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Introduction
Obesity is becoming a global epidemic, increasing the health bur-

den of associated complications of insulin resistance and diseas-

es such as cardiovascular disease (1). Because insulin resistance 

leads to type 2 diabetes (T2D) (2), T2D incidence and prevalence 

are also increasing rapidly. The number of adults with diagnosed 

diabetes in the United States nearly quadrupled over 32 years, 

from 5.5 million in 1980 to 21.3 million in 2012; 90% to 95% of 

these individuals have T2D (3).

Molecular links between obesity and insulin resistance and 

T2D remain incompletely understood but may include chronic 

inflammation, particularly in adipose tissue (AT) (4–8). AT inflam-

mation may contribute to whole-body insulin resistance and T2D 

via the endocrine effects of inflammatory molecules secreted by 

AT (known as adipokines) on insulin sensitivity in various tissues, 

particularly skeletal muscle (SM) and liver. Additionally, dysreg-

ulation of preadipocyte/adipocyte functions accelerates fat spill-

over from AT to SM and liver, resulting in ectopic fat deposition 

and insulin resistance in these tissues, which contribute to system-

ic insulin resistance and T2D (5, 7, 9–13). SM is the most important 

organ for whole-body glucose homeostasis (14, 15) and is responsi-

ble for approximately 80% of insulin-stimulated whole-body glu-

cose uptake and disposal under normal conditions (15–18). Insulin 

resistance in SM is the major defect in T2D (16–18) and is therefore 

central to systemic insulin resistance and T2D.

While studies have focused on the roles of intramyocellular 

lipids, mitochondrial defects, and endocrine effects of adipokines 

on SM insulin resistance (10, 12, 15), emerging evidence indicates 

that inflammation also occurs in SM in the setting of obesity and 

may exert autocrine or paracrine effects on myocyte metabolic 

functions. In this Review we focus on obesity-linked SM inflam-

mation and its roles in muscle insulin resistance.

Inflammation in SM
Although obesity-linked inflammation is less well studied and doc-

umented in SM than in AT, available evidence suggests that SM 

myocytes can secrete large numbers of cytokines and other mol-

ecules and may become inflamed in obesity. In addition, immune 

cells can infiltrate into SM and increase SM inflammation in obesity.

SM as a secretory organ and myocyte secretion of inflamma-

tory molecules. Similar to adipocytes, SM myocytes express and 

secrete numerous cytokines such as IL-6, IL-8, and IL-15 and 

other molecules such as FGF21, irisin, myonectin, and myosta-

tin (known as myokines; see Table 1 and refs. 19, 20). Whereas 

most adipokines are proinflammatory, regulated by obesity, and 

involved in the development of obesity-linked metabolic dys-

function (4, 5, 11), most myokines are regulated mainly by exer-

cise and muscle extraction, counteract the detrimental effects 

of adipokines, and have beneficial effects on glucose and lipid 

metabolism and inflammation (19, 20).

Myokines may affect myocytes and immune cells locally via 

autocrine or paracrine actions and other cells such as adipocytes 

and hepatocytes via endocrine effects. IL-6 is the most well-stud-

ied myokine. Exercise and muscle extraction dramatically enhance 

IL-6 secretion from muscle and can increase plasma IL-6 levels up 

to 100-fold (19–21). Acute treatment of myocytes or intravenous 

infusion of healthy humans with IL-6 increases basal and insu-

lin-stimulated glucose uptake by myocytes and improves whole-

body insulin sensitivity (19, 22). IL-6 also increases lipolysis and 

fatty acid (FA) oxidation in myocytes and adipocytes; induces UCP1 

expression in mouse white AT, which is indicative of browning (20, 

22–25); and mediates antiinflammatory effects by inducing expres-
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tion in myocytes (40–45). Thus, the obesity-linked increases in 

TNF-α secretion by myocytes may contribute to myocyte insulin 

resistance via autocrine effects. Therefore, obesity is associated 

with increased inflammation in myocytes, which may secrete ele-

vated levels of proinflammatory molecules and contribute to mus-

cle inflammation. Nevertheless, changes in myocyte secretion of 

cytokines do not appear to constitute the major component of SM 

inflammation in obesity (see below), and the role of various myo-

kines in SM inflammation remains to be further investigated.

Infiltration of immune cells into SM. Increased immune cell infil-

tration is the main characteristic of obesity-linked inflammation in 

AT (4, 5, 9, 11, 46–51). Growing evidence indicates that immune 

cells also accumulate in SM and may constitute the predominant 

inflammatory cells in SM in obesity (2, 11, 35, 52, 53). Increased 

macrophage and T cell levels have been reported in SM of obese 

humans with insulin resistance or T2D (35–37, 53–55). In fact, a 

short-term high-fat, high-calorie diet or overfeeding with induc-

tion of insulin resistance increased macrophage markers in SM in 

healthy subjects (56, 57). In mice, obesity and insulin resistance 

induced by a high-fat diet (HFD) was consistently associated with 

increased accumulation of immune cells including macrophages 

and T cells in SM (11, 35, 37, 47, 49, 53, 58–62). Similar to humans, 

mice fed a short-term HFD have increased macrophage content 

in SM (35, 53, 60). Mast cells and eosinophils were observed in 

mouse SM but showed no changes with obesity (53, 63). Changes 

sion of antiinflammatory cytokines such as IL-10 and inhibiting 

expression of proinflammatory cytokines such as TNF-α (19, 26). 

However, IL-6 is generally considered proinflammatory and can 

induce insulin resistance, particularly under chronic conditions 

related to obesity (see below). Irisin, another myokine enhanced by 

muscle contraction, may increase glucose transporter 4 (GLUT4) 

expression and mitochondrial uncoupling and biogenesis in myo-

cytes, and also induce browning of white AT (24, 27–29).

Studies on the effects of obesity on myokine expression are 

limited and have had inconsistent results. For example, obesity 

in rats decreased IL-6 and IL-15 expression in SM (30). Similarly, 

cultured myocytes from SM of obese subjects with impaired glu-

cose tolerance or T2D expressed lower IL-6 levels than those from 

healthy controls (31). However, more studies found increased IL-6 

expression or release in SM of obese subjects with impaired glu-

cose tolerance or T2D compared with healthy controls (32–34). 

Differentiated myocytes can express numerous proinflammatory 

molecules (Table 1), particularly under stimulation of inflamma-

tory cytokines and free FAs (FFAs) (32, 34–37). Differentiated 

cultured myocytes isolated from obese subjects with insulin resis-

tance or T2D secrete more cytokines such as TNF-α and chemo-

kines such as monocyte chemoattractant protein 1 (MCP-1) than 

myocytes from lean controls (31, 34, 38). Higher TNF-α levels 

were also observed in SM of rats fed a fructose-rich diet (39), and 

TNF-α can induce insulin resistance and mitochondrial dysfunc-

Table 1. Selected myokines

Myokines Major autocrine, paracrine, or endocrine effects on metabolism and inflammation Regulation in SM

Cytokines/chemokines

IL-6 Promotes muscle hypertrophy

Acutely: enhances insulin sensitivity and insulin-stimulated glucose uptake;  
promotes lipolysis and FA oxidation in myocytes, adipocytes, and whole  

body (19, 20, 22–25); inhibits inflammation (19, 26)

Chronically: induces insulin resistance; promotes inflammation  
in skeletal muscle and liver (162, 163)

Increased with exercise (19, 20), decreased in obesity  
and T2D (30, 31), increased in obesity and T2D (32–34)

IL-8 Induces angiogenesis and leukocyte recruitment (19, 24) Upregulated with exercise (19, 20),  
increased in obesity with T2D (34)

IL-15 Promotes muscle hypertrophy; reduces lipid deposition in white AT (19, 24) Increased with exercise (19, 20); increased in obesity  
with T2D (34); no change in obese subjects  

with insulin resistance (164)

TNF-α Inhibits insulin sensitivity and insulin-stimulated glucose uptake;  
impairs mitochondrial ultrastructure and functions; proinflammatory  

in myocytes, adipocytes, and immune cells (40–45)

Increased in obesity with insulin resistance  
or with T2D (31, 34, 35, 38)

GROα Induces immune cell infiltration; proinflammatory (34) Increased in obesity with T2D (34)

MCP-1 Induces immune cell infiltration; proinflammatory (34, 35, 37, 76) Increased in obesity with insulin resistance or with T2D (34, 35)

RANTES Induces immune cell infiltration; proinflammatory (9, 35, 77) Increased in obesity with insulin resistance (35)

Other molecules

FGF21 Induces white AT browning; protects from diet-induced obesity and  
insulin resistance (29, 165)

Increased with stress, insulin challenge, obesity,  
and T2D (165)

Irisin Induces white AT browning; increases myocyte proliferation, GLUT4 expression,  
and mitochondrial uncoupling and biogenesis (24, 27–29)

Induced with muscle contraction (28);  
decreased in obesity (166)

Myonectin Promotes FA uptake by adipocytes and hepatocytes with reduction  
of circulating FFAs (167)

Increased with exercise; decreased in obesity (167)

Myostatin Inhibits muscle hypertrophy; maintains metabolic homeostasis and modulates  
AT function and mass (19, 24)

Decreased with exercise; increased in obesity (19, 168)
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obesity development (35, 53, 56, 57, 60). Macrophage infiltration 

precedes T cell infiltration (35). Infiltration of leukocytes from the 

circulation into tissues requires attractant signals such as chemo-

kines, and chemokines such as MCP-1 increase early in SM and 

visceral AT of mice fed a HFD. In visceral AT, the increase in  

MCP-1 appears to precede the increases in macrophages and the 

activation marker TNF-α (74, 75), suggesting that the initial increase 

in chemokines may derive from tissue-resident cells. Adipocytes 

and myocytes, the main resident cells in AT and SM, respectively, 

can express chemokines including MCP-1 (9, 32, 35–37, 61). Under 

stimulation with inflammatory molecules or FFAs or in obesity, adi-

pocytes and myocytes secrete more chemokines (9, 32, 34–37, 61), 

which induce immune cell migration (9, 37, 61). Therefore, chemo-

kines secreted by myocytes or adipocytes may play crucial roles in 

immune cell infiltration and inflammation in SM and visceral AT. 

MCP-1 overexpression in myocytes or adipocytes increases inflam-

mation with enhanced immune cell infiltration in SM or visceral 

AT in mice (37, 76), while MCP-1 knockout prevents HFD-induced 

increases in muscle or AT macrophages (53). The RANTES/CCR5 

pathway is also upregulated in SM and visceral AT in obesity (9, 35, 

77) and may play a role in obesity-linked inflammation in visceral 

AT (77). The initiating signals that trigger SM or AT inflammation 

are not well known and may include FAs, particularly HFD-derived 

saturated FAs, which can induce expression of inflammatory mole-

cules including chemokines in myocytes and adipocytes (34, 37). In 

addition to myocyte or adipocyte secretion of chemokines, as obe-

sity progresses, recruited immune cells may also secrete chemok-

ines, which may further increase inflammation in SM and AT.

The arachidonic acid–derived leukotriene LTB4, which is 

increased in SM, visceral AT, and liver of obese mice, also con-

tributes to macrophage infiltration of visceral AT in obesity (78). 

Interactions of adhesion molecules on immune cells and their 

ligands on endothelial cells are crucial for immune cell migration. 

Lymphocyte function–associated antigen-1 (LFA-1), a β2 integrin 

mainly expressed on immune cells, plays an essential role in T cell 

accumulation and inflammation in SM and visceral AT of obese 

mice, likely by interacting with ICAM-1 on endothelial cells or 

antigen-presenting cells (35, 79).

While infiltration of circulating Ly-6Chi monocytes is import-

ant in obesity-linked inflammation and accumulation of proin-

flammatory CD11c+ macrophages in AT in mice (48, 80), the role 

of Ly-6Clo monocytes remains to be determined. In the circula-

tion, Ly-6Clo, but not Ly-6Chi, monocytes express CD11c (81, 82). 

Circulating CD11c+/Ly-6Clo monocytes are increased with obesity 

and hyperlipidemia, infiltrate into atherosclerotic aortas, become 

CD11c+ macrophages/dendritic cells, and contribute to atherogen-

esis in mice (46, 81–83). Infiltration of CD11c+/Ly-6Clo monocytes 

likely also plays a role in CD11c+ macrophage accumulation and 

inflammation in visceral AT and SM in obesity. In addition, mac-

rophages and T cells proliferate in visceral AT (79, 84, 85), and 

potential proliferation in SM warrants investigation.

Immune cell activation. Macrophages and T lymphocytes not 

only are increased in number but also display proinflammatory phe-

notypes in SM and visceral AT in obesity. The tissue inflammatory 

milieu, including increased cytokines, macrophage/T cell interac-

tions, and increased FFAs and metabolites, may play key roles in 

immune cell proinflammatory activation in obesity (Figure 1).

in other immune cells including neutrophils, B cells, NK cells, and 

invariant NKT (iNKT) cells, which are found in visceral AT (2, 13, 

64), have not been reported in SM in the setting of obesity.

Histologically, macrophages and T lymphocytes are primarily 

located in muscle AT between myocytes or surrounding the mus-

cle, so-called intermyocellular/intermuscular AT (IMAT) or per-

imuscular AT (PMAT) (11, 35, 47, 49, 59). Both IMAT and PMAT 

are adjacent to myocytes and differ from subcutaneous AT (65). 

Both are extramyocellular fat that expands substantially in obesi-

ty and decreases following weight loss (66), and both depots are 

highly correlated with insulin resistance and expression of MCP-1 

and C-reactive protein (65, 67–70). Macrophages and T cells with-

in these adipose depots are markedly increased in obesity (35, 49, 

53) and can form crown-like structures surrounding dead or dying 

adipocytes (35). Additionally, macrophages and T lymphocytes 

can be found in SM between myofibers at a lower frequency (35–

37, 53). Obesity-linked changes in immune cells and inflammatory 

markers are much greater in muscle AT than in muscle (35), which 

may help explain the low levels of immune cells and inflammation 

in SM in human subjects with small-muscle biopsies (71), as well 

as why alterations in BMI or lifestyle intervention–induced weight 

loss do not alter macrophage numbers in SM in obese subjects in 

some studies (72, 73).

Similar to those in visceral AT, immune cells in SM tend 

to polarize into proinflammatory phenotypes in obesity. Most 

macrophages in SM are CD11c+ and display classically activated 

(M1-like) phenotypes (35, 37, 47, 53, 62). Both CD4+ and CD8+ T 

cells are increased in SM of obese mice. While the proportion of 

IFN-γ–expressing Th1 cells is increased, the proportion of Tregs is 

decreased in SM in mice with obesity (35). Accordingly, proinflam-

matory markers related to immune cell activation such as TNF-α, 

IL-1β, and IFN-γ are increased (32, 33, 35, 37, 47, 53, 58, 60, 61), 

while antiinflammatory markers such as IL-10 are reduced in SM 

in obesity (60). Although in vitro studies show capacity of differ-

entiated myocytes to express proinflammatory molecules (32, 34–

37), studies in mouse models of obesity indicate that levels of most 

proinflammatory markers are much higher and show greater obe-

sity-linked changes in PMAT than in muscle (35, 37), suggesting 

that in vivo obesity-linked SM proinflammatory molecules may be 

mainly derived from immune cells in muscle adipose depots.

Taken together, compelling evidence supports the associa-

tion of obesity with increased inflammation in SM in both humans 

and rodents. Myocytes have the capacity to express cytokines and 

may secrete more proinflammatory cytokines in obesity. Howev-

er, increased SM inflammation in obesity may mainly result from 

increased infiltration of immune cells, particularly macrophages 

and T lymphocytes that are primarily localized in muscle adipose 

depots (IMAT/PMAT) and tend to polarize into proinflammatory 

phenotypes (Figure 1).

Regulation of inflammation in SM in obesity
Despite the evidence for increased SM inflammation in obesity, 

the underlying mechanisms remain largely unexamined. Below, 

we detail potential roles for various mediators in SM inflammation.

Chemokines, adhesion molecules, and immune cell infiltration. 

Similar to what is observed in visceral AT (61, 74, 75), inflamma-

tion, including immune cell infiltration, starts early in SM during 
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TNF-α exerts proinflammatory effects mainly by activating IκB 

kinase/NF-κB (IKK/NF-κB) and JNK pathways. The IKK complex, 

which consists of the catalytic subunits IKKα and IKKβ and the 

regulatory subunit IKKγ, activates NF-κB transcription activity by 

phosphorylating and degrading the inhibitory protein IκB. Ablation 

of IKKβ in myeloid cells protects mice from obesity-induced inflam-

mation (88). Activation of NF-κB in obesity also leads to increases in 

IKKε, a non-canonical IKK, in macrophages, adipocytes, and liver. 

Knockout or inhibition of IKKε in mice attenuates obesity-linked 

inflammation including reductions in accumulation and M1 polar-

ization of macrophages in visceral AT and liver (89, 90).

Obesity increases JNK activity in muscle and AT (89, 91) and 

increases phosphorylated JNK levels in circulating monocytes 

(47). Ablation of JNK1 alone or both JNK1 and JNK2 in hematopoi-

etic cells or myeloid cells dramatically decreases obesity-induced 

Cytokines and signaling pathways in immune cell activation. 

Cytokines play central roles in immune cell activation. IFN-γ and 

TNF-α are crucial for macrophage polarization into M1 proinflam-

matory phenotypes, while IL-4, IL-13, and IL-10 are crucial for 

macrophage polarization into alternatively activated (M2) pheno-

types (86). IL-12 is critical for T cell polarization to Th1, whereas 

IL-4 is critical for T cell polarization to Th2 phenotypes. TNF-α, 

the signature cytokine of M1-polarized macrophages, and IFN-γ, 

the signature cytokine of Th1, are both increased in SM and vis-

ceral AT in obesity and are involved in obesity-linked AT inflam-

mation, including macrophage activation (35, 58, 87). These cyto-

kines may also induce immune cell activation and play crucial 

roles in muscle inflammation. IL-10 is reduced in SM in obesity, 

and overexpression of IL-10 in SM attenuates obesity-induced 

macrophage activation in muscle (60).

Figure 1. Inflammation in skeletal muscle in 

obesity. (A) In lean conditions, few immune cells 

with resting or antiinflammatory phenotypes 

reside in skeletal muscle. (B) As obesity develops 

and progresses along with expansion of visceral 

and subcutaneous AT, adipose depots expand 

between muscle fibers or surrounding muscle, 

so-called IMAT/PMAT. In obesity, immune cells 

including macrophages and T cells infiltrate into 

IMAT/PMAT and polarize into proinflammatory 

phenotypes, leading to increased inflammation 

in skeletal muscle. At the same time, myocytes 

may become inflamed and express proinflam-

matory cytokines and chemokines. (C) Chemok-

ines and cytokines secreted by myocytes, adipo-

cytes, and immune cells, along with FFAs that 

are transferred into skeletal muscle and ANG II 

produced within skeletal muscle, may them-

selves further accelerate immune cell recruit-

ment and activation and myocyte inflammation, 

forming a feed-forward loop of inflammation in 

skeletal muscle.
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tance. Indeed, hypertriglyceridemia correlates with and may be a 

causal factor for insulin resistance and T2D (97). Diets enriched 

with saturated fat or carbohydrates tend to cause increased levels 

of TGRLs (98). Besides a diet high in saturated fat, a diet high in 

carbohydrates, particularly fructose, also induces inflammation in 

muscle (39, 99). In addition to the potential direct effect of high 

carbohydrates, elevated levels of TGRLs may contribute to muscle 

inflammation induced by a high-carbohydrate diet.

Under physiologic conditions, triglyceride in TGRLs is hydro-

lyzed by lipoprotein lipase (LPL) and releases FFAs, which are 

transferred into SM mainly as an energy source and into adipo-

cytes, where they are re-esterified into triglyceride for storage 

(100). Increased blood TGRL levels (with no or modest changes 

in LPL activity; ref. 100) in obesity or increased LPL activity is 

expected to enhance TGRL-derived FA transfer into SM, leading 

to increased muscle lipid deposition and eliciting muscle inflam-

mation. Indeed, obesity or muscle-specific overexpression of LPL 

increases muscle triglyceride content, with increased FA metabo-

lites, including diacylglycerol (DAG) and ceramide, while muscle 

deletion of LPL decreases lipid content in SM (101–103). LPL-me-

diated lipid transfer appears to involve apolipoprotein E (apoE), as 

apoE deficiency impairs FA delivery, leading to less lipid content 

and decreased inflammation in muscle (58).

The renin-angiotensin system in immune cell activation. In addi-

tion to cytokines and FAs, the renin-angiotensin system (RAS), 

which is activated locally in SM and AT and systemically in obe-

sity (104, 105), has been involved in regulation of inflammation 

including immune cell inflammation (106–108). The classical 

RAS involves cleavage of angiotensinogen by renin in the circula-

tion and formation of angiotensin I (ANG I). ANG I is converted 

to active ANG II by angiotensin-converting enzyme (ACE), which 

is mainly expressed on endothelial cells in pulmonary circulation. 

The nonclassical RAS involves generation of ANG 1–7 from ANG I 

or II by ACE2 (109, 110).

By interacting with ANG II receptors (ATRs), ANG II plays 

important roles in regulating blood pressure and fluid and electro-

lyte balance (109, 110). In addition, ANG II plays pathologic roles 

in fibrosis, oxidative stress, and inflammation, which all occur in 

obesity, via hemodynamic (blood flow reduction) or non-hemody-

namic effects (109, 110). ANG II can induce activation of NF-κB, 

expression of MCP-1, TNF-α, and VCAM-1, and production of 

ROS (which activates p38 MAPK) in monocytes, endothelial cells, 

and cultured myocytes (106–108, 111–113). ACE inhibitors and 

ATR blockers (ARBs) reduce inflammation, including SM and AT 

inflammation induced by obesity or fructose feeding (39, 114), indi-

cating a crucial role of ANG II in SM and AT inflammation in obe-

sity. In contrast, ANG 1–7 exerts cellular effects mainly through the 

Mas receptor (109, 110) and has antiinflammatory effects includ-

ing inhibition of macrophage infiltration and proinflammatory 

activation in AT induced by HFD or high-fructose diet (115, 116).

The impact of inflammation on insulin 
resistance in SM
Local muscle inflammation may alter myocyte insulin sensitivity 

via paracrine or autocrine effects. TNF-α or conditioned medium 

from Th1 cells or activated macrophages decreases myocyte insu-

lin sensitivity (35, 40, 47). In mice, local inflammation induced by 

inflammation in mice (92, 93). Tissue culture studies support a 

crucial role of JNK in macrophage polarization to M1, but not M2, 

phenotypes (47, 92, 93).

IFN-γ exerts proinflammatory effects primarily through activat-

ing the JAK/STAT1 pathway. Upon binding its receptor, IFN-γ mainly 

activates JAK1 and JAK2, which phosphorylate and activate STAT1. 

STAT1 plays a pivotal role in M1 polarization and Th1 polarization 

(86). Short-term treatment of obese mice with a JAK1/JAK2 inhibitor 

decreases inflammation in SM (35), supporting an important role of 

the JAK/STAT pathway in obesity-linked muscle inflammation.

Cytokines may be the main mediators by which macrophages 

and T lymphocytes influence each other’s inflammatory status. 

For example, knockout of LFA-1 in mice reduces obesity-induced 

T cell infiltration and Th1 polarization, along with decreased 

IFN-γ levels, but does not change total macrophage content, in SM 

and visceral AT. However, macrophage expression of proinflam-

matory markers such as MCP-1 and TNF-α is decreased (35, 79), 

possibly because of reduced induction of macrophage activation 

by decreased Th1 cytokine in muscle.

T cells, particularly CD8+ memory T cells including those in 

AT, may become activated and proliferate under the stimulation 

of cytokines IL-12 and IL-18, which are mainly expressed by mac-

rophages and dendritic cells and are increased in obesity (79). 

In addition, macrophages and dendritic cells can activate T cells 

through the MHC/antigen/TCR pathway. MHC-II and CD11c, 

which are mainly expressed on M1-like macrophages/dendritic 

cells, play important roles in macrophage/dendritic cell–induced 

T cell activation in obese AT (46, 84). Moreover, MHC-II is upreg-

ulated on obese adipocytes, which also contribute to T cell acti-

vation in obese AT (94). The potential role of these pathways in 

obesity-linked SM inflammation remains to be examined.

FFAs and signaling pathways in immune cell activation. In addi-

tion to increased cytokines, increased influx of FFAs (derived from 

lipolysis in AT or from a HFD; see below) usually occurs in SM in 

obesity. FAs, particularly long-chain saturated FAs, have been con-

sistently shown to induce inflammation, thereby also likely con-

tributing to immune cell activation in SM in obesity. Palmitic acid 

or a mixture of long-chain FAs increases macrophage expression of 

proinflammatory molecules and induces M1 polarization, possibly 

via engagement of TLR2 and TLR4 and subsequent activation of 

NF-κB and JNK pathways (47, 92, 93, 95). In addition, palmitic acid 

and its metabolite ceramide activate the NLRP3 inflammasome, a 

cytosolic multiprotein complex that activates caspase-1, leading to 

maturation and secretion of the proinflammatory cytokines IL-1β 

and IL-18 (96). Consistently, in addition to NF-κB and JNK, TLR2/4 

and the inflammasome play crucial roles in obesity-linked macro-

phage proinflammatory activation and inflammation (47, 95, 96).

Influx of FAs into SM and triglyceride-rich lipoproteins. In obe-

sity, elevated levels of circulating FFAs, mainly derived from lip-

olysis in adipocytes, lead to increased FA influx into SM, which 

not only induces inflammation in immune cells (see above) and 

myocytes in muscle, but also causes insulin resistance in myo-

cytes (see below). In addition, obesity is usually associated with 

hypertriglyceridemia, with elevated levels of triglyceride-rich 

lipoproteins (TGRLs), including enterocyte-derived chylomicrons 

and hepatocyte-derived VLDLs, which may also release more FAs 

into SM and contribute to muscle inflammation and insulin resis-
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muscle MCP-1 overexpression impairs muscle insulin signaling in 

some (37) but not all (76) studies, while local inflammation reduced 

by muscle-specific IL-10 overexpression improves obesity-induced 

muscle insulin resistance (60). In addition, inflammatory mole-

cules from other tissues, particularly visceral AT, may influence SM 

metabolic functions through endocrine effects and adverse effects 

on adipocytes with increased release of FFAs into circulation. FFAs 

are then transferred from the circulation into muscle, where they 

induce myocyte inflammation and metabolic dysfunction. In obe-

sity, elevated TGRLs release large amounts of FAs into SM and can 

also adversely affect myocyte metabolism. Moreover, activated 

RAS with local production of ANG II and ANG 1–7 may regulate 

insulin sensitivity in SM myocytes (Figure 2).

SM myocytes express TLR2 and TLR4 (52), which play essen-

tial roles in FA-induced effects. Individuals with obesity and T2D 

have increased TLR4 expression and signaling in SM (32). Inhi-

bition or deletion of TLR4 protects against lipid-induced insulin 

resistance in cultured myocytes or mouse SM (117). ANG II may 

contribute to SM insulin resistance by reducing blood flow to SM 

and by directly impairing myocyte insulin signaling via increas-

ing mitochondrial ROS production and activating inflammatory 

pathways (109, 110, 118, 119). ACE inhibitor or ARB treatment of 

human subjects with hypertension and insulin resistance is usually 

associated with improvement of insulin resistance (109, 118). Ele-

vation of ANG II in animals increases oxidative stress and inflam-

mation and decreases insulin sensitivity in SM while blockade of 

RAS reverses these effects (113). In contrast to ANG II, ANG 1–7 

has beneficial effects on insulin sensitivity including direct insu-

lin-sensitizing effects on SM (109, 110, 115, 120).

Below we summarize potential roles of various inflamma-

tory pathways, which are depicted in Figure 3, in SM myocyte 

insulin resistance.

The IKK/NF-κB pathway. The main activators for the IKK/

NF-κB pathway in obesity may include TNF-α, IL-1β, FAs, and ANG 

II. SM myocytes from obese subjects with T2D show enhanced 

activation of the IKK/NF-κB pathway (31). In cultured cells, over-

expression or activation of IKKβ impairs insulin signaling (121), 

whereas inhibition of the IKK/NF-κB pathway prevents palmitic 

acid– or TNF-α–induced insulin resistance (117, 121, 122). In mice, 

inhibition or reduction of IKKβ prevents obesity- or lipid-induced 

insulin resistance in SM (121, 123), indicating a role of the IKK/

NF-κB pathway in insulin resistance. The IKK/NF-κB pathway 

may cause insulin resistance via increased IKK-mediated serine 

phosphorylation of insulin receptor substrate 1 (IRS-1) or insulin 

receptor (IR), leading to impairment in insulin-induced tyrosine 

phosphorylation and subsequent inhibition of downstream insu-

lin signaling, suppressed expression of molecules such as GLUT4 

in the insulin signaling cascade, and induced expression of mol-

ecules such as inducible NOS, which may promote IRS-1 serine 

phosphorylation and induce nitration of IRS-1 tyrosine residues, 

leading to impaired insulin signaling (2, 122, 124).

Though the studies above establish signaling mechanisms by 

which the IKK/NF-κB pathway may influence obesity, the in vivo role 

of the muscle IKK/NF-κB pathway in obesity-linked insulin resis-

tance remains unclear. Muscle-specific deletion or overexpression of 

IKKβ in mice does not impact muscle insulin sensitivity and systemic 

glucose tolerance (125, 126). Therefore, the beneficial effects of anti-

IKK therapy on muscle insulin sensitivity are likely derived from its 

antiinflammatory effects on immune cells (121, 123), consistent with 

the observation that ablation of IKKβ in myeloid cells protects mice 

from obesity-induced insulin resistance (88).

JNKs and MAPKs. JNKs are members of the MAPK family and 

can be activated by TNF-α, IL-1β, ER stress, saturated FAs, LTB4, 

and ANG II (78, 109, 127). JNK activity is increased in SM of obese 

Figure 2. Inflammatory effects on myocytes 

in obesity. In obesity, increased infiltration and 

activation of immune cells in skeletal muscle 

(mainly in IMAT/PMAT) and myocyte inflamma-

tion lead to increased secretion of proinflamma-

tory cytokines, which negatively regulate myocyte 

metabolic functions through paracrine or auto-

crine effects. Inflammation in visceral AT, with 

increased secretion of inflammatory adipokines, 

may also adversely affect myocyte metabolic 

function through endocrine effects. In addition, 

inflammatory effects on adipocytes in visceral 

AT and IMAT/PMAT may accelerate FFA release 

and transfer into myocytes, resulting in myocyte 

inflammation and metabolic dysfunction. 

Furthermore, elevated levels of TGRLs, includ-

ing diet/enterocyte-derived chylomicrons (CM) 

and liver-derived VLDL may undergo enhanced 

LPL-mediated triglyceride hydrolysis, increasing 

FA release and transfer into skeletal muscle (and 

AT) and contributing to myocyte inflammation 

and metabolic dysfunctions. Activation of the 

RAS in skeletal muscle with local production of 

ANG II and ANG 1–7 may also regulate myocyte 

inflammation and metabolic functions.
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mice and humans (89, 91, 128). In cultured myocytes, palmi-

tate-induced insulin resistance is accompanied by increased JNK 

activity (129), whereas JNK knockdown attenuates palmitate-in-

duced insulin resistance (130). JNKs also contribute to oxidative 

stress–induced insulin resistance in isolated SM (131). One study 

showed that muscle-specific deletion of JNK1 in mice selectively 

protected muscle against obesity-linked insulin resistance (132). 

However, another study showed no effects of muscle-specific 

overexpression or deletion of JNK1 on insulin sensitivity and glu-

cose metabolism in mice (133). JNKs may cause insulin resistance 

directly by inducing serine and threonine phosphorylation of IRSs, 

thereby disrupting the interaction of IRSs with IR to impair down-

stream insulin signaling (93, 127).

Other MAPKs, particularly p38 MAPK, may also be involved in 

obesity-linked muscle insulin resistance. TNF-α, oxidative stress, 

or conditioned medium from palmitate-treated macrophages 

impairs insulin signaling and activates p38 MAPK in myocytes. 

Moreover, p38 MAPK inhibition or knockdown attenuates insulin 

resistance (45, 134, 135).

PKCs. The roles of PKCs in metabolic functions have been 

reviewed in detail elsewhere (136). Studies of PKC effects on mus-

cle insulin sensitivity have focused mainly on conventional PKCs 

(cPKCα, -βI, -βII, and -γ) and novel PKCs (nPKCδ, -ε, -η, and -θ), 

which both rely on DAG for full activation. In humans, raising 

plasma FA levels by lipid infusion with acute induction of muscle 

insulin resistance results in increased DAG content that is tem-

porally associated with PKCθ, PKCδ, and PKCβII activation (137, 

138). Obese subjects with T2D have increased PKCθ activity in 

SM (139). Rats fed a HFD show increased muscle expression and 

translocation of PKCθ and PKCε and decreased glucose disposal 

(140). Palmitate treatment of cultured myocytes, with induction 

of insulin resistance, increases PKCθ activation (122).

Most previous studies support important roles of PKCs in 

obesity- or lipid-induced muscle insulin resistance and inflam-

mation. For example, inhibiting PKCθ activation prevents pal-

mitate-induced insulin resistance and TNF-α expression in 

cultured myocytes (122). Dual inhibition or co-silencing of 

PKCθ and PKCε attenuates insulin resistance and inflammato-

ry responses of myocytes to conditioned medium from palmi-

tate-activated macrophages (141). Ablation of PKCθ in mice pro-

tects against lipid infusion–induced SM insulin resistance (142). 

Muscle PKCδ levels increase with age in mice, and muscle- 

specific deletion of PKCδ improves muscle insulin resistance 

and whole-body insulin sensitivity in aged mice (143). PKCs 

may induce insulin resistance by increasing serine or threonine 

phosphorylation of IR or IRS-1, with resultant impairment in 

downstream insulin signaling (136, 138, 142, 144).

JAK/STAT pathways. Major activators of JAK/STAT pathways 

include IFNs, other cytokines, and growth factors. JAKs are the 

main upstream molecules that phosphorylate and activate STATs. 

IFN-γ mainly induces tyrosine phosphorylation and activation of 

STAT1 via JAK1 and JAK2. In addition, engagement of TLR2 and 

TLR4 can activate JNK and MAPK (47, 91, 145–147), which can 

also induce STAT1 phosphorylation via JAK1 (145, 148). STAT1 

phosphorylation is increased in SM of obese mice; ablation of Th1 

cells in αβT cell–deficient mice blunts this effect (35).

Figure 3. Inflammatory signaling mediates insulin resistance in myocytes. Increased levels of cytokines such as TNF-α and IL-1β from M1-like macro-

phages, saturated FFAs derived from TGRL–triglyceride hydrolysis and adipocyte lipolysis, LTB4 derived from arachidonic acid metabolism, and ANG II 

derived from RAS activate the PKC, JNK, and IKK/NF-κB pathways in myocytes via interactions with their receptors on the cells. These inflammatory 

pathways can all impair insulin signaling by increasing serine or threonine phosphorylation and disrupting insulin-stimulated tyrosine phosphorylation 

of IR or IRS, or by downregulating molecules involved in insulin signaling. IFN-γ from Th1 cells and IL-6 activate JAK/STAT1/3 pathways, which may also 

impair insulin signaling in myocytes (possibly through SOCS proteins, particularly SOCS1 and SOCS3, which interrupt the interaction of IR with IRS-1 and 

IRS-2, inhibit IR tyrosine kinase activity, and interact with IRS-1 and IRS-2, leading to their ubiquitin-mediated degradation). PKCs, JNK, IKK/NF-κB, and 

STAT1/3 may also impair insulin signaling through other, undefined inflammatory pathways. SOCSs are involved in a negative feedback loop that leads to 

the termination of inflammatory effects of STAT through downregulation of JAK activity, which blocks further STAT phosphorylation.
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down NLRP3 reversed this effect (160). Further studies need to 

be carried out to confirm the potential role and examine the exact 

mechanisms by which the inflammasome participates in myocyte 

insulin resistance in obesity.

Conclusions and perspectives
Accumulating evidence indicates that obesity is associated with 

increased inflammation in SM, which is mainly manifested by 

enhanced immune cell infiltration in IMAT/PMAT and also includes 

increased myocyte inflammation. Increases in IMAT/PMAT are 

associated with obesity, aging, inflammation, and diabetes. The 

immune cells in IMAT/PMAT in obesity tend to polarize into proin-

flammatory phenotypes with increased expression of proinflamma-

tory molecules, which, in conjunction with inflammatory molecules 

from other tissues, particularly from AT, may negatively regulate 

myocyte metabolic functions, contributing to insulin resistance 

locally in SM and systemically in the whole body. Targeting IMAT/

PMAT may be a promising approach to prevent T2D. Exercise and 

weight loss have been shown to reduce both IMAT and visceral AT 

accompanied with improved physical performance; these effects 

were independent of the change in total fat (66). We postulate that 

exercise combined with modest weight loss leads to major effects 

on IMAT/PMAT — both the absolute amount and phenotype — with 

important benefits on muscle insulin/glucose metabolism that may 

help to explain the large reduction in new-onset diabetes observed 

with the Diabetes Prevention Program (161).

Based on the roles of chronic inflammation in obesity-linked 

metabolic dysfunction, antiinflammatory therapy has also been 

viewed as a promising strategy for obesity-linked metabolic dis-

ease. However, most effects demonstrated in tissue culture or 

animal models remain to be confirmed in humans. Moreover, 

current knowledge about the particular pathways that mediate 

obesity-linked inflammation is limited and remains an obstacle to 

the development of novel, specific “obesity-targeted” antiinflam-

matory approaches. Future study is needed to identify specific 

inflammatory pathways closely related to obesity, which could be 

therapeutically targeted to treat obesity-linked metabolic disease.
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Treating myocytes with IFN-γ or Th1-conditioned medium 

increases STAT1 phosphorylation and decreases insulin sensitivity 

(35, 149), whereas pretreating myocytes with a JAK inhibitor atten-

uates Th1-conditioned medium–induced STAT1 phosphorylation 

and improves insulin sensitivity (35). Treatment of obese mice 

with a JAK1/JAK2 inhibitor improves systemic insulin resistance 

in conjunction with reduced SM inflammation (35). However, a 

potential in vivo role of the muscle JAK/STAT1 pathway in obesity- 

linked insulin resistance remains unconfirmed.

STAT3 phosphorylation is increased in SM of humans with 

T2D and positively correlated with FFA levels and measures of 

insulin sensitivity (150). IL-6 induces STAT3 phosphorylation 

and activation. Palmitate, which induces insulin resistance, also 

induces STAT3 phosphorylation in cultured myocytes; silencing 

STAT3 attenuates palmitate-induced insulin resistance, indicat-

ing a role for STAT3 in myocyte insulin resistance (150). However, 

muscle-specific deletion of STAT3 in mice does not appear to alter 

obesity-linked insulin resistance (151).

The mechanisms by which the JAK/STAT pathways contrib-

ute to insulin resistance remain unclear. One possibility is their 

regulation of suppressor of cytokine signaling (SOCS) proteins, 

particularly SOCS1 and SOCS3, which are downstream of STATs 

and are involved in a negative feedback loop that leads to termi-

nation of inflammatory effects by downregulating JAK activity, 

thereby blocking further STAT phosphorylation (152). Obesi-

ty with T2D increases SOCS1 and SOCS3 expression in muscle 

(150, 153, 154). Overexpression of SOCS1 or SOCS3 in cultured 

myocytes decreases insulin-stimulated glycogen synthesis (153). 

SOCS1 and SOCS3 may directly inhibit insulin signaling by inter-

rupting the interaction of IR with IRSs, inhibiting IR tyrosine 

kinase activity, and interacting with IRSs to induce their ubiqui-

tin-mediated degradation (152, 153, 155). Muscle-specific dele-

tion of SOCS3 in mice protects against obesity-induced insulin 

resistance (156); overexpression of SOCS3 in muscle exacerbates 

obesity and insulin resistance in mice (157).

Because of the negative feedback roles of SOCSs in inflam-

mation (152), direct inhibition or knockdown of SOCS1 and/

or SOCS3 is expected to improve insulin resistance, but also to 

enhance inflammation, which may counteract beneficial effects 

on metabolic functions. Indeed, macrophage-specific ablation of 

SOCS1 or liver-specific deletion of SOCS3 in mice increases sys-

temic inflammation and insulin resistance (158, 159). Therefore, 

targeting upstream molecules such as JAK or STAT may provide 

more therapeutic benefits on insulin sensitivity and inflammation.

The NLRP3 inflammasome may also play a role in the regula-

tion of myocyte insulin sensitivity, likely by mediating IL-1β pro-

duction. Overexpression of perilipin 2, a lipid droplet–associated 

protein, resulted in increased expression of NLRP3 and impaired 

insulin-stimulated glucose uptake in cultured myocytes. Knocking 
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