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Abstract: SARS-CoV-2 virus infection is the cause of the coronavirus disease 2019 (COVID-19), which
is still spreading over the world. The manifestation of this disease can range from mild to severe
and can be limited in time (weeks) or persist for months in about 30–50% of patients. COVID-19 is
considered a multiple organ dysfunction syndrome and the musculoskeletal system manifestations
are beginning to be considered of absolute importance in both COVID-19 patients and in patients
recovering from the SARS-CoV-2 infection. Musculoskeletal manifestations of COVID-19 and other
coronavirus infections include loss of muscle mass, muscle weakness, fatigue or myalgia, and muscle
injury. The molecular mechanisms by which SARS-CoV-2 can cause damage to skeletal muscle (SkM)
cells are not yet well understood. Sphingolipids (SLs) represent an important class of eukaryotic
lipids with structural functions as well as bioactive molecules able to modulate crucial processes,
including inflammation and viral infection. In the last two decades, several reports have highlighted
the role of SLs in modulating SkM cell differentiation, regeneration, aging, response to insulin, and
contraction. This review summarizes the consequences of SARS-CoV-2 infection on SkM and the
potential involvement of SLs in the tissue responses to virus infection. In particular, we highlight the
role of sphingosine 1-phosphate signaling in order to aid the prediction of novel targets for preventing
and/or treating acute and long-term musculoskeletal manifestations of virus infection in COVID-19.

Keywords: COVID-19; SARS-CoV-2; sphingolipids; sphingosine 1-phosphate; ceramide; sphingosine
1-phosphate receptors; skeletal muscle; myasthenia gravis; multiple sclerosis; amyotrophic lateral sclerosis

1. Introduction

Coronavirus disease 2019 (COVID-19) is a worldwide disease due to severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection. The manifestation of COVID-19 can
range from mild to severe [1–4]: the majority of cases show mild symptomatic COVID-19
characterized by fever, shortness of breath, gastrointestinal dysfunctions, headaches, and
a loss of taste and smell and, sometimes, mild pneumonia. Other COVID-19 patients
manifest more severe symptoms mainly respiratory failure that requires mechanical ven-
tilation support. Although these symptoms are common in the different variants caused
by mutations in SARS-CoV-2 [4,5], the prevalence of symptoms caused by the variants
might differ. COVID-19 is now considered a multiple organ dysfunction syndrome since
SARS-CoV-2 is able to invade multiple organs and promote systemic inflammation [6–8].
Moreover, the comorbidities such as diabetes mellitus, hypertension, cardiovascular dis-
ease, or chronic obstructive pulmonary disease are also risk factors for severity in patients
with COVID-19 [9,10]. Notably, many patients infected with SARS-CoV-2 (approximately
30–50% of patients) develop a post-acute syndrome, which persist months after the initial
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infection defined “long COVID-19” [11–13]. The musculoskeletal system manifestations
are beginning to be considered of absolute importance, not only in COVID-19 patients, but
also in patients recovering from the SARS-CoV-2 infection and in patients who had severe
acute respiratory syndrome (SARS) [14–17]. Musculoskeletal manifestations of COVID-19
and other coronavirus infections include loss of muscle mass, muscle weakness, fatigue or
myalgia, and muscle injury [18–20]. However, the mechanisms by which SARS-CoV-2 can
cause damage to SkM cells are not yet understood.

The coronaviruses (CoVs) belonging to the Orthocoronaviridae subfamily and to
Coronaviridae family consist of four genera, including α/β/γ/δ-CoV and only α and β

infect mammals. Other strains, capable of infecting humans, are part of the same family
of SARS-CoV-2, which includes the more pathogenic viruses SARS-CoV-1, responsible for
SARS reviewed in [21]. SARS-CoV-2 are single and positive-stranded RNA viruses [21],
enveloped with a lipid membrane enriched with structural proteins, including the spike
protein, which is responsible for the typical appearance of a solar corona. Spike protein
protrudes from the virus membrane and it is essential for host receptor binding and cell
tropism and, therefore, for virus infection. The mechanism of infection of SARS-CoV-1 and
SARS-CoV-2 are similar. They enter cells via the angiotensin-converting enzyme 2 (ACE2)
receptor highly expressed in humans mainly in the respiratory and intestinal tract, and less
in other tissues, such as SkM [22,23]. Following receptor binding, the viral Spike protein
is proteolytically cleaved by the transmembrane serine protease 2 (TMPRSS2) [23], which
is indispensable for viral spread and pathogenesis permitting mixing of viral and human
membranes and release of viral RNA into the cytoplasm [24]. In this cellular compartment,
the viral RNA replication begins with translation of the replicase-polymerase gene and
assembly, which transcribes the genomic regions to structural proteins and ultimately leads
to the assembly of virions, then released from infected cells by exocytosis.

The Coronavirus infection can lead to an acute immune response. Infected pneu-
mocytes, through the release of pathogen- and damage-associated molecular proteins
activate inflammatory alveolar- and monocyte-derived macrophages, which initiate the
acute inflammatory cascade release of several pro-inflammatory mediators [25]. Most
COVID-19 patients suffer a so-called “cytokine storm syndrome,” characterized by the
release from cells of cytokines and signaling molecules such as the C-X-C motif chemokine
10 (CXCL10), interferon gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-6, IL-8, IL-17, and
tumor necrosis factor alpha (TNF-α) [26,27]. Sphingolipids (SLs), one of the major classes
of eukaryotic lipids, are composed of a sphingoid backbone, which can be modified by
phosphorylation, glycosylation, and acylation (Figure 1). They have an essential struc-
tural role, and are also able to modulate crucial processes, such as inflammation and viral
infection, including those related to SARS-CoV-2 [28–30]. This is not surprising since
sphingolipids regulate cell fate (cell proliferation, differentiation, survival, senescence,
autophagy, and apoptosis [27,31–33]. In particular, a rheostat system has been described
underlining the importance of the ratio between the unphosphorylated and phosphorylated
forms of the bioactive sphingoids [34,35]. In fact, ceramide and sphingosine-1-phosphate
(S1P) act in opposite manners: ceramide mainly controls cell growth arrest, senescence,
and cell death, whereas S1P regulates cell proliferation, migration, and survival. Several
subclasses of ceramide are increased in plasma of SARS-CoV-2 patients and this increase
is higher in those with respiratory distress [36]. SLs have an integral role in inflamma-
tion. For example, the bioactive SLs produce pro-inflammatory prostaglandins due to the
activation of pro-inflammatory transcription factors in different cell types and induction
of cyclooxygenase-2 [27]. The S1P-S1P receptor signaling system modulates lymphocyte
trafficking and maintenance of vascular integrity, thereby contributing to the regulation
of inflammation [37]. Moreover, S1P also acts as an intracellular second messenger by
direct stimulation of intracellular signaling proteins involved in both inflammation and
survival [38]. In the last two decades, several reports have highlighted the role of SLs in
modulating SkM cell differentiation, regeneration, aging, response to insulin, and con-
traction [31,39]. In vivo and in vitro studies have demonstrated that S1P, acting as ligand
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of specific S1P receptors (S1PRs), plays a major role in the activation of satellite cells,
myogenesis, and cell regeneration [31,40–47] (Figure 1C,D).

Interestingly, the pattern expression of S1PR changes during myoblast differentiation
and in Dexamethasone-induced cell atrophy and in SkM of C26-cachectic mice [41,43,46].
S1P could also protect skeletal muscle tissue against eccentric contraction-induced dam-
age [48] and denervation [49]. SL metabolism impairment controls SkM fatigue [50,51].
Contrarily, ceramide appears to negatively control myogenesis [52,53] and myocyte size in a
mouse model of cancer-induced cachexia [54,55]. Notably, all these considerations reinforce
the notion that the ceramide/S1P rheostat play a role also in SkM differentiation and muscle
mass and fatigue regulation. Interestingly, Teo et al., (2018) [56] reported that the treatment
with Fingolimod, a modulator of S1PR (see 4.1), abrogates Chikungunya-virusinduced
arthralgia and pain. The potential efficacy of Fingolimod in SARS-CoV-2 infection has also
been suggested [57]. Therefore, the purpose of this article was to summarize our knowledge
on the consequences of SARS-CoV-2 infection on SkM and the potential involvement of SLs
on SkM fate. In particular, we highlight the role of S1P signaling in order to aid the predic-
tion of novel targets for preventing and/or treating acute and long-term musculoskeletal
consequences of COVID-19 infection.
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Figure 1. Sphingolipid metabolism and sphingosine-1-phosphate (Sphingosine 1-P) signaling.
(A) General sphingolipid structure. Sphingolipids are composed of a sphingosine backbone linked
to a fatty acid. (B) Sphingomyelin cycle or de novo sphingolipid synthesis leading to ceramide
involving serine palmitoyl transferase (SPT), 3-keto dihydrosphingosine reductase (KDHSR), ce-
ramide synthase (CERS), and desaturase (DES). Ceramide is converted reversibly to sphingosine
by ceramidase (CDase) or phosphorylated to ceramide-1-phosphate (Ceramide 1-P) by ceramide
kinase (CerK) activity and dephosphorylated by ceramide-1P phosphatase (C1PP). S1P is synthesized
from sphingosine by the sphingosine kinases (SphK) and irreversibly cleaved by S1P lyase (SPL),
which generates hexadecenal and phosphoethanolamine (ethanolamine -P). S1P is also a substrate
of specific S1P phosphatases (S1PP) or lipid phosphate phosphohydrolase (LPP). Sphingomyelin
synthases (SMS) transfer a phosphorylcholine group from phosphatidylcholine to ceramide, gen-
erating diacylglycerol and sphingomyelin. Sphingomyelinases (SMase) catalyze the hydrolysis of
sphingomyelin, leading to the generation of ceramide and phosphorylcholine. (C) S1P produced
inside the cell can be transported in the intercellular space by an ATP-binding cassette transporter
named spinster homolog 2 (Spns2). (D) As a ligand, S1P acts as autocrine and paracrine factors
triggering specific signaling pathways by interacting with S1P specific heterotrimeric GTP binding
protein-coupled receptors, named S1PR. Three among five subtypes of S1PRs, S1PR-1, -2, and -3,
are expressed in skeletal muscle cells and regulate through different steps (broken lines) specific
biological functions. The scheme exemplifies the main roles played by S1PR activation in skeletal
muscle cells.

2. Skeletal Muscle Manifestations in COVID-19 Patients

COVID-19 is associated with SkM complications, which comprise myalgia, weakness,
mass loss, myositis, and rhabdomyolysis [58–62]. SkM damage has been also reported
following infection of several viruses. Leung et al., reported in post-mortem SkM tissue
of patients affected by SARS, a widespread muscle fiber atrophy, fiber necrosis, myofibril
disarray, and loss of Z-discs [16]. A reduced hand grip strength (32%) was also reported in
SARS patients [63]. Similarly, SkM manifestations, such as inclusion-body myositis, chronic
fatigue, and opportunistic infections are one of the first symptoms associated with human
immunodeficiency virus (HIV) infection [64]. Numerous cases of acute myopathy and/or
rhabdomyolysis have been also reported, following the outbreak of pandemic influenza
A (H1N1) in 2009 [65]. In the next sections, we briefly revise the acute and long-term
manifestations of SkM in COVID-19 patients.
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2.1. Acute Manifestations

The effects of SARS-CoV-2 infection on SkM cells, at cellular level, are not well clarified.
One of the first studies conducted on 214 COVID-19 patients hospitalized in Wuhan,
indicated that 8.9% of patients presented peripheral nerve disease, and 7% had muscular
injuries. Moreover, among patients with severe COVID-19, 19.3% had evidence of muscle
injury [58]. However, up to 19.4% of patients present with myalgia and elevated levels of
creatine kinase (CK) (>200 U/L), suggesting SkM injury. Similar results were found during
autopsies [20,66].

In vitro studies have shown that SARS-CoV-2 can cause myofibrillar fragmentation
into individual sarcomeres of human induced pluripotent stem cell (iPSC)-derived heart
cells [67]. As noted, electron micrographs of SkM tissue from patients with COVID-19
revealed myofibril disarray and Z disc streaming, accompanied with disruption of force
transmission [68]. In post-mortem COVID-19 specimens, muscle bundles contained few
fibers with marked atrophy, degenerated fibers showed cytoplasm devoid of striations, and
necrobiotic fibers were observed with few lymphocytes rimming or invading them [69]. In-
terestingly, in a clinical case, substantial reductions in vascular, muscular, and mitochondrial
functions were observed along with an elevation in IL-10 before symptom occurrence [70].
Moreover, Hooper et al., (2021) [71] have detected in SkM fibrin microthrombi, perimysial
microhemorrhages, and adjacent muscle fiber vacuolar degeneration and necrosis in an
autoptic specimen. More inflammatory features are shown in SkM than cardiac muscles,
especially in patients with chronic COVID-19 disease [66,72]. In fact, Aschman et al.,
(2021) [66] reported that 26 out of 43 individuals with severe COVID-19 disease showed
signs of myositis from mild to severe. Inflammation of SkM was associated with the du-
ration of illness. Similarly, SkM dysfunctions, structural alterations, and myalgia were
also described in patients with SARS [16,63,73]. Biomarkers of inflammation and SkM
injury were significantly elevated in patients with both less severe and fatal COVID-19.
In particular, SkM damage markers, such as CK, and other factors, such as C reactive
protein, lactate dehydrogenase, and ferritin, have been observed at increased levels in
patients with COVID-19-related myositis and rhabdomyolysis [66,74]. Furthermore, char-
acteristic protein and metabolite changes in the sera of severe COVID-19 patients within a
few days of hospital admission have been reported. This first study [75] and others (see
below) performed later, will be useful in the selection of potential blood biomarkers for
severity assessment.

The level of the biomarker CK correlated with the severity of the disease, although the
HyperCKemia was found to be lower in COVID-19 than in influenza [76]. Elevated levels
of 3-hydroxyisovaleric in serum have been reported in patients with severe COVID-19,
likely due to enhanced SkM catabolism [77]. In animal models, lower levels of myo-inositol
have also been demonstrated and suggested as therapeutic approach in COVID-19. In
fact, myo-inositol metabolism impairment has been related to several chronic diseases,
including metabolic syndrome, dyslipidemia, diabetes, and cancer [78]. The identification
of indexes of disease severity has involved not only biological markers but also muscle
measurements. Notably, some authors have proposed that measurements obtained by
chest-computed tomography of the pectoralis muscle might predict disease severity and
mortality rate of COVID-19 pneumonia in adult patients [79,80]. Contrarily, SkM index
at the level of the 12th thoracic vertebra was not associated with negative outcomes in
hospitalized patients [81].

2.2. Long Persistent Manifestations

Many survivors from severe COVID-19 have persistent manifestations long after
resolution of the active infection (long COVID-19) [7–10,82]. The most commonly but highly
variable reported physical health problems were fatigue [83], pain (myalgia, arthralgia),
reduced physical capacity, and declines in physical role functioning, usual care, and daily
activities (reduced in 15–54% of patients) [84]. Karaarslan et al., (2021) [84] reported that
about 43% of patients had at least one musculoskeletal symptom, most frequently fatigue
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(32%), myalgia (15%), and joint pain (19%) at 6 months followed by back pain, low back
pain, and neck pain. Similar variability was also found in common mental health problems
such as anxiety, depression, and post-traumatic stress disorders [85,86]. Persistent dyspnea
and fatigue, handgrip and quadriceps weakness [87,88], and reduction in diaphragm
functionality in 76% of the patients have been described [89]. In some studies, gender
variability was also observed. Indeed, greater fatigue, pain, anxiety, and depression were
reported in female patients and individuals admitted to intensive care [90].

Several studies have reported that patients without previous locomotor disabilities
show impairments in SkM strength and physical performance when recovering from
COVID-19 pneumonia [91–93]. SARS-CoV-2 infection as well as a prolonged hospital stay
might exacerbate sarcopenia since both inflammation and reduced exercise might increase
SkM loss [18,94]. In addition to immobilization, dietary intake, aging, and low 25OH-
vitamin D3 levels were inversely correlated with high IL-6 levels, and could lead to an-
abolic resistance and acute sarcopenia; thus favoring the disease severity and mortality [95].
Karaarslan et al., (2021, 2022) [84,96] also highlighted the possibility that COVID-19-related
muscular injury might cause long-term disabilities. Of interest, patients who were hospital-
ized for two weeks manifested 32% and 13% reductions in grip strength and 3–6 months
after discharge from the hospital, they still showed a poor health-related quality of life [97].
Notably, COVID-19 can aggravate preexisting neuromuscular diseases, such as myasthe-
nia gravis [82] and strong infections can promote myopathy/polyneuropathy [19,97] (see
below, Section 4).

3. Mechanisms of SARS-CoV-2 Infection of Skeletal Muscle Damage

The exact dynamics and molecular mechanism of SkM damage, as well as the long-
term effects of this tissue injury in COVID-19 patients, are unclear. As described before,
myalgia [20] and fatigue are frequent manifestations of COVID-19. Neuronal demyeli-
nation, which may contribute to muscle weakness and fatigue was also described for
SARS [98]. A rapid decrease in body mass within 4 days of infection was also found in a
mouse model of SARS [99]. SkM damage might be caused directly by viral infection as in
alphavirus-induced myositis [100] or indirectly through inflammation (cytokine storm),
autoimmune processes, or as consequence of myotoxic drugs.

3.1. Direct Effect: SARS-CoV-2 Infection of Skeletal Muscle Cells

Myalgia, muscular weakness, and fatigue could be the effect of direct invasion of
myocytes by the virus, but also of inflammation-mediated injury. Other viruses such as
influenza viruses, human immunodeficiency virus, enteroviruses, parainfluenza virus, and
adenovirus are capable of promoting myopathies, including necrotizing myopathies [101].
Widespread muscle fiber atrophy was also described, with sporadic and focal muscle
fiber necrosis in SARS-affected patients [16,99]. Up to now, SkM invasion by SARS-CoV-2
has not been consistently demonstrated although SkM cells express both TMPRSS2, the
protease that facilitates the virus–cell fusion, and ACE2 even if at a low level compared
to ACE2 in vasculature [102]. Dalakas et al., (2020) [103] suggested that SARS-CoV-2
might be the first virus capable of infecting muscle fibers directly and Ferrandi et al.,
(2020) [104] suggested that myopathy in COVID-19 could be the result of SARS-CoV-2
infection via ACE2. Several studies reported the presence of viral particles by electron
microscopy, but these identifications were subject of criticism [105,106]. SARS-CoV-2
mRNA was detected by reverse transcription and real time polymerase chain reaction, but
immunohistochemistry and electron microscopy analyses did not provide any evidence for
a direct viral infection of myofibers [66,107,108]. Similarly, SkM atrophy and necrotizing
myopathy have been reported in autoptic specimens from COVID-19 patients, without
any detection of virus in the tissue [109]. In several reports, in which no evidence of
SkM infection was found, a vascular localization of SARS-CoV-2 was proposed [69,71,110].
Therefore, the low viral load could be attributable to circulating viral RNA rather than
direct infection of myocytes.
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ACE2 belongs to the renin–angiotensin system (RAS) in humans. Classical and non-
classical RAS pathways have been described [111]. The RAS pathway activation increases
reactive oxygen species formation and protein degradation, and contributes to adverse con-
sequences in SkM, via the transcription of the ubiquitin ligase TRIM63/MuRF-1 [112,113].
Therefore, SkM catabolism markers, such as TRIM63/MuRF-1, might predict disease sever-
ity. However, ACE2 is also involved in the known “non-classical RAS pathway,” which
mainly involves the Angiotensin 1–7/Mas axis and contributes to anti-atrophic, anti-fibrotic,
and anti-inflammatory activities in SkM. Up to now, it is not clear whether the increase in
the classical RAS axis prevails over the decrease in the non-classical one in COVID-19.

Moreover, it is also reported that ACE2 functions through pathways outside of the
RAS [114,115] involving either a peptidase-dependent or -independent pathway. The first
is mainly due to the catalytic activity of ACE2, on specific targets, such as apelin-13, a
crucial regulator in ACE2 gene expression [116], which may be worth investigating in
SARS-CoV-2 infection.

3.2. Indirect Effect: Cytokine Storm and SkM Remodeling

Inflammation is an important contributor to the pathology of many tissues including
SkM. In fact, a certain number of disorders including inflammatory myopathies are charac-
terized by chronic inflammation or elevation of the pro-inflammatory mediators [117,118].
Several of the pro-inflammatory molecules increased in patients with COVID-19 negatively
affect SkM. In fact, many of the components of the cytokine storm described in COVID-19
such as IFN-γ, IL-1β, IL-6, IL-17, and TNF-α can directly induce SkM fiber proteolysis
and decrease protein synthesis. Moreover, IL-1β and TNF-α can block the proliferation
and differentiation of satellite cells, which are the progenitor cells of muscle fibers cru-
cial for muscle regeneration following muscle damage. Moreover, IL-1β and IL-6 can
induce muscular fibrosis, which could impair muscle force generation [119]. SARS-CoV-2
hyper-inflammatory response contributes not only myofibrillar breakdown and degra-
dation with progressive loss of SkM mass but also to immunosenescence, enhancement
of the endothelial damage, and tissue weakness [120]. This hyper-catabolism, especially
in aged people, is associated with oxidative stress, which further causes severe myocyte
damage [121]. Inflammation was most pronounced in COVID-19 patients with chronic
courses. Dysfunction in SkM caused by cytokine storm may lead to additional symptoms,
such as shortness of breath, difficulty in swallowing and speaking, heart arrhythmias,
and fatigue. Moreover, SkM dysfunctions in COVID-19 patients affected by inflammatory
disorders such as diabetes, obesity, cardiovascular diseases, cancer, etc., are associated with
more severe COVID-19 [7–10].

Interestingly, SkM complications in COVID-9 patients may also be due to adverse
effects of several drugs used to counteract the disease. For example, it has been reported
that SARS-CoV-2-associated rhabdomyolysis is rarely due to virus infection and most
likely a consequence of anti-COVID-19 drug toxicity [122]. Additionally, corticosteroids,
frequently used to control acute inflammation in patients with SARS, can directly promote
muscle atrophy and weakness [123].

4. COVID-19 May Be a Risk for Patients Affected by Neuromuscular Diseases

It has been hypothesized that patients with chronic neuromuscular disorders may
have an increased risk of developing severe symptoms of COVID-19. It is known that
patients with dystrophinopathies or with motor neuron disease experience respiratory
muscle weakness and cardiomyopathy that could be exacerbated following SARS-CoV-2
infection [124]. Although this is a plausible hypothesis, evidence that complications or
mortality rates in neuromuscular patients are higher than in the general population has not
been found in several studies [125–130].
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4.1. Myasthenia Gravis

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction
synapse characterized by weakness that worsens with continued muscle work and im-
proves with resting of the involved muscle(s). Acetylcholine receptor antibodies are found
in 90% of patients with generalized MG, whereas muscle-specific kinase (MuSK) anti-
bodies are found in approximately 4% of cases [131]. MG disease may lead patients to
be vulnerable to SARS-CoV-2 infection mainly due to respiratory muscle weakness, and
long-term immunosuppressive treatment. In fact, studies have reported that although the
rate of SARS-CoV-2 infection was comparable to that of the general population, the risk
of hospitalization and death for MG patients was greater [132–134]. Contrarily, several
reports indicate that the virus infection has variable effects (mild, exacerbation, or a fatal
outcome) [109,135] that in patients treated with immunosuppressive drugs, such as MG
patients, the outcome is favorable [136–139].

Very recently, Jakubíková et al., (2021) [140] have reported that long-term chronic
corticosteroid treatment, especially at a high dose, worsened the course of COVID-19 in
MG patients. On the other hand, MG may appear following COVID-19 infection, and,
besides just coincidence, it could be hypothesized that SARS-CoV-2 could trigger MG
and that molecular mimicry or latent MG activation could be involved in the onset of
the disease [141–143]. Several cases of MuSK Antibody-Associated Myasthenia Gravis
with SARS-CoV-2 infection have been reported [144,145]. In addition, a case of COVID-19
vaccine causing a MG crisis has been recently observed [146–149].

Notably, pretreatment of rats with Fingolimod improved experimental autoimmune
MG symptoms in a dose-dependent manner, including decreased anti-acetylcholine
receptor-2α autoantibody titer, reduced compound SkM action potential decrement, and
increased acetylcholine receptor content. Fingolimod suppressed the secretion of pro-
inflammatory or inflammatory cytokines IL-17A, IL-6, and INF-γ, without modifying the
release of the immunosuppressive TGF-β1 and IL-4 [150]. Prophylactic administration of
Fingolimod was also found to attenuate MG in rats by reducing the number of dendritic
cells, follicular T helper cells, and antibody-secreting cells [151]. However, other authors
did not find improvement in experimental autoimmune MG in mice when a lower dose of
Fingolimod was administered after disease onset [152]. Since not only the animal model
but also both the concentration and time of administration of the drug were different, it
is unclear whether Fingolimod might have a preventive or a therapeutic effect in MG.
Fingolimod is an analogue of sphingosine, which can be phosphorylated by sphingosine
kinase (SphK) 2, generating a molecule similar to S1P and able to bind to S1PRs, except
S1P2R. Fingolimod has been approved for the treatment of multiple sclerosis (MS), due to
its action as an immunosuppressant. Indeed, it acts as a highly potent functional antagonist
of the S1P1 receptor, promoting S1P1 receptor internalization in T cells that become unable
to exit from the lymph nodes [153].

4.2. Multiple Sclerosis

MS is an immune-mediated disorder of the central nervous system, which is char-
acterized by demyelination and axonal degeneration, which, consequently, contribute to
SkM weakness.

MS disease onset and MS relapse after SARS-CoV2-infection have been reported [154–156]
and it has been hypothesized that the inflammatory response to viral infection could
contribute to both outcomes [156]. Some studies point to a higher risk of exacerbation after
SARS-CoV-2 infection [157], but others have not found any difference [158] or proposed
the necessity of more controlled studies [159].

Immunosuppressive MS therapies, such as Fingolimod, may modify the risk of de-
veloping a severe SARS-CoV-2 infection due to its action on the egress of lymphocytes
from lymph nodes. However, several studies in different countries have demonstrated that
most cases are found to have mild course and full recovery on disease modifying thera-
pies [160–164]. Interestingly, it has been reported that a significant proportion of convales-
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cent COVID-19 patients treated with natalizumab, fingolimod, alemtuzumab, ocrelizumab,
cladribine, and ublituximab did not develop IgG SARS-CoV-2 antibodies [165–168]. It is
possible that the therapies could decrease the SARS-CoV-2-induced cytokine storm.

Most COVID-19 patients develop an immunoglobulin G-SARS-CoV-2 antibody re-
sponse, whose protective level is maintained up to nine months [169]. Moreover, 82.9% of
patients show positive immunoglobulin G levels one year after infection [170]. The low
levels of antibodies in MS patients could become a risk after reinfection and some authors
recommend vaccination as soon as possible [171].

4.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a neurodegenerative disorder with progressive degeneration and death of
upper and lower motor neurons, severe muscle atrophy, respiratory distress, and cellular
protein aggregation [172]. Although muscle dysfunction has been considered a consequence
of deprivation of innervation, evidence has accumulated indicating that alteration of SkM
precedes motor neuron denervation and onset of ALS symptoms. Therefore, muscle could
initiate and/or contribute to the cascade of pathological events [173].

At present, accurate data on SARS-CoV-2 infection in ALS patients is not available.
One paper has studied the impact of COVID-19 among hospitalized ALS patients, but
the number of patients was small (19) and only 6 patients tested positive [174], making it
impossible to generalize the results. Bertran Recasens et al., (2020) [175] have studied the
impact of COVID-19 on a cohort of ALS patients in Catalonia and they have not found an
increase in mortality comparing the lockdown period with the same period of time before
the pandemic. By contrast, Galea et al., (2021) [176] have reported that USA veterans with
ALS were 3-fold more likely to die within 30 days of COVID-19 diagnosis compared to the
overall veteran population.

A large non-coding hexanucleotide repeat expansion in the C9orf72 gene is the main
genetic cause of frontotemporal dementia and ALS. Intermediate hexa-nucleotide repeats
(>10 units) were found in only a small portion of 240 patients with severe COVID-19
pneumonia, but in these patients, the risk of requiring non-invasive or mechanical ven-
tilation was more than twice with respect to the patients of a similar age having shorter
expansions [177]. Interestingly, it has recently been reported that two patients with slowly
progressive ALS showed a fast functional decline after contracting COVID-19 [178].

5. Sphingolipids as Biomarkers and Mediators of Virus Pathogenicity
5.1. Sphingolipid Metabolism and Sphingosine 1-Phosphate-Mediated Signaling

SLs are major constituents of membrane lipids and are enriched in microdomains. The
modifications in their concentration influence membrane dynamics and trigger signaling
events [27,179–183].

Sphingomyelin, the more concentrated SL in the plasma membrane of mammalian
cells, can be hydrolyzed by sphingomyelinases generating phosphocholine and ceramide
(Figure 1A,B). The de novo synthesis of SLs starts from serine and palmitate condensa-
tion promoted by serine palmitoyltransferase. Reduction and acylation of the product,
3-keto-dihydrosphingosine, produces dihydroceramide, and is then reduced to ceramide.
Ceramide can also be phosphorylated to ceramide 1-phosphate and it is a substrate of
ceramidases. The product of ceramidases is sphingosine, which can be phosphorylated by
two SphK isoforms (SphK1 and SphK2) to generate the bioactive lipid S1P. Sphingosine
can also be produced by S1P dephosphorylation by S1P phosphatase and lipid phosphate
phosphatases. S1P is irreversibly degraded to hexadecenal and ethanolamine phosphate
by S1P lyase. Notably, the interplay and the ratio between simple SLs, in particular S1P,
ceramide, and sphingosine, is a crucial determinant of cell fate. In fact, ceramide and sphin-
gosine can control cell growth arrest, cell stress, senescence, and apoptotic death, whereas
S1P and ceramide 1-phosphate regulate cell proliferation, migration, and survival [27,37].
S1P has been shown to prevent programmed cell death also induced by ceramide. S1P can
act either as an intracellular mediator and a ligand of specific heterotrimeric GTP binding
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protein-coupled receptors, S1PRs, leading to specific multiple responses [35,37,184]. S1P
can be also released outside the cells by specific transporters belonging to the Major Fa-
cilitator Superfamily, such as Spinster 2 (Spns 2) and Mfsd2b [32,185] (Figure 1C,D). This
homeostatic system, known as the ceramide/S1P rheostat, functions also in SkM cells: in
many cases, the increase in S1P level displays largely positive actions, whereas intracellular
accumulation of ceramides exerts opposite roles.

5.2. Sphingolipids and Skeletal Muscle Remodeling

SLs are able to modulate SkM cell proliferation, differentiation, SkM mass and tis-
sue regeneration [186]. An increase in acidic sphingomyelinases activity is associated to
degradation of SkM and the decrease in SkM force in mice [187], likely associated also with
aging [188]. In addition, it has been reported that the inhibition of acidic sphingomyeli-
nases activity improved SkM insulin response of old rats reaching the level of younger
rats [189], supporting a role of acidic sphingomyelinases in age-dependent SkM patholo-
gies. Regarding the S1P/S1PR axis, the trophic action of S1P has been reported in in vivo
and in vitro studies. S1P positively affects skeletal muscle growth and differentiation in
the C2C12 muscle cell line, derived from mouse muscle stem cells, as well as in satellite
cells [43,47,190]. S1P formation by SphK1 contributes to the cell cycle arrest and promotes
the myogenesis, while the inhibition of SphK1 expression increases myoblast proliferation
and delays cell differentiation [43,191].

Interestingly, S1PR pattern expression changes during myoblast differentiation into
myotubes. Indeed, a downregulation of the S1PR2, and an upregulation of S1PR3 in
differentiated myotubes have been observed [41]. In addition to muscle differentiation,
S1P plays an important role in skeletal muscle regeneration. S1P stimulates the growth of
regenerating myofibers after a myotoxic injury induced by intramuscular injection of bupi-
vacaine [51], suppresses muscle degeneration in Duchenne muscular dystrophy [192], and
exerts a positive action for muscle regeneration in dystrophic muscles [193,194]. S1P could
protect SkM tissue against eccentric contraction-induced damage, further underscoring the
relevance of S1P signaling in SkM protection [43]. S1P through S1PR-mediated signaling
modulates cell regeneration [40,41,43,46,51]. Indeed, Germinaro et al., (2012) [195] reported
that the S1P/S1PR2 axis favors SkM regeneration and its absence completely inhibited the
pro-myogenic functions of satellite cells, whereas activation of the S1P/S1PR3 signaling
suppresses cell cycle progression in muscle satellite cells [45].

The importance of S1P/S1PR in controlling the SkM phenotype has also been high-
lighted in [46]. In fact, the impairment in S1PR2 and S1PR3 expression has been observed
in SkM tissue from cachectic mice as well as dexamethasone-induced muscular atrophy
in C2C12 cells. In the latter system, SphK and S1P transporter dysfunctions have been
also demonstrated. Contrarily, ceramide appears to negatively control myogenesis as well
as SkM mass. Indeed, TNFα-induced increase in ceramide level inhibited the myogene-
sis [52], while the inhibition of the de novo ceramide synthesis by myriocin increased the
appearance of differentiated phenotype [53] and improved myocyte size in a mouse model
of cancer-induced cachexia [54]. Recently, our group reported that a downregulation of
ceramide kinase is associated with tumor-induced SkM mass wasting in cachectic mice
and cell atrophy induced by dexamethasone [55]. All these considerations reinforce the
action of the ceramide/S1P rheostat on SkM differentiation and muscle mass and fatigue
regulation. Unfortunately, no human studies corroborating these results have been pub-
lished so far. Furthermore, modifications of SL metabolism regulate both fatigue and
strength of SkM [44,50,196]. Some data also suggested that SL metabolism could be in-
volved in the development of sarcopenia with aging. Aging is characterized by an increase
in intramyocellular lipid content. These lipid droplets, found in most eukaryotic cells,
accumulate also in SkM cells likely contributing to cytoskeletal remodeling and SkM cell
differentiation [197]. Rivas et al., (2016) [198] provided evidence of a significant increase in
different classes of ceramide, sphingosine, and S1P in SkM cells from older mice compared
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to young animals. This SL accumulation associated with inflammatory processes, may
contribute to mass decrease observed in SkM of aged mice [199].

Finally, in recent years, it has been demonstrated in several studies that exercise
induces an important effect on SL metabolism [200–202]. In addition, SkM has emerged as
a secretory tissue for cytokines, named myokines such as interleukin-6 (IL-6) released from
the tissue in response to exercise [203–206].

5.3. Sphingolipids and Viral Replication

SARS-CoV-2 virus as well many other viruses require plasma membrane remodel-
ing for cell infection. Therefore, SLs enriched in microdomains may serve as an “en-
hancer” of virus infection by controlling virus receptor availability/segregation, allowing
fusion at the plasma membrane and triggering endocytosis-mediated uptake and virus re-
lease [29,207–209]. SARS-CoV-2 binds to ACE2, but also to sialic acids of gangliosides [210].
In fact, the N-terminal domain of the Spike protein has a ganglioside-binding domain that
enables the virus to bind to the lipid rafts of the plasma membrane, where the ACE2 recep-
tor is located [211]. This is also of interest since Coronaviruses, like other positive-sense
RNA viruses, remodel the intracellular membranes to form specialized viral replication
compartments, such as double-membrane vesicles, where viral RNA genome replication
takes place [212,213]. In particular, the sphingomyelinase, by producing ceramide, converts
membrane rafts into ceramide-enriched platforms, which are sites of endocytic uptake of
pathogens, due to concentration of their receptors, or formation of adaptors and signal-
ing complexes [214–216]. Consequently, well-known inhibitors of the sphingomyelinase
activity represent promising COVID-19 therapeutic approaches [29,217–220].

Furthermore, viruses can also use the host lipid machinery to support their life cy-
cle and to impair the host immune response [221]. In particular, SARS-CoV-2 infection
promotes remodeling of the host cell metabolism, including lipid metabolism [222,223].

In order to better predict the progression of the disease, many studies have investigated
the correlation between clinical features and lipidomics, metabolomics, and proteomic pro-
file in COVID-19-patients [224]. Thomas et al., (2021) [223] reported significant decreases
in sphingosines and increases in ceramide–phosphorylethanolamine as the most affected
classes in red blood cells from COVID-19 patients, while in a lung cell line infected with
SARS-CoV-2. Moolamalla et al., (2021) [222] have found increased expression of the genes
encoding for sphingomyelin synthases 1 and 2, serine palmitoyltransferase long chain base
subunits 1 and 2, and ceramide synthase isoforms 2, 5, and 6, as well as several genes
involved in glucosphingolid synthesis. This is interesting since it has been recently reported
that glucosylceramide synthase inhibitors prevent replication of SARS-CoV-2 and influenza
virus [225]. Moreover, Janneh et al., (2021) [226] have provided evidence that levels of acid
ceramidase are increased in serum of 73% of asymptomatic patients and that reduced sph-
ingosine levels could constitute a sensitive biomarker for the development of symptomatic
COVID-19 likely due to its inhibitory action in the binding of Spike protein to ACE2 [227].
A correlation between serum S1P and SARS-CoV-2 infection has also been observed. S1P
and S1P-metabolizing enzymes such as S1P lyase and SphK have been shown to regulate
viral functions during infection [228] and in sepsis [229], by interfering with innate immune
responses. Torretta et al., (2021) [230] reported also the decrease in sphingomyelin and
S1P levels in severe COVID-19 patients. Very recently, the level of circulating S1P has
been suggested to be of clinical importance as a prognostic and predictive biomarker in
COVID-19 disease [231]. In fact, serum S1P and apoM appear associated with COVID-19
severity and morbidity, due to their role in endothelial barrier dysfunctions, altered immune
response, and persistent excessive inflammation in COVID-19 patients. Moreover, since
sphingomyelin concentration is correlated to the inflammatory processes and viral infection
of the respiratory tract, two classes of sphingomyelins (d18:2/20:0 and d18:1/22:2) have
been suggested as candidate biomarkers to monitor disease progression and severity [232].
In another study of lipidomic analysis of the plasma samples obtained from 52 COVID-19
infected individuals it has been reported that ceramide exhibited a 400-fold increase in
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the infected patients. Notably, the ceramide species Cer(d18:0/24:1), Cer(d18:1/24:1), and
Cer(d18:1/22:0) were increased by 48-, 40-, and 33-fold, respectively, and to 116-, 91-, and
50-fold in plasma samples of patients with respiratory distress [36]. Other authors have
described that patients with severe disease showed progressive increase in sphingosine,
dihydrosphingosine, dihydroceramides, ceramides, but not of glycosphingolipids, suggest-
ing that also ceramides C16:0, C18:0, and C24:1, may be putative biomarkers of disease
evolution and respiratory symptoms severity [230] (Figure 2).

Figure 2. Potential effects, risk factors, and potential biomarkers of SARS-CoV-2 infection into skeletal
muscle. Viral infection or cytokine storm can lead to multiorgan injury, including skeletal muscle
damage through multiple pathways (see text). Risk factors for developing COVID-19 are reported.
They include aging, malnutrition, vitamin D3 deficiency, neuromuscular diseases such as myasthenia
gravis, multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS), high expression of ACE-2,
or high levels of reactive oxygen species (ROS). Skeletal muscle symptoms of damage could lead
to increase in typical biochemical markers of tissue damage and inflammation such as creatine
kinase (CK) and protein C-reactive (PCR). Several sphingolipid metabolites and enzymes have been
proposed as biochemical markers. Ceramide (Cer), sphingosine (Sph), sphingosine 1-phosphate (S1P),
ceramide synthase (CerS), and sphingomyelin (SM). ? indicates that direct infection of SARS-CoV-2
into muscle skeletal cells is still to be demonstrated. VitD, Vitamin D.
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6. Future Directions

Recent studies have uncovered the dysregulation of metabolomic and lipidomic
profiles of COVID-19 patients [233–235] and were oriented to find a correlation with disease
progression and severity. SL metabolism was found to be one of the more involved
pathways in COVID-19 patients [36,230–232,236–242].

These lipidomic/metabolomic studies were performed in serum of COVID 19 patients,
but no data are available from different tissues involved in this multi-organ disease. Thus,
a comprehensive lipidomic analysis of SkM tissue and a deep investigation of specific sub-
classes of sphingoid molecules, SL metabolism, and S1P signaling in SkM tissue may be of
crucial importance for the identification of pharmacological strategies directed to these po-
tential and exciting targets. Moreover, both SkM disuse and sarcopenia are factors that can
increase the risk of developing acute and long-term dysfunctions observed in COVID-19
patients. SkM inactivity and aging are correlated with SL- and cholesterol-enriched mem-
brane microdomain remodeling, changes in ceramide pools [243] and S1P/S1PR signal-
ing [186,244]. Notably, it could be interesting to examine the effects of the inhibitors of acid
sphingomyelinase on SkM, since these inhibitors are promising therapeutic drugs against
COVID-19 [245,246] and, likely, long COVID-19. Further investigations will certainly be
necessary to clarify the complex functional relationship between the action of bioactive
sphingoid molecules and SkM dysfunctions in COVID-19 patients.
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