56, 66]. Peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α) is a key regulator of mitochondrial biogenesis 
in skeletal muscle. Recent data suggested that a reduction 
in PGC-1α signaling is associated with decreased Akt 
and mTOR expression in ageing [67]. Furthermore, 
overexpression of PGC-1α in aged mice attenuated 
mitochondrial impairment, apoptosis, autophagy, 
proteasome activity, and muscle loss [67]. Mitochondrial 
changes are therefore considered to greatly contribute to 
age-associated muscle alterations [29, 50, 56, 68].

More recently, the role of iron on muscle changes 
has attracted great interest. Iron deficiency has been linked 
to several alterations such as decreased physical capacity 
and muscle mass; altered oxidative-to-glycolytic fiber 
ratio; reduced myoglobin pool; decreased mitochondria 
and mitochondrial cristae density; and reduced oxidative 
metabolism with increased glycolytic activity [69]. 
Despite this information suggesting iron deficiency plays 
a role in impairing physical capacity, iron status has been 

poorly addressed in age-associated muscle changes. 
Finally, inflammation is not considered an important 

factor causing muscle loss in healthy ageing [15]. 
Although increased interleukin-6 levels can occur in 
advancing age [67], and elevated tumor necrosis factor 
alpha (TNF-α) in elderly individuals has been associated 
with reduced muscle mass and strength [6], it is not clear 
whether inflammatory activation is due to ageing alone 
or underlying comorbidities. Furthermore, inflammatory 
pathways involving NF-κB are typically not activated in 
sarcopenia [4].

REACTIVE OXYGEN SPECIES AND 
SKELETAL MUSCLE AGEING

Oxidative stress is characterized by increased 
levels of ROS and/or reactive nitrogen species. It can 
be caused by decreased antioxidant capacity due to low 
concentrations of antioxidants and impaired antioxidant 
enzymes activity, and/or by increased ROS production 
[70]. At physiological concentrations, ROS play essential 
roles in redox signaling and cell survival by activating 
or inhibiting enzymes such as mitogen-activated protein 
kinase (MAPK), phosphatases, and gene-dependent 
cascades [30]. However, high ROS levels induce 
alterations or damage to DNA, proteins, and lipids, and 
can stimulate apoptotic cell death [50, 71].

Skeletal muscles consume large quantities of oxygen 
and can generate a great amount of ROS. ROS are mainly 
generated in mitochondria during normal respiration 
as a by-product of oxidative phosphorylation [29, 71]. 
They can also be produced in cytosol and membranes 
in response to different stimuli including growth factors 
and inflammatory cytokines [71-73]. Several enzymes 
participate in ROS generation, including xanthine oxidase, 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase, and nitric oxide synthase [74]. Skeletal muscle 
also generates reactive nitrogen species (RNS) [75]. 
The ROS/RNS-induced modifications include nitration, 
nitrosylation, carbonylation, and glycation [30]. Under 
physiological conditions, oxidative stress is neutralized by 
the antioxidant system, which includes endogenous and 
exogenous molecules. The main enzymatic defenses are 
superoxide dismutase, catalase, and glutathione peroxidase 
[71]. These enzymes can be modified by exercise, 
nutrition, and aging [76]. Exogenous antioxidants mainly 
include vitamins (e.g., vitamin E, vitamin C) and minerals 
(zinc, copper, iron) [30]. The antioxidants maintain muscle 
redox status and attenuate ROS-induced intracellular 
changes [30].

Due to the increased oxidative stress levels observed 
in aged muscle, ROS accumulation has been suggested as 
playing a role in muscle changes and sarcopenia. The first 
free-radical theory of aging was proposed by Harman in 
1956 [77], who hypothesized that endogenously generated 
reactive oxidants cause cumulative oxidative damage to 
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macromolecules resulting in the aging phenotype. In aging, 
oxidant production from several sources is increased, 
antioxidant enzymes are decreased, and the adaptive 
response to oxidative stress is reduced. Increases in ROS 
and RNS production are mainly due to mitochondrial 
dysfunction caused by age-related mitochondrial DNA 
mutations, deletions, and damage. Extensive damage to 
mitochondrial DNA and impaired DNA repair mechanisms 
in skeletal muscle have been observed with advancing age 
[29, 78, 79]. Furthermore, the impaired ability of muscle 
cells to remove dysfunctional mitochondria can contribute 
to enhanced ROS production [56]. These increased ROS 
levels cause progressive damage to mitochondrial DNA, 
thus creating a vicious cycle [29, 80, 81].

As previously reported, faster age-induced decline 
in Type II fibers can at least be partially attributable to a 
greater oxidative injury and apoptosis, as this type of fiber 
has lower mitochondrial content and is more susceptible 
to atrophy than the Type I fibers with a high mitochondrial 
content [82, 83]. Increased ROS production also activates 
the ubiquitin-proteasome system and muscle proteases 
(i.e., caspases, calpains) leading to protein breakdown 
[30]. Furthermore, repair systems, such as the proteasomal 
degradation of damaged proteins, are impaired in aging 
[30, 84]. 

ROS and RNS accumulation is also associated with 
intracellular functional changes in fiber activation at the 
neuromuscular junction, excitation-contraction coupling, 
and at cross-bridge cycling within the myofibrillar 
apparatus [30]. Intrinsic changes in the excitation-
contraction process can explain the fact that strength 
deficit can be more rapid than the concomitant reduction 
in muscle size in elderly individuals [30].

PREVENTION AND TREATMENT OF 
AGEING-ASSOCIATED SKELETAL 
MUSCLE CHANGES

Despite extensive studies on the molecular pathways 
involved in age-associated skeletal muscle changes, it 
has been difficult to develop specific therapies for their 
prevention and treatment. Different options have been 
described, mostly evaluated in experimental settings 
or small clinical trials. Currently, nonpharmacological 
therapies such as physical exercise and nutritional support 
are considered the basis for prevention and treatment of 
age-associated muscle abnormalities [9].

PHYSICAL EXERCISE

Exercise is the most effective intervention in 
preventing and treating skeletal muscle changes and 
sarcopenia in older individuals. Exercise training not only 
attenuates muscle loss but increases muscle mass and 
strength, and improves functional capacity and survival 

[15, 57, 85-89]. However, the molecular mechanisms and 
signaling pathways involved in exercise benefits are not 
completely clear.

Anabolic and catabolic muscle pathways are strongly 
influenced by physical exercise. Regular training improves 
muscle mass and strength by increasing protein synthesis, 
number of myofibrils, and fiber cross-sectional area [90]. 
Exercise increases IGF-1 levels with the subsequent 
activation of mTOR to induce protein synthesis; mTOR 
may also be activated by muscle mechanical loading [50, 
85]. Furthermore, exercise increases myofibrillar protein 
through satellite cell activation, and decreases muscle fat 
infiltration [85]. Besides stimulating muscular anabolism, 
exercise inhibits protein degradation, an effect probably 
mediated by the lower levels of oxidative stress following 
training (see below) [50]. The intensity of autophagic 
modulation by exercise depends on fiber type and training 
duration and intensity [57]. Other mediators of muscle 
loss that exercise may target in ageing are myostatin 
and Fox-O, which are reduced by aerobic training 
[91]. Reduced myostatin signaling represses atrogene 
transcription and consequently protein degradation [50]. 

Physical training also modulates other muscle cell 
organelles [92]. Mitochondria are strongly influenced 
by exercise, which prevents a decrease in their content 
and function during aging [56, 62]. In fact, the level of 
physical activity is one of the most important determinants 
of mitochondrial function in aging muscle [56].

In 1982 Davies et al. [93] observed increased 
muscle ROS generation in exercised rats. It was later 
demonstrated that a single bout of exercise exceeding a 
certain intensity or duration increases ROS production 
from the mitochondrial respiratory chain or other oxidases 
and leads to oxidative damage to lipids, proteins, and DNA 
[94]. However, regular exercise increases ROS formation 
to a level that may cause significant but tolerable damage, 
which in turn, can induce beneficial adaptations by up-
regulating cellular antioxidant systems and stimulating 
oxidative damage repair systems [95-100]. In fact, a 
clinical trial showed that the effects of exercise mediated 
by a transient increase in ROS production leading to 
enhanced insulin sensitivity were prevented by antioxidant 
supplementation with vitamin C or vitamin E [101]. These 
results suggest that acute ROS production in healthy 
individuals is required for skeletal muscle adaption to 
exercise [75]. Thus, contrary to what occurs after acute 
bouts of exercise, chronic exercise is associated with 
decreased levels of oxidative stress markers and increased 
enzymatic and non-enzymatic antioxidant capacity in 
young, middle-aged, and elderly individuals [29, 102-
106]. Muscle biopsies showed reduced oxidative stress 
and increased catalase expression in lifelong trained 
older adults compared with their untrained counterparts 
[50, 107]. Increases in antioxidant enzymes have been 
associated with improvements in ageing skeletal muscle 
changes [108]. For example, overexpression of anti-
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oxidant enzyme Cu2+,Zn2+-superoxide dismutase in mice 
prevented age-related muscle impairment [108].

PGC-1α is a central regulator of exercise-induced 
mitochondrial adaptations and metabolic reprogramming. 
After exercise, its expression is activated by kinases 
including MAPK and adenosine monophosphate-activated 
protein kinase (AMPK), which are stimulated by ROS 
[29]. It was recently observed that PGC-1α level was 
enhanced following low intensity, long duration acute 
swimming and was associated with reduced apoptosis in 
mice skeletal muscle [109]. Furthermore, increased PGC-
1α expression in ageing mice was associated with lower 
oxidative stress, inflammation, apoptosis, autophagy, and 
proteasome activation; higher mitochondrial biogenesis; 
and prolonged survival [67]. Exercise also increases PGC-
1α4 isoform, which induces protein synthesis via the IGF-
1 pathway and represses myostatin [50].

Improved adenosine triphosphate (ATP) synthesis, 
oxidative phosphorylation, and Ca2+ homeostasis were 
also observed in elderly skeletal muscles after training 
[29, 57]. Resistance exercise appears to decrease TNF-α 
expression in aged skeletal muscle, which may attenuate 
age-associated muscle changes [110]. Finally, exercise 
induced favorable skeletal muscle angiogenesis and 
improved endothelial function in elderly individuals [111, 
112].

Despite all the information on exercise modulating 
signaling pathways, there is little knowledge on the best 
type, intensity, and frequency of exercise to prevent or 
treat age-induced muscle loss [113]. Furthermore, not only 
changes in limb musculature but changes in inspiratory 
muscles might account for lower exercise capacity in the 
elderly [12]. Exercise intensity also influences muscle 
changes. Decreased basal hydrogen peroxide (H2O2) 
production in muscle tissue was observed after 16 weeks 
training at 65% of maximal oxygen uptake (VO2 max) [114] 
and an increase in muscle antioxidant defense was found 
after 8 weeks of endurance training in older individuals 
[115]. Although recent publications have suggested that 
regular high intensity physical activity can be better 
than moderate intensity in healthy and unhealthy older 
individuals [116-118], greater physical fitness observed 
at high intensity exercise increased lipid peroxidation 
damage more than at a low physical fitness level [117]. 
Currently, data from literature suggest that optimal aerobic 
training for improving oxidative/antioxidant balance can 
be achieved with intensities between the two ventilatory 
thresholds (50-80% of VO2 max) at a frequency of 2-3 
sessions per week [71]. 

Concerning resistance training, it was recently 
observed that a 12-week resistance training with a 
frequency of 2 days per week improved muscular 
strength and oxidative stress in older women and 12 
weeks detraining did not completely reverse the changes 
[119]. Researchers recommend that training protocols 
should contain sufficient volume for each muscle group 

(3-5 sets, 10 repetitions) with intensities between 50 and 
80% of one repetition maximum [71]. Although current 
data support the use of both endurance and resistance 
training in older adults with respect to superior beneficial 
mitochondrial adaptations and functional outcomes than 
isolated endurance training, more research is needed to 
confirm this [29]. 

NUTRITION

Nutritional status should be carefully evaluated to 
identify and prevent protein and micronutrient deficits. 
All the factors important for muscle function should be 
addressed. Vitamin D deficiency is common and affects 
all ages and both sexes. As evidence suggests that vitamin 
D is important for muscle function, maintaining adequate 
vitamin D status may be considered in preventing and 
treating age-associated muscle changes. Thirteen weeks 
of oral vitamin D supplementation and leucine-enriched 
whey protein improved muscle mass and lower-extremity 
function in older sarcopenic individuals [120]. Currently, 
prospective studies are underway to better define the role 
of vitamin D on skeletal muscles [121, 122]. 

As previously reported, iron participates in skeletal 
muscle function [69]. Although this issue has been poorly 
addressed in age-associated muscle changes, research 
on diseases such as heart failure and chronic obstructive 
pulmonary disease have suggested that iron deficiency 
may impair physical capacity. Therefore, iron status 
should be evaluated when muscle dysfunction is present 
without an apparent reason and iron deficiency treatment 
should be viewed as an emerging therapeutic target [69].

Ingestion of an adequate amount of high-quality 
protein in combination with physical activity appears a 
promising strategy to prevent or treat sarcopenia [123]. 
However, results of interventions are inconsistent and it 
is unknown whether specific nutritional therapy alone can 
reverse muscle loss [12]. Therefore, randomized studies 
analyzing the effects of nutrition interventions are needed 
to establish specific recommendations on nutritional 
support [124]. Guidelines for the nutrition and nutritional 
support of elderly individuals have been published [125, 
126] and will not be discussed here. 

PERSPECTIVES FOR FUTURE

Potential contenders for preventing or treating age-
induced skeletal muscle changes have been described. 
Candidate drugs include myostatin antagonists, follistatin, 
activin receptor antagonists, ghrelin agonists, selective 
androgen receptor molecules, megestrol acetate, beta 
antagonists, espindolol, formoterol, angiotensin converting 
enzyme inhibitors, and fast skeletal muscle troponin 
activators [12, 18, 127].

The value of testosterone replacement therapy for 
older men is currently under intense debate. Ageing is 
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accompanied by reduced protein synthesis and transporter. 
It was recently shown that these changes may be reversed 
by dihydrotestosterone treatment [128]. Other studies have 
also suggested that testosterone increases muscle mass 
and power [127, 129]. Growth hormone, a modulator of 
muscle growth and differentiation, has been evaluated to 
preserve skeletal muscle mass and myocardial metabolism 
under different conditions [130, 131]. Growth hormone 
administration to healthy older men increased lean body 
mass without changing muscle functional parameters 
[132]. However, due to testosterone and growth hormone 
potentially limiting side effects [124, 125, 132], research is 
needed before recommending hormonal supplementation 
in clinical practice.

Anti-myostatin antibodies have been extensively 
investigated under different clinical conditions associated 
with muscle loss. Treatment of elderly mice with an anti-
myostatin antibody (ATA 842) for 4 weeks increased 
muscle mass and strength and improved insulin-stimulated 
muscle glucose uptake [133]. In a clinical setting, a 
multicenter study showed that administration of myostatin 
antibody LY2495655 to subjects 75 years or older who 
had fallen in the past year increased lean mass and might 
improve functional muscle power [134]. Additional 
studies are needed to confirm these results.

Recently, myocardial metabolic modulator 
trimetazidine (TMZ) was evaluated in skeletal muscle. 
Trimetazidine prevented hypotrophy of skeletal muscle 
cells in culture with different hypotrophic agents [135] and 
improved skeletal muscle strength of elderly mice [136]. 
Intraperitoneal administration of the newly developed 
mitochondria-targeted ROS and electron scavenger, 
XJB-5-131, reversed age-related mitochondrial function 
alterations and improved contractile properties in skeletal 
muscle [137]. Oxandrolone improved body composition 
adaptations to 12 weeks exercise in older women without 
however increasing muscle function or functional 
performance beyond that of exercise alone [138]. The 
benefits of low level laser therapy as an intervention to 
enhance muscle performance in the elderly is under 
investigation [139]. Collagen peptide supplementation 
combined with resistance training increased fat free mass 
and muscle strength in elderly sarcopenic men compared 
with training alone [140]. Reduction in histone deacetylase 
activity had a protective effect in models of neurogenic 
muscle atrophy [141]. As sarcopenia is associated with 
a reduction in motor neuron innervation, the potential 
for histone deacetylase inhibitor butyrate to modulate 
age-related muscle loss was investigated in older mice. 
Butyrate treatment starting at 16 months of age showed 
promising results by attenuating muscle atrophy [142]. 

Finally, it should be emphasized that a 
comprehensive geriatric assessment involving a 
multidisciplinary team enables medical staff to optimize 
the treatment of older individuals with skeletal muscle 
changes [143].

In summary, skeletal muscle changes are prevalent 
in the geriatric population and are associated with 
impaired outcomes. The main alteration is sarcopenia, 
which is characterized by structural, biochemical, 
molecular and functional changes. Muscle loss is a 
multifactorial condition with an imbalance in anabolic and 
catabolic intracellular pathways. Oxidative stress seems 
to play an important role in age-induced skeletal muscle 
abnormalities. Currently, despite the development of new 
agents, nonpharmacological therapies such as physical 
exercise and nutritional support are considered the basis 
for prevention and treatment of age-associated muscle 
abnormalities.
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