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Abstract

In the cell nucleus, the gene primary tran-
scripts undergo molecular processing to gen-
erate mature RNAs, which are finally export-
ed to the cytoplasm. These mRNA maturation
events are chronologically and spatially
ordered, and mostly occur on distinct ribonu-
cleoprotein (RNP)-containing structures.
Defects in the mRNA maturation pathways
have been demonstrated in myotonic dystro-
phy type 1 (DM1) and type 2 (DM2) whose
characteristic multisystemic features are
caused by the expansion of two distinct
nucleotide sequences: (CTG)n in the DMPK
gene on chromosome 19q13 in DM1, and
(CCTG)n in the ZNF9 gene on chromosome
3q21 in DM2. By combining biomolecular and
cytochemical techniques, it has been shown
that the basic mechanisms of DMs reside in
the accumulation of CUG- or CCUG-contain-
ing transcripts in intranuclear foci where sev-
eral RNA-binding proteins necessary for the
physiological processing of pre-mRNA are
sequestered. Moreover, a nucleoplasmic accu-
mulation of splicing and cleavage factors has
been found in DMs. This suggests that the
dystrophic phenotype could depend on a gen-
eral alteration of the pre-mRNA post-tran-
scriptional pathway. Interestingly, the accu-
mulation of pre-mRNA processing factors in
the myonuclei of DM1 and DM2 patients is
reminiscent of the nuclear alterations typical
of sarcopenia, i.e., the loss of muscle mass
and function which physiologically occurs
during ageing. Consistently, in an in vitro
study, we observed that satellite-cell-derived
DM2 myoblasts show cell senescence alter-
ations and impairment of the pre-mRNA mat-
uration pathways earlier than the myoblasts
from healthy patient. These results suggest
possible common cellular mechanisms
responsible for skeletal muscle wasting in
sarcopenia and in myotonic dystrophy.

Skeletal muscle features in
myotonic dystrophy

In recent years, the role of mutations in non-
protein-coding regions has come to light in the
pathogenesis of different neuromuscular dis-
eases,1,2 so that the terms toxic RNA and
spliceopathy have been increasingly referred to
pathological conditions in which accumulation
of mutant RNAs results in a deleterious gain-of-
function deregulating transcript processing and
protein synthesis in multiple metabolic path-
ways. 

One of the best studied examples of RNA-
dominant disease is myotonic dystrophy (DM),
an autosomal dominant disorder characterised
by a variety of multisystemic features including
muscular dystrophy with increased number of
centrally located or clumped nuclei in muscle
fibres,3 myotonia (muscle hyperexcitability),
dilated cardiomyopathy, cardiac conduction
defects,4 insulin-resistance, cataracts,5 and dis-
ease-specific serological abnormalities.6,7 Two
forms of DM are presently known: the more
severe DM1-Steinert’s disease (OMIM 160900),
caused by an expanded (CTG)n nucleotide
sequence in the 3’ untranslated region of the
Dystrophia Myotonic Protein Kinase (DMPK)
gene (OMIM 605377) on chromosome 19q13,8-10

and the milder form DM2 (OMIM 602688),
caused by the expansion of the tetranucleotidic
repeat (CCTG)n in the first intron of the Zinc
Finger Protein (ZNF)-9 gene (OMIM 116955) on
chromosome 3q21.11

In the cell nucleus, the gene primary tran-
scripts undergo molecular processing to gener-
ate mature RNAs, which are finally exported to
the cytoplasm: these mRNA maturation events
are chronologically and spatially ordered, and
mostly occur on distinct RNP-containing struc-
tures.12 By combining biomolecular techniques
with the analysis in situ of the nuclear organiza-
tion and molecular composition, it has been
demonstrated that the expanded-CUG- or CCUG-
containing transcripts, in DM1 and DM2 cells
respectively, are retained in the cell nucleus, and
accumulate in the form of RNP-containing focal
aggregates.13 These nuclear foci specifically
sequester the alternative splicing regulators
CUG-binding protein 1 (CUGBP1) and muscle-
blind-like 1 (MBLN1) protein,14-16 which are nec-
essary for the physiological processing of pre-
mRNA, especially for contractile protein synthe-
sis.17 These focal aggregates are considered as a
biomolecular feature of DMs, and have been
detected in several adult tissues as well as in cul-
tured cells from DM patients.13,18-23 These foci
also sequester hnRNPs and snRNPs, i.e. splicing
factors involved in the early phases of the pre-
mRNA processing,24 thus strengthening the
hypothesis that the multifactorial phenotype of
dystrophic patients may result from a more gen-

eral alteration of the pre-mRNA post-transcrip-
tional pathway.

Recently, it has been demonstrated that
MBNL1 accumulate in the nuclear foci during
interphase but, at mitosis, the foci relocate to
the cytoplasm where they undergo degradation,
while newly-formed foci develop in the nucleus
of the daughter cells as a consequence of de
novo accumulation of expanded RNAs.25

Therefore, in proliferating cells, the cyclic
release from the nucleus of the foci and their
cytoplasmic degradation would prevent the mas-
sive intranuclear sequestration of nuclear fac-
tors; on the contrary, in non cycling cells, the
nuclear foci do not undergo intracellular reloca-
tion/degradation and progressively increase in
number and size. This dynamic behaviour of
nuclear foci is compatible with the evidence that
in DM patients the most affected organs or tis-
sues are those where non-renewing cells are
mainly present, such as the skeletal muscle,
heart and the central nervous system, whereas
cells from self-renewing tissues (such as skin
fibroblasts or layering epithelial cells) are much
less affected. Accordingly, measuring intranu-
clear foci in skeletal muscle biopsies taken from
patients at different times it has been demon-
strated that the MBNL1-containing foci actually
become larger with increasing patient’s age.25

In addition to the formation of intranuclear
foci, DM1 and DM2 cells show an altered distri-
bution of nuclear ribonucleoprotein (RNP)-con-
taining structures and molecular factors respon-
sible for pre-mRNA transcription and matura-
tion. In particular, by means of ultrastructural
immunocytochemistry on skeletal muscle biop-
sies from DM1 and DM2 patients, it has been
shown26,27 that splicing and cleavage factors
accumulate in the intranuclear functional sites
where they usually localize, sometimes ectopi-
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cally relocating also into nuclear RNP domains
where they generally do not occur (unpublished
results). This accumulation could hamper the
functionality of the splicing machinery and slow
down the intranuclear molecular trafficking thus
reducing the metabolic activity of myonuclei,
consistent with recent findings demonstrating a
reduced protein synthesis in DM1 and DM2
myoblasts.28,29

Skeletal muscle features in sar-
copenia

During ageing, the skeletal muscle undergoes
a progressive loss of mass, strength and func-
tion, in the process known as sarcopenia.30,31

Sarcopenia affects healthy, physically active sub-
jects: the rate of muscle loss in humans has
been estimated to range 1 to 2% per year after
age of fifty. Therefore, sarcopenia represents a
great risk factor for frailty, loss of independence
and physical disability in elderly, since it is asso-
ciated with decreased functional performance,
higher risk of falls and motor function impair-
ment. The mechanisms underlying age-related
skeletal muscle wasting and weakness are prob-
ably manifold and still remain to be fully eluci-
dated;30 however, although no specific therapy is
presently available to counteract its onset or
progress, studies performed on humans and
other mammals have stressed the importance of
physical exercise as an effective,  although still
debated, approach to prevent or limit the age-
related muscle mass loss.32-36

Interestingly, the sarcopenic process is char-
acterised by structural and functional alterations
of the skeletal muscle that are reminiscent of
myotonic dystrophy. In fact, the aged muscle
shows grouped atrophy, fibre size variability and
centrally located nuclei.37 In addition, factors
involved in the post-transcriptional processing
of pre-mRNA have been found to accumulate not
only in the nucleoplasmic RNP-containing struc-
tures where they usually locate but also in
ectopic nuclear domains.38-40 This intranuclear
accumulation/ delocalization of RNP structures
containing splicing and cleavage factors has
been found not only in the skeletal muscle but
also in other tissues (e.g., liver, brain) of aged
mammals.41-44 Moreover, aged cells undergo mal-
functions of the degradation systems both in the
cytoplasm45 and in the nucleus46,47 with accumu-
lation of crosslinked insoluble molecules
(including non-coding RNAs) which hampers
the intracellular transport mechanisms. This
suggests that in ageing cells the entire produc-
tion chain of mRNA, from its synthesis to the
cytoplasmic export, becomes less efficient, likely
contributing to the reduced capability of cells to
positively react to metabolic stimuli, which typi-
cally occurs in elderly. This loss of responsive-

ness would have particularly severe effects in
skeletal muscles, where a misregulated protein
turnover would result in a structural imbalance
between muscle protein degradation and the
restoring protein synthesis.48

Concluding remarks 

A recent in vitro study49 reported that satel-
lite-cell-derived myoblasts from DM2 patients
show cell-senescence alterations (e.g., cytoplas-
mic vacuolisation, reduction of the proteosyn-
thetic apparatus, accumulation of heterochro-
matin and impairment of the pre-mRNA matura-
tion pathways) earlier than the myoblasts from
healthy patients; moreover, when grown in a dif-
ferentiation medium DM2 myoblasts fuse into
multinucleated myotubes exhibiting structural
defects similar to those observed in senescent
myotubes from healthy patients.50 The early
occurrence of senescence-related features in
satellite cell-derived myoblasts suggests that
satellite cells from DM2 patients have a reduced
regeneration capability, which would contribute
to the muscular dystrophic phenotype.

The cytochemical and ultrastructural evi-
dence demonstrates that the skeletal muscle of
DM patients shares intriguing similarities with
the muscle from aged individuals in several
nuclear features, especially in the altered
nuclear RNP-containing structures involved in
pre-mRNA transcription and splicing. This
opens interesting perspectives on the role of the
RNP nuclear components in the onset of muscle
cell dysfunctions and encourages comparative
studies aimed at detecting common cellular
mechanisms at the basis of skeletal muscle
wasting.

Finally, it is worth noting that the analysis in
situ of the organization and molecular composi-
tion of nuclear domains is a powerful tool not
only for getting information about the DNA/RNA
pathways which govern cellular metabolism, but
also for detecting the occurrence of cell dysfunc-
tions related to pathological phenotypes.51-53
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