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Abramowitz MK, Paredes W, Zhang K, Brightwell CR, New-

som JN, Kwon H, Custodio M, Buttar RS, Farooq H, Zaidi B, Pai

R, Pessin JE, Hawkins M, Fry CS. Skeletal muscle fibrosis is

associated with decreased muscle inflammation and weakness in

patients with chronic kidney disease. Am J Physiol Renal Physiol 315:

F1658–F1669, 2018. First published October 3, 2018; doi:10.1152/

ajprenal.00314.2018.—Muscle dysfunction is an important cause of

morbidity among patients with chronic kidney disease (CKD). Al-

though muscle fibrosis is present in a CKD rodent model, its existence

in humans and its impact on physical function are currently unknown.

We examined isometric leg extension strength and measures of

skeletal muscle fibrosis and inflammation in vastus lateralis muscle

from CKD patients (n � 10) and healthy, sedentary controls (n � 10).

Histochemistry and immunohistochemistry were used to assess mus-

cle collagen and macrophage and fibro/adipogenic progenitor (FAP)

cell populations, and RT-qPCR was used to assess muscle-specific

inflammatory marker expression. Muscle collagen content was signif-

icantly greater in CKD compared with control (18.8 � 2.1 vs. 11.7 �

0.7% collagen area, P � 0.008), as was staining for collagen I,

pro-collagen I, and a novel collagen-hybridizing peptide that binds

remodeling collagen. Muscle collagen was inversely associated with

leg extension strength in CKD (r � �0.74, P � 0.01). FAP abun-

dance was increased in CKD, was highly correlated with muscle

collagen (r � 0.84, P � 0.001), and was inversely associated with

TNF-� expression (r � �0.65, P � 0.003). TNF-�, CD68, CCL2,

and CCL5 mRNA were significantly lower in CKD than control,

despite higher serum TNF-� and IL-6. Immunohistochemistry con-

firmed fewer CD68� and CD11b� macrophages in CKD muscle. In

conclusion, skeletal muscle collagen content is increased in humans

with CKD and is associated with functional parameters. Muscle

fibrosis correlated with increased FAP abundance, which may be due

to insufficient macrophage-mediated TNF-� secretion. These data

provide a foundation for future research elucidating the mechanisms

responsible for this newly identified human muscle pathology.
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INTRODUCTION

Impaired physical function is a major determinant of poor
overall health and quality-of-life in patients with chronic kid-
ney disease (CKD) (4, 52, 55, 65). A number of deficits in
physical function have been described, including loss of mus-
cle strength, reduced exercise capacity, and the development of
mobility impairment and disability (3, 17, 28, 34, 40, 50, 53,
54, 60, 64). Altered muscle physiology contributes to these
functional deficits (39, 63).

Prior research has focused on intrinsic muscle fiber deficits
and has scarcely examined how kidney disease affects the
interstitial muscle extracellular matrix (ECM). The paucity of
such investigations is important because the ECM performs
several important functions: It provides structural integrity;
transfers force both longitudinally and transversely within
muscle; protects muscle fibers from injury; and regulates the
function of myogenic progenitor cells that reside within the
ECM (2, 7, 22, 23, 41, 44). It has been reported that excess
ECM accumulation and fibrosis negatively impact muscle
force production (19), suggesting that alterations of the ECM
can have significant functional implications.

Muscle fibrosis was recently identified in an animal model of
advanced CKD, but this has not been investigated in humans;
thus its relevance to clinically meaningful functional outcomes
is unknown (14, 79). We sought to determine whether skeletal
muscle fibrosis was present in humans with CKD, fibrotic
burden was associated with a clinically relevant functional
outcome, and muscle fibrosis was associated with alterations in
cellular constituents that are crucial for appropriate muscle
repair pathways.

MATERIALS AND METHODS

Study Population

We performed cross-sectional comparisons between ambulatory
participants with non-dialysis-dependent stage 4 or 5 CKD and
healthy sedentary volunteers. CKD patients were recruited for this
study from a prospective cohort study of patients with CKD stages 4
and 5 [estimated glomerular filtration rate (eGFR) �30 ml·min�1·1.73
m�2] who were not receiving renal replacement therapy with dialysis.
Patients were eligible for participation in the parent study if they were
�21 yr of age, able to provide informed consent, and were ambula-
tory. Exclusion criteria included bilateral lower extremity amputa-

* M. Hawkins and C. S. Fry contributed equally to this work.
Address for reprint requests and other correspondence: M. Abramowitz,

1300 Morris Park Ave., Ullmann 615, Bronx, NY 10461 (e-mail: matthew.
abramowitz@einstein.yu.edu).

Am J Physiol Renal Physiol 315: F1658–F1669, 2018.
First published October 3, 2018; doi:10.1152/ajprenal.00314.2018.

1931-857X/18 Copyright © 2018 the American Physiological Society http://www.ajprenal.orgF1658

Downloaded from journals.physiology.org/journal/ajprenal (106.051.226.007) on August 5, 2022.

https://orcid.org/0000-0001-6984-9799
https://orcid.org/0000-0002-4207-6594
http://doi.org/10.1152/ajprenal.00314.2018
http://doi.org/10.1152/ajprenal.00314.2018
mailto:matthew.abramowitz@einstein.yu.edu
mailto:matthew.abramowitz@einstein.yu.edu


tions, use of immunosuppressive medications in the prior 3 mo, and an
active cancer diagnosis or receiving treatment for cancer. Patients
were ineligible for a muscle biopsy if they were taking anticoagulant
medications. Controls were generally healthy with no physical limi-
tations to activity. They were required to be sedentary, which was
defined as not being engaged in strenuous work, regular brisk leisure
physical activity, or a formal exercise session more than once per
week for at least the previous 3 mo (30, 46). Medical history data were
collected via standardized questionnaire and medical record review.
The study protocol was approved by the Institutional Review Board of
the Albert Einstein College of Medicine. Written informed consent
was obtained from all participants before inclusion in the study.

Study Design

Following screening, an enrollment visit was conducted during
which questionnaires and physical function testing were administered.
Health-related quality-of-life was assessed with the 36-Item Short
Form Health Survey (SF-36), and functional independence was as-
sessed using the Katz Index of Activities of Daily Living (31).

Physical function. Unilateral knee extensor strength was measured
using isometric dynamometry with a handheld dynamometer (Manual
Muscle Test System, Lafayette Instrument, Lafayette, IN). To ensure
assessment of maximum strength, subjects were instructed to perform
a maximal exertion contraction, and two trials were recorded. The
highest result achieved in the biopsied leg was used for analysis.
Results were normalized for body weight. To measure gait speed,
participants walked a 4-m course at their usual pace, with the fastest
time used for analysis. Endurance capacity was measured by the
2-min walk test (62): participants were asked to walk back and forth
over a 50-foot course as far as possible over 2 min. The distance
covered is highly correlated with 6-min walk distance (5).

Physical activity. After the enrollment visit, all participants wore a
triaxial accelerometer (Actigraph GT3X-BT, Actigraph, Pensacola,
FL) around the waist for 7 consecutive days to measure physical
activity level. Participants were instructed to wear the accelerometer
at all times, except when showering, bathing, or swimming. Data
processing was performed using 60-s epochs in ActiLife 6.13.3.
Wear-time validation was performed as per Troiano et al. (70).
Intensity levels of physical activity were defined as sedentary time
[�100 counts/min (cpm)] and light (100–1,951 cpm), moderate
(1,952–5,724 cpm), vigorous (5,725–9,498 cpm), and very vigorous
(�9,499 cpm) intensity (16, 47). Sedentary time was classified ac-
cording to daily time spent in sedentary bouts of 10 or more consec-
utive minutes, excluding sleep time (70).

Laboratory testing. Serum creatinine was measured by a modified
kinetic Jaffé reaction in the clinical laboratory at Montefiore Medical
Center. eGFR was calculated using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation (36). Timed 24-h
urine collections were performed after the provision of detailed
instructions. Urine urea nitrogen (UUN) was measured enzymatically.

Body composition and nutrition. Body composition was assessed
using whole-body dual-energy X-ray absorptiometry scans (Lunar
Prodigy Advance DXA System, GE Medical Systems Lunar; Madi-
son, WI; software v13.31). The appendicular skeletal muscle mass
index (ASMI) was calculated as the total lean mass of the four
extremities divided by the square of the height (10). Daily dietary
protein intake was calculated as 6.25 � [UUN (g/day) � weight
(kg) � 0.031] (45). Protein-energy wasting (PEW) was defined, with
slight modification based on the data available, according to the
International Society of Renal Nutrition and Metabolism, as satisfying
at least one criterion in at least three of four categories (15): Serum
chemistry: serum albumin �3.8 g/dl; body mass: BMI �23 kg/m2,
�10 lb. unintentional weight loss over 12 mo, or total body fat
percentage �10%; Muscle mass: low muscle mass as recommended
by the European Working Group on Sarcopenia in Older People

(ASMI �5.45 kg/m2 in women and �7.26 kg/m2 in men) (10);
Dietary intake: dietary protein intake �0.6 g·kg�1·day�1.

Study data were collected and managed using REDCap (Research
Electronic Data Capture) electronic data capture tools hosted at the
Albert Einstein College of Medicine (25).

Muscle Biopsies

Patients were scheduled for muscle biopsies after completing the
accelerometer wear period. On the morning of the study, participants
were admitted to the Clinical Research Center study room at 8:00 AM
after a 12-h overnight fast. Serum samples were collected and stored
at �80°C. Tissue (100–150 mg) was obtained from the vastus
lateralis via an incision site 15 cm proximal to the superior border of
the patella using a 12-gauge biopsy needle (Bard Monopty, Bard
Biopsy Systems, Tempe, AZ). Muscle tissue was blotted to remove
extraneous blood and was immediately frozen in liquid nitrogen and
then stored at �80°C. Serum TNF-� (ALPCO Diagnostics, Salem,
NH) and IL-6 Chemiluminescence (R&D Systems, Minneapolis, MN)
were measured in duplicate by ELISA.

Histochemistry and Immunohistochemistry

Tissue from one control participant was unavailable for histochem-
istry and immunohistochemistry. Frozen tissue was sectioned (7 	m)
on a cryostat (HM525 NX, ThermoFisher), and slides were air-dried
for 1 h. For collagen staining, slides were fixed for 1 h at 56°C in
Bouin’s fixative then incubated in picro-sirius red, washed in 0.5%
acetic acid, dehydrated, equilibrated with xylenes, and then mounted
with cytoseal XYL (ThermoFisher, Waltham, MA).

For collagen 1 and pro-collagen 1 staining, slides were fixed in
ice-cold acetone (�20°C) for 10 min, rinsed with PBS, and blocked in
1% BSA in PBS for 1 h at room temperature (RT). Slides were then
incubated with primary antibody: collagen 1 [ab34710, 1:200, Abcam,
Cambridge, MA) and pro-collagen (SP1.D8, mouse monoclonal, su-
pernatant, Developmental Studies Hybridoma Bank (DSHB)] over-
night at 4°C. The SP1.D8 pro-collagen 1 antibody was obtained from
the DSHB and deposited by H. Furthmayr, created by the NICHD of
the National Institutes of Health (NIH), and maintained at The
University of Iowa, Department of Biology (Iowa City, IA). The next
day, slides were incubated in goat anti-mouse IgG1 AF555 (Thermo-
Fisher), goat anti-rabbit AF488 (ThermoFisher) for 1 h at RT. Slides
were costained with 4=,6-diamidino-2-phenylindole (DAPI).

For collagen 4 and collagen-hybridizing peptide (CHP), immuno-
histochemical methods were modified according to the manufacturer’s
instruction (3Helix, Salt Lake City, UT). In brief, sections were fixed
in ice-cold acetone (�20°C) for 10 min and blocked in 2.5% normal
horse serum for 1 h at RT. 3Helix-5-FAM conjugate (3Helix) was
diluted to a working solution (20 	M) and placed on a heating block
at 80°C for 5 min to denature 3Helix trimers, then quickly cooled on
wet ice for 2 min. Immediately after cooling, anti-collagen 4 (ab6586,
rabbit, 1:200, Abcam) was added to the 3Helix-PBS solution, and
slides were incubated overnight at 4°C. The next day, slides were
washed in PBS and incubated with goat anti-rabbit AF555 (Thermo-
Fisher), and then costained with DAPI.

Platelet-derived growth factor receptor-� (PDGFR�) immunohis-
tochemical methods have been published previously (18). Briefly,
sections were fixed in 4% paraformaldehyde, followed by a blocking
step in 2.5% normal horse serum (Vector Laboratories, Burlingame,
CA), and then incubated overnight with goat anti-PDGFR� (AF-307-
NA, 1:100, R&D Systems) and AF488-conjugated wheat germ ag-
glutinin (WGA; W11261; ThermoFisher) at 4°C. The following day,
slides were incubated in rabbit anti-goat AF555 (A-21431, Thermo-
Fisher), costained with DAPI (D35471, ThermoFisher), and then
mounted with fluorescent mounting media.

For CD68, CD11b, and CD206 macrophages, immunohistochem-
ical protocols were adapted from Reidy et al. (61). Sections were fixed
in �20°C acetone for 10 min followed by blocking for 1 h in 2.5%
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normal horse serum at RT and subsequently incubated overnight at
4°C with AF488-conjugated WGA and one of three primary antibod-
ies against either CD68 (1:100, M0814, Dako, Santa Clara, CA),
CD11b (1:100, MON1019-1, Cell Sciences, Newburyport, MA), or
CD206 (1:100, AF2534, R&D Systems) diluted in 2.5% normal horse
serum. On day 2, sections were incubated for 1 h with one of two
secondary antibodies: rabbit anti-goat IgG AF555 (1:500, A-21431,
ThermoFisher) or goat anti mouse IgG1 AF555 (1:500, A-21121,
ThermoFisher). Sections were then costained with DAPI and then
mounted with fluorescent mounting media.

Image Acquisition and Analysis

Images were captured at �200 total magnification using a Zeiss
AxioImager M1 microscope (Carl Zeiss, Thornwood, NY), and anal-
ysis was carried out using AxioVision Rel software (v4.9). Picro-
sirius red staining was quantified to measure expansion of collagen
between muscle fibers using the thresholding feature of FIJI software
(https://fiji.sc/), and the area occupied by collagen was expressed
relative to the total muscle area (mm2). Fibro/adipogenic progenitors
(FAPs; PDGFR��/DAPI�) were identified as previously described
(18). Briefly, FAPs were identified with PDGFR�� staining sur-
rounding a DAPI� nucleus, to denote the presence of PDGFR�� cell
surface expression that has been used by others to identify FAPs in
human skeletal muscle (71). We only identified cells as FAPs when
the PDGFR�� staining pattern exhibited clear cell surface/membrane
staining, i.e., no overlap with a DAPI� nucleus. PDGFR� is a cell
surface protein, not a transcription factor, and this distinction was our
justification for the inclusion of cells that only display PDGFR�
surrounding a DAPI� nucleus. Our assessment is in line with others
in the field who have quantified FAPs in human muscle biopsies (71).
Cell counts were normalized to the total area of the muscle cross
section (mm2). Collagen 1 and collagen 4 were quantified to measure
expansion of key components of the ECM using the thresholding
feature of Zeiss AxioVision software (v4.9), and the area occupied by
collagen 1 and 4 were independently expressed relative to the total
muscle area (mm2). CHP analysis was conducted in a similar manner
to determine areas of active collagen remodeling. The binding area of
the CHP was determined using the thresholding feature of AxioVision
and expressed relative to the total muscle area (mm2). Muscle mac-
rophage content was quantified as either CD68�/DAPI�, CD11b�/
DAPI�, or CD206�/DAPI�, and cellular density was normalized
per unit area (mm2). All immunohistochemical images were analyzed
by a single assessor in a blinded manner to control or CKD subject
status.

RT-qPCR

Muscle samples were homogenized with QIAzol Lysis Reagent
(Qiagen), and then the aqueous phase was used for RNA isolation.
Total RNA (1 mg) isolated with an RNeasy Mini Kit (Qiagen
Sciences) was reverse transcribed to cDNA using the SuperScript
VILO cDNA synthesis kit (Invitrogen). TaqMan (Applied Biosys-
tems) RT-qPCR was performed for measurement of mRNA using
standard curves. Gene expression was adjusted by comparison with
human RPL7 expression. Primer-probe mixtures for human RPL7
were customized, and other primer-probe mixtures were from Applied
Biosystems. Primers and probes used to detect human RPL7 mRNA
were forward primer 5=-AAGAAGCGAATTGCTTTGACAGA-3=,
reverse primer 5=-CAAATCCTCCATGCAGATGATG-3=, and probe
5=-[6-FAM] ACGCTTTGATTGCTCGATCTCTTGGTAAATACG-
[TAMRA-6-FAM]-3=. Tissue from one CKD patient was unavailable
for RT-qPCR.

Statistics

Baseline characteristics, histochemistry, immunohistochemistry,
and gene expression data were compared between CKD patients and

controls using 
2 tests or Fisher’s exact test for categorical variables
and two-tailed t-tests or Wilcoxon rank-sum tests for continuous
variables. Correlations were tested by graphically assessing the exis-
tence of a linear fit between variables and calculating Pearson corre-
lation coefficients. All analyses were performed with Stata 13.1
(StataCorp, College Station, TX). A P value �0.05 was considered
statistically significant.

RESULTS

Participant Characteristics

Ten patients with CKD and 10 control individuals partici-
pated in this study (Table 1). Age did not differ between the
groups (P � 0.89). Compared with the controls, participants in
the CKD group were more likely to have hypertension. Control
participants did not have other comorbidities. Among the CKD
patients, 60% had diabetes, 20% had coronary artery disease,
20% had congestive heart failure, and none had a diagnosis of
peripheral vascular disease. Their median eGFR was 12.9
ml·min�1·1.73 m�2 (interquartile range, 7.7–18.1), reflective
of their advanced kidney disease. Based on the Physical Com-
ponent Score from the SF-36, compared with controls, CKD
patients had poorer self-reported physical functioning. Physical
activity levels did not differ between the groups. All CKD
patients and controls performed all activities of daily living
independently. Lean body mass, ASMI, serum albumin, and
dietary protein intake did not differ between CKD patients and
controls. No participants met criteria for PEW.

Skeletal Muscle Collagen and Muscle Strength

Muscle collagen content was quantified using histochemis-
try with picro-sirius red staining. Total muscle collagen was
increased in patients with CKD compared with controls (Fig. 1,
A–C, 18.8 � 2.1 vs. 11.7 � 0.7% collagen area, P � 0.008).
Staining for type I collagen, one of the main fibrillar
collagens in skeletal muscle and structural components of
the ECM (57), was greater in the CKD patients (Fig. 1,
E–G). The number of pro-collagen I-expressing cells was
also higher in CKD (Fig. 1, E–H). There was no difference
in staining for type IV collagen, which is the major base-
ment membrane collagen (Fig. 1, I–K) (57).

We performed several analyses to address possible con-
founding. Adjustment for race in a linear regression model did
not affect the difference in muscle collagen between CKD and
controls: CKD patients had 7.2% [95% confidence interval
(CI) 1.4–13.0; P � 0.02] greater muscle collagen content after
adjustment, compared with a 7.1% (95% CI 2.1–12.0; P �
0.008) difference in an unadjusted model. Muscle collagen
content did not differ between diabetic and nondiabetic CKD
patients (19.7 � 3.6 vs. 17.4 � 0.9%, respectively; P � 0.63),
and was significantly greater than controls irrespective of
diabetes status (Fig. 1D). Greater muscle collagen was also
present in CKD after excluding patients with either coronary
artery disease or congestive heart failure (20.2 � 2.7% (n � 7),
P � 0.004 vs. control). To address the possibility that hyper-
tension could explain the increase in muscle collagen, we
compared muscle collagen content in controls with and without
hypertension and found no difference (12.7 � 1.3 vs. 11.2 �
0.8, respectively; P � 0.33). In addition, muscle collagen in
patients with CKD was not associated with the number of
antihypertensive medications used (r � �0.11, P � 0.77). To
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address possible confounding by medication use, we also
compared muscle collagen between users and non-users of
medications that could impact skeletal muscle and found sim-
ilar results regardless of medication use (Table 2). Further-
more, muscle collagen was not associated with the total num-
ber of medications used by CKD patients (r � �0.11, P �
0.76). Muscle collagen content was not associated with muscle
mass (r � 0.39, P � 0.10 for LBM; r � 0.43, P � 0.07 for
ASMI) and remained significantly greater in CKD after adjust-
ment for age, sex, and either lean body mass (5.9%, 95% CI
0.6–11.3; P � 0.03) or ASMI (6.1%, 95% CI 1.0–11.1; P �
0.02).

We next examined dynamic collagen remodeling using a
novel collagen hybridizing peptide (CHP). CHP binds only
remodeling, unfolded collagen chains as the static collagen
triple helix is inaccessible to peptide binding (26). CHP stain-
ing is also indicative of microstructural damage to collagen
fibrils (80). CHP staining was significantly greater in CKD
patients compared with controls (Fig. 1, I, J, and L).

To examine whether muscle fibrosis might impact physical
function, we next examined isometric knee extensor strength
from the biopsied leg. Higher collagen content was associated
with lower knee extensor strength in CKD patients (r � �0.74,
P � 0.01; Fig. 2A). In the overall cohort including controls,
muscle collagen content was not associated with knee extensor

strength (r � �0.12, P � 0.63; Fig. 2B), but was inversely
associated with 2-min walk distance (r � �0.51, P � 0.03;
Fig. 2C), with a similar trend for gait speed (r � �0.43, P �
0.07; Fig. 2E). In the CKD group alone, although not reaching
statistical significance, these associations were of similar mag-
nitude (2-min walk distance: r � �0.45, P � 0.19; Fig. 2D;
gait speed: r � �0.44, P � 0.20; Fig. 2F).

FAP Cells and Skeletal Muscle Inflammation

FAP cells expressing the PDGFR� surface marker have
recently been implicated in the development of muscle fibrosis,
including in an animal model of CKD (14, 72). Using immu-
nohistochemical quantification, PDGFR�� cells, located in
the interstitial space between muscle fibers, were more abun-
dant in the muscle of CKD patients (Fig. 3, A–C), and their
abundance strongly correlated with muscle collagen content
(r � 0.84, P � 0.001 overall; r � 0.90, P � 0.001 in CKD)
(Fig. 3, D and E). FAP pools expand in response to muscle
damage; subsequent reduction in FAP numbers is dependent
upon signaling by proinflammatory macrophages (35). Specif-
ically, in the absence of TNF-� secreted by proinflammatory
macrophages, the expansion of FAP pools persists and causes
fibrosis (35). To determine whether differences in inflamma-
tory gene expression could explain our findings, mRNA was

Table 1. Participant characteristics

Control Chronic Kidney Disease P

Age, yr 61.4 � 15.2 62.2 � 7.8 0.89
Women – n (%) 4 (40) 3(30) 1.0
Race/ethnicity – n (%) 0.09

Non-Hispanic white 4 (40) 0
Black 4 (40) 8 (80)
Hispanic/multiracial 2 (20) 2 (20)

Hypertension – n (%) 3 (30) 9 (90) 0.02
Diabetes – n (%) 0 6 (60) 0.01
Coronary artery disease – n (%) 0 2 (20) 0.47
Congestive heart failure – n (%) 0 2 (20) 0.47
Peripheral vascular disease – n (%) 0 0 ....
Medication – n (%)

ACE inhibitor or ARB 1 (10) 5 (50) 0.14
Statin 1 (10) 7 (70) 0.02
Vitamin D2 or D3 2 (20) 6 (60) 0.19
Activated vitamin D analogs 0 2 (20) 0.47

Body mass index, kg/m2 28.7 (27.2–30.0) 33.4 (24.4–39.8) 0.17
eGFR, ml·min�1·1.73 m�2 80.0 (69.5–89.0) 12.9 (7.7–18.1) �0.001
SF-36 Physical Component Score 51 � 3 36 � 9 �0.001
SF-36 Mental Component Score 49 � 4 47 � 7 0.50
Daily physical activity, h/day*

Sedentary time† 8.1 � 1.7 8.5 � 1.7 0.66
Light intensity 4.2 � 1.8 4.7 � 1.3 0.54
Moderate intensity 0.5 (0.3–0.6) 0.1 (0.1–0.3) 0.10
Vigorous intensity 0 (0–0.04) 0 (0–0) 0.40

Quadriceps strength, kg/kg body wt 0.21 � 0.10 0.22 � 0.04 0.72
Gait speed, m/s 1.3 � 0.2 1.1 � 0.2 0.25
2-Min walk distance, ft 546 � 100 455 � 96 0.05
Lean body mass, kg 49.6 � 9.1 56.3 � 14.6 0.24
Appendicular skeletal muscle mass index, kg/m2 7.27 � 1.18 8.16 � 2.15 0.26
Serum albumin, g/dl 4.38 � 0.24 4.32 � 0.46 0.72
Dietary protein intake, g/day§ 60.7 � 21.2 56.2 � 20.2 0.87

Data are presented as means � SD or median (interquartile range) for continuous variables. *Accelerometer data were unavailable for one control participant
who did not wear the Actigraph device. No very-vigorous intensity activity was recorded for any of the participants. †Sedentary time was classified according
to daily time spent in sedentary bouts of 10 or more consecutive min, excluding sleep time. §Calculated from 24-h urine urea nitrogen excretion. Urine collections
were unavailable in 2 control participants. ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker; eGFR, estimated glomerular filtration
rate; SF-36, 36-Item Short Form Health Survey.
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quantified using qRT-PCR in whole muscle lysates. TNF-�
expression was inversely correlated with both FAP abundance
(r � �0.65, P � 0.003) (Fig. 4A) and with muscle collagen
content (r � �0.56, P � 0.01) (Fig. 4B), and TNF-� expres-
sion was significantly reduced in the muscle of CKD patients
compared with controls (Fig. 4C), despite higher systemic
inflammatory markers (CKD vs. control: IL-6, 3.4 (2.6–5) vs.
2.4 (1.6–3.4) pg/ml, P � 0.04; TNF-�, 10.2 (8.1–16.4) vs. 7.0

(6.2–9.6) pg/ml, P � 0.09). We hypothesized this could be due
to differences in muscle macrophage content or phenotype.
Muscle expression of the macrophage marker CD68 and
chemokines CCL2 and CCL5 was also significantly reduced in
CKD patients (Fig. 4, D–F). Immunohistochemical quantifica-
tion demonstrated fewer CD68� cells (Fig. 5, A–C; monocyte
and panmacrophage marker) and fewer CD11b� cells (Fig. 5,
D–F; proinflammatory macrophage marker) in CKD patients

Collagen 1 / Pro-Collagen 1 / DAPI

Control CKDE F

Muscle / Collagen

A BControl CKD

*
C

Control CKD + Diabetes CKD - No Diabetes
0%

10%

20%

30%

40%

%
C

o
ll
a
g

e
n

A
r e

a

*
**

Control CKD 
0%

10%

20%

30%

%
C

o
ll
a
g

e
n

1
A

re
a

* *
G H

Collagen-Hybridizing Peptide / Collagen 4 / DAPI

Control CKDI J

*
K L

D

Control CKD
0%

10%

20%

30%

40%

%
C

o
l l
a
g

e
n

A
re

a

Control CKD 
0

10

20

30

40

50

P
ro

-C
o

ll
a
g

e
n

1
+

c
e
ll
s
/m

m
2

Control CKD 
0%

5%

10%

15%

20%

25%

%
C

o
ll
a
g

e
n

4
A

re
a

Control CKD 
0%

1%

2%

3%

4%

5%

%
C

o
ll
a
g

e
n

-H
y
b

ri
d

iz
in

g
P

e
p

ti
d

e
A

re
a

Fig. 1. Increased collagen content within the m. vastus lateralis muscle of chronic kidney disease (CKD) patients. A and B: representative histochemical image
of picro-sirius red collagen stain in control (A; n � 9) and CKD (B; n � 10) muscle biopsies. Scale bar � 100 	m. C: quantification of collagen content within
the muscle represented as mean percentage of total muscle area � SE. D: quantification of collagen content stratified by diabetes status (n � 6, CKD with
diabetes; n � 4, CKD without diabetes). P values were calculated for comparisons between each CKD subgroup and control. E and F: representative
immunohistochemical images demonstrating staining for collagen 1 (green), pro-collagen 1 (red), and DAPI (blue) in control (E) and CKD (F) muscle biopsies.
Scale bar � 100 	m. G and H: quantification of collagen 1 content (G) and pro-collagen 1� cells (H) within the muscle represented as mean percentage of total
muscle area � SE. I and J: representative immunohistochemical images demonstrating staining for collagen hybridizing peptide (CHP; green), collagen 4 (red),
and DAPI (blue) in control (I) and CKD (J) muscle biopsies. Scale bar � 100 	m. K and L: quantification of collagen 4 content (K), and CHP binding (L)
represented as mean percentage of total muscle area � SE. *P � 0.05. **P � 0.001.

Table 2. Muscle collagen content based on medication use*

Control

Non-user

CKD P Value

Non-user User CKD Non-user vs. Control CKD Non-user vs. CKD User

ACE inhibitor or ARB 11.9 � 0.8 19.9 � 4.4 17.6 � 0.7 0.04 0.62
Statin 11.7 � 0.8 17.7 � 1.0 19.2 � 3.1 0.002 0.75
Vitamin D† 11.8 � 0.9 16.0 � 2.3 20.7 � 3.1 0.07 0.31

Quantification of collagen content within the muscle is presented as mean percentage of total muscle area � SE. *User and non-user refer to use of each
medication class separately. †Vitamin D2 or D3 or activated vitamin D analogs. CKD, chronic kidney disease; ACE, angiotensin-converting enzyme; ARB,
angiotensin II receptor blocker.
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compared with controls but no difference in CD206� cells
(Fig. 5, G–I; anti-inflammatory macrophage marker) between
the two groups.

DISCUSSION

Preventing functional decline and loss of mobility among
patients with CKD is a major unmet need: mobility impairment
leads to falls, hospitalizations, and significant morbidity (6, 51,
56). Based on our results, this functional impairment may
partly be due to skeletal muscle fibrosis. Muscle collagen
content was increased in CKD patients; based on collagen I
staining, this was explained by increased fibrillar collagen
deposition. As pro-collagen I staining was also greater in CKD,
the increased muscle collagen is likely, at least in part, due to
increased collagen synthesis; increased CHP staining suggests
there is also increased collagen proteolytic remodeling in
CKD. As muscle collagen content was inversely associated
with measures of physical function, it is possible that collagen

deposition in CKD could be pathological and have functional
implications.

An effect of excess muscle collagen on physical function
could be due to impaired transfer of force generated by myo-
fibril contractile units. Maximal transfer to tendons of the force
generated by myofibril contraction requires intact ECM (20,
33, 42, 49, 57, 68, 69). Whereas single-fiber force was pre-
served in an animal model of muscle fibrosis, whole-muscle
force per cross-sectional area was reduced (19). Compared
with isolated muscle fiber bundles without ECM, the load-
bearing potential of fiber bundles with intact ECM is about five
times greater (38, 48, 58). Therefore, while producing minimal
changes in muscle mass, pathological alteration of the ECM
can cause meaningful changes in muscle function.

Impaired force generation could also explain the association
of muscle collagen with endurance capacity; alternatively,
since fibrosis may be accompanied by capillary rarefaction
(12), muscle collagen could be a marker for impaired muscle
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Fig. 2. Correlation of collagen content within the m. vastus lateralis muscle with physical function in all participants (A, C, and E) and CKD patients (B, D, and
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perfusion, which would promote fatigability and limit endur-
ance. Another possibility is that fibrosis accompanies muscle
atrophy, and that loss of muscle mass explains the associations
of muscle collagen with physical function. Our data, however,
did not support this hypothesis: muscle mass was not lower in
the CKD patients than controls; greater muscle collagen con-
tent was not associated with lower muscle mass; and after
adjusting for muscle mass, muscle collagen remained higher in
CKD.

No prior studies have examined muscle ECM homeostasis in
humans with CKD. However, muscle fibrosis has been ob-
served in the partial nephrectomy model of uremia (14, 79),
and our results confirm the relevance of this finding for human
pathology. As in that animal model, FAP content was increased
in human CKD muscle, and here FAP abundance was highly
correlated with muscle collagen content. Prior work has shown
that FAPs are elevated in severe fibrotic muscle diseases such
as Duchenne muscular dystrophy (72). More recently, elevated
FAPs were seen in association with muscle fibrosis following
anterior cruciate ligament injury (18). Here, we report in-
creased FAPs in association with lesser expansion of muscle
collagen than is seen in classic fibrotic muscle diseases, and not
following known injury. To the best of our knowledge, this is
the first report of such an occurrence.

Although the CKD patients had not experienced clinically
apparent muscle injury, increased CHP staining, compared
with controls, may indicate subclinical muscle damage. Sub-
failure damage, in which macroscale damage is not detected,
causes unfolding of collagen fibrils (80), which could provide
a signal for the initiation of repair mechanisms. While such
damage has not been described previously in patients with
advanced CKD, studies have documented disrupted sarco-

meres and altered muscle architecture (1, 13, 37, 67). Previ-
ously, there were no tools to detect molecular level damage to
collagen in the absence of macroscale damage (80); therefore,
such damage may have been undetected. If subfailure damage
to collagen is present, its etiology merits further study: one
possibility is increased susceptibility to muscle contraction-
induced injury in CKD patients. This could be an initiating
factor of the fibrotic process; conversely, because the ECM
provides structural support to muscle fibers, fibrosis itself
could increase susceptibility to damage (43). Such hypotheses
require additional study; regardless, the CHP results, in con-
junction with pro-collagen I staining, support increased colla-
gen remodeling in patients with CKD.

An underlying cause of muscle fibrosis in CKD may be
ineffective macrophage-mediated muscle repair. The initial
response to injury is characterized by influx of pro-inflamma-
tory macrophages and concomitant expansion of the FAP pool,
which is needed for repair of the ECM (29). Appropriate repair,
and prevention of fibrosis, is dependent upon the macrophage-
FAP interaction. TNF-�, secreted by proinflammatory macro-
phages, causes contraction of the FAP pool via apoptosis; if
TNF-� is absent, persistently expanded FAP pools result,
causing fibrosis (9, 14, 35, 72). Our findings link muscle
TNF-� with muscle fibrosis in CKD. Lower TNF-� expression
correlated with both greater FAP abundance and greater col-
lagen content. Furthermore, we found lower muscle expression
of TNF-� and other inflammatory and macrophage genes in
CKD compared with control; this was remarkable given the
greater systemic inflammation in the CKD patients. CKD is
recognized as a state of increased inflammation (24); thus the
discrepancy between muscle inflammation and systemic in-
flammation is rather striking. As proinflammatory macro-
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phages are a likely source of TNF-�, the reduction of TNF-�
in CKD muscle is consistent with the reduced macrophage
content detected. It is noteworthy that the associations between
muscle collagen, FAPs, and TNF-� appeared similar in CKD
patients and controls. This suggests both an important role for
macrophage-mediated regulation of FAPs in human skeletal
muscle homeostasis and that loss of this regulation contributes
to muscle fibrosis.

Given the importance of inflammation in CKD-associated
morbidity, several factors may explain our finding of lower
skeletal muscle inflammation in CKD patients. First, the pos-
sibility of a divergence between systemic inflammation and
that within muscle has been hinted at by prior literature. Both
aerobic and resistance exercise in non-dialysis-dependent CKD
patients reduce systemic inflammation (8, 27, 75), yet in
skeletal muscle inflammatory gene expression did not decline
(76). Second, prior studies have either examined end-stage
renal disease patients receiving dialysis (as opposed to non-
dialysis-dependent CKD, as in our study); studied patients
during the hemodialysis treatment itself, which may be proin-
flammatory (59); sampled non-locomotor muscles, e.g., rectus
abdominus, as opposed to vastus lateralis in our study (21, 73,

74, 78); or relied on systemic markers of inflammation only
(11). Each of these differences may explain the divergence
with our findings. Hemodialysis is thought to be a proinflam-
matory stimulus; for this and other reasons, end-stage renal
disease patients appear to have a greater inflammatory burden
than non-dialysis-dependent CKD patients, which might trans-
late to differences within the muscle. Our data set does not
enable us to explore whether such differences exist. Inflamma-
tory cytokine expression might differ between locomotor and
non-locomotor muscles; this could be especially important for
a muscle such as the rectus abdominus that lies in close
proximity to abdominal fat depots, which are recognized
sources of inflammation (32). Furthermore, few studies in
pre-dialysis CKD patients have included comparison with a
non-CKD control group, and all sampled rectus abdominus
during placement of a peritoneal dialysis catheter (21, 73, 74,
78). Two other differences between those four studies and ours
deserve mention: the mean eGFR of those patients was below
10 ml·min�1·1.73 m�2, and many experienced wasting and
malnutrition. Although it is possible that our findings would
have differed had we studied patients with lower eGFR who
were initiating dialysis, given the relatively advanced CKD in
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our cohort, this seems a less likely explanation for the lower
muscle inflammation that we observed. However, as PEW is
strongly associated with inflammation, we might have ob-
served increased inflammation in skeletal muscle had we stud-
ied patients with symptomatic uremia and severe muscle wast-
ing. If true, this would imply that the well-described manifes-
tations of inflammation and muscle wasting are preceded
during earlier stages of CKD by a relative paucity of inflam-
mation in skeletal muscle and by the development of muscle
fibrosis.

Several limitations of our study should also be considered.
There were important differences between the CKD and con-
trol groups in terms of comorbidities and medication use. We
accounted for these differences using stratified analyses and
adjusted regression models, which indicated that our findings
were not explained by these factors. The modest sample size of

our cohort precluded more detailed statistical analyses. As this
was a cross-sectional study, our findings do not prove a
cause-effect relationship, and we lack temporal data on the
development of fibrosis and the cellular abnormalities we have
characterized. We cannot rule out reverse causality: for exam-
ple, the possibility that the differences in FAPs and macro-
phages in CKD muscle were a response to fibrosis. Neverthe-
less, our findings agree with animal model data demonstrating
the central role of macrophages and FAPs in the repair of
muscle ECM and prevention of fibrosis (35). We used vali-
dated markers of pro- and anti-inflammatory macrophages to
define macrophage subsets (66). However, in vivo there is a
continuum of macrophage subsets with overlapping but rela-
tively polarized gene expression profiles (77). Future studies
are needed to characterize the effects of CKD on muscle
macrophages in more detail.
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In summary, skeletal muscle fibrosis is a previously unrec-
ognized muscle pathology in patients with CKD and a poten-
tially important contributor to physical function impairment.
Increased FAP abundance, possibly caused by insufficient
macrophage-mediated TNF-� secretion, may contribute to this
pathology. The disparity between systemic and local inflam-
mation highlights the need to study human muscle tissue
directly rather than extrapolating from systemic measurements.
These data provide a framework for further investigations into
the mechanisms causing this pathology in CKD.
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