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ABSTRACT A swarm of unmanned aerial vehicles (UAVs) requires the transmission of mission-related data

across the network. The resource constraints and dynamic nature of the swarm bring critical challenges to

the design of UAV routing protocols. Most of the conventional ad hoc routing schemes are not intelligent

and cannot adapt to the dynamic nature of UAV swarming networks. On the other hand, some artificial

intelligence (AI)-based routing schemes may consume significant computational resources in the UAVs.

In this article, a low-cost, adaptive routing protocol, namely skeleton-based swarm routing (SSR), is pro-

posed, which exploits an intelligent online learning algorithm and the topology features of the mission-driven

UAV swarm to distribute the traffic over optimal routes. Here, the skeleton represents the most stable parts of

the swarm formation. SSR architecture consists of three modules: 1) A geometric addressing module, which

assigns geometric coordinates to each node based on the swarm skeleton structure; 2) A leaf-like routing

pipe which allows the selection of multiple candidate routes around the shortest path; 3) An intelligent

low-complexity learning model which determines how to distribute the packets inside the routing pipe

to achieve load-balanced, high-throughput transmissions. The proposed skeleton-based scheme can also

facilitate the UAV formation construction and morphing. The simulation results show that the proposed SSR

protocol can noticeably improve the network performance (up to 100% throughput improvement) compared

to the single path routing schemes, such as the ad-hoc on-demand distance vector (AODV) and link-quality

and traffic-load aware optimized link state routing (LTA-OLSR) protocols.

INDEX TERMS Geometric routing, quality of service, reinforcement learning, stochastic dynamic program-

ming, swarm networks, UAV communication.

I. INTRODUCTION

The airborne networks composed of unmanned aerial vehi-

cles (UAVs), as illustrated in Fig. 1, have been deployed

in different civilian, commercial and military applications,

such as disaster management, border surveillance, search and

rescue opertions, goods delivery, etc. [1], [2]. In such net-

works, it is often needed to transmit data (e.g., high-resolution

surveillance videos) among UAVs or to the control station.

Hence, establishing reliable end-to-end paths among UAVs

is critical for many applications, which demand high quality-

of-service (QoS).

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan .

FIGURE 1. UAV swarm network in civilian applications.

For effective coordination and collaboration, the UAVs

usually communicate in an ad hoc fashion and form flying

ad hoc network (FANET). A subset of UAVs may link up
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with the control station. Based on the degree of coordina-

tion among UAVs, FANETs can have different application

architecture. For instance, the swarm cooperation architecture

(Fig. 2(a)) requires a lower coordination among UAVs to

accomplish tasks such as the target search. On the other hand,

physically-linked architecture (e.g., lifting and transportation

of objects) andmission-driven (formation-based) architecture

(Fig. 2(b)) require a higher degree of coordination and collab-

oration [2], [3]. This article focuses onmission-driven swarm

networks where certain network structure is desired. Based

on the mission requirements, UAVs are often deployed in

a certain spatial formation and the whole network topology

may change from one formation to another (called swarm

morphing hereafter). The formation control can be done

through different methods such as leader-follower [4]. Since

the UAVs have limited resources in terms of power, mem-

ory, computations, etc. Hence, the low complexity protocols

should be designed for swarm networks.

FIGURE 2. Different swarm architectures: (a) swarm cooperation,
(b) mission-driven formation.

In this article, an intelligent, high-throughput routing

scheme is designed that adapts to the dynamics of swarm for-

mation. In general, the proposed scheme is distributed and can

be used to improve different QoSmetrics (such as throughput,

delay, load-balancing, etc.) as well as network life time.

It exploits the swarm structure (formation) to reduce the

complexity of smart routing. Many existing routing schemes

typically search the shortest path and cannot adapt to the

network dynamics. On the other hand, the centralized solu-

tions and routing schemes, which rely on the frequent update

of link-state information to construct the topology database,

introduce a high complexity and overhead, which is not suit-

able for resource-limited swarm networks.

To add intelligence and adaptivity to network applications,

the artificial intelligence (AI) techniques, such as deep learn-

ing (DL) [5] and deep reinforcement learning (DRL) [6], are

becoming increasingly popular. Despite the effectiveness of

these techniques, many AI schemes may not be practically

applicable to the resource-limited UAV swarm networks in

which powerful computing platforms are not accessible and

energy consumption is a critical issue.

The routing scheme proposed in this article uses a special

geometric addressing system to identify the roles and location

of different nodes based on the swarm structure, in order to

reduce the routing overhead and latency. In fact, the mission-

driven swarm networks, which follow a specific formation,

can be represented by a framework, called skeleton in this

article. Here, the skeleton refers to the main structure of

the swarm which consists of several relatively stable nodes,

called bones. The nodes located in the outer area of the

swarm typically have higher mobility than the core/inner area

nodes. In terms of the node addressing model, here the term

‘‘geometric’’ is preferred to ‘‘geographic’’, since the geo-

graphic coordinates of the nodes may not be accessible. Note

that the geometric address represents the area where the node

is located in.

The proposed routing protocol is hybrid: 1) Geometric

forwarding: Packets are forwarded to the area that the node

is expected to reach based on a greedy forwarding scheme.

2) Reactive search: A local search is conducted to find

the destination’s location. Here it is assumed that the UAV

formation’s shape changes smoothly based on the mission

requirements. We call such a process as swarm morphing,

similar to the concept of image/polygon morphing in the field

of computer vision.

Particularly, a distributed dynamic-programming-based

online routing scheme, called skeleton-based swarm rout-

ing (SSR), is proposed which uses a leaf-like routing pipe

to transmit the packets through the nodes that experience

less traffic load (thus have a lower probability of getting

congested) and hence, improves QoS. The proposed rout-

ing scheme is flexible and can be used to improve other

networking metrics, such as network lifetime, when QoS

requirements are not tight. To the best of our knowledge, it is

the first work that benefits from the geometric addressing

derived from the UAV swarm structure in order to improve

the routing procedure. The main contributions of the paper

are as follows:

• Swarm skeleton-based geometric addressing: A novel

geometric addressing model is designed based on the

swarm skeleton structure, which represents the UAV’s

approximate location. A formation morphing strategy is

implemented to guide the node into the position with

the minimum impact on its geometric address, when the

entire network changes the formation.

• Adaptive pipe routing: A leaf-like routing pipe is con-

structed according to the addressing model. The pipe

serves as the main framework of the routing scheme

and can adapt to the changes of the network skeleton

structure.

• Dynamical-programming-based route optimization:

A novel distributed, low-cost, intelligent routing pro-

tocol is proposed to achieve the high-throughput and

load-balanced data forwarding inside the pipe.

The rest of the paper is organized as follows: Section II

presents an overview of the related work. Section III pro-

vides the system assumptions and briefly explains different

components of the proposed routing scheme. The proce-

dure for developing a novel geometric addressing model and

constructing the leaf-like pipe, is discussed in Section IV.

Section V provides the swarm morphing procedure based on

the star-like skeleton structure. In Section VI, the details of
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SSR that can intelligently route data inside the pipe are thor-

oughly discussed. To demonstrate the high QoS performance

of the SSR scheme, extensive simulation results are presented

in Section VII. Section VIII analyzes the SSR overhead,

followed by the conclusions in Section IX.

II. RELATED WORK

UAV swarm network has specific characteristics, in terms

of mobility pattern, computation power, energy consumption

and radio propagation, which make it different from other

types of ad hoc networks. Due to the increasing popularity,

many studies have been conducted on the suitable protocols

and the corresponding challenges of such networks.

In general, the routing schemes can be classified into

five categories: 1) Reactive routing: These schemes, such

as Ad-hoc On-demand Distance Vector (AODV) [7], are

on-demand and mainly designed for mobile ad-hoc networks.

For route discovery, they rely on flooding the control mes-

sages throughout the network which results in extra overhead

and latency. 2) Proactive routing: These protocols are based

on routing tables that are regularly updated (even when there

is no data to transmit) and, hence are faster. However, frequent

update of the link-state information throughout the network

causes high overhead [2]. 3) Geographic/geometric routing:

These schemes are sometimes considered as proactive routing

as they do not perform the initial route discovery phase. How-

ever, they do not need the periodic update of the routing tables

and the information about the entire network link states.

Instead, they depend on the geographic location of the nodes

for greedy (distance-based) forwarding. As the geographic

locations of nodes may not be always known, the recent

routing designs on this topic focus on virtual coordinates and

naming approaches [8]–[10]. 4) Store-carry-forward: This

category is more applicable to sparse and mobile networks

where nodes can move in order to deliver data packets. This

solution is mainly suitable for centralized and delay tolerant

applications [2]. 5) Hybrid: Hybrid routing protocols com-

bine the attributes of the other categories to better adjust to

the network features [11].

The integration of software defined networking (SDN)

with UAV swarm network is investigated in [12] where the

communication and routing policies are managed by the SDN

controller. A QoS-based disjoint multi-path routing scheme

based on distributed SDN architecture is studied in [13],

which can exclude the energy-exhausted UAVs and re-select

new RF links, if some links are broken. In [14], a cen-

tralized traffic-differentiated routing protocol is proposed

for SDN-based hierarchical FANET architecture aiming to

meet specific QoS requirements, where each UAV cluster

is controlled by an upper stationary airship. A centralized

SDN-based topology and routing management scheme is

introduced in [15], where the controller positions the relay

nodes to optimize the link availability and constructs the

routing table for each node based on the length of the links.

The deployment of SDN requires the collection of network

information and the use of specific network infrastructure.

An autonomous flocking control scheme is proposed

in [16] to maintain the hierarchical network structure. Due to

the high cost of deploying GPS and the possibility of losing

GPS signals, it uses the received signal strength (RSS) to

estimate the distance. The work in [17] solves the problem

of communication and control of a triangular swarm of three

cellular-connected UAVs andmathematically derives the reli-

ability of the wireless system in terms of meeting the delay

requirements. [18] investigates the effect of UAVs sharing the

same spectrum with the uplink of cellular users. The result

shows that the presence of UAV links may slightly degrade

the cellular users’ uplink performance. The quality of UAV

links as well as the user links degrades as UAVs fly higher,

due to the possibility of larger line-of-sight interference.

Some recent studies on swarm networks have focused on

new routing schemes since the existing ones for ad hoc or sen-

sor networks may not be sufficiently mobility-adaptive, com-

munication and computation efficient, or supportive of UAV-

to-ground-station communications. It is mentioned in [19]

that nodes can estimate the time and energy consumption for

data transmission in each path by accessing the position infor-

mation. They construct a weighted directed graph for UAV

cluster architecture. Based on the graph analysis, the optimal

relay path can be found through Bellman-Ford algorithm.

An adaptive scheme is proposed in [20] which dynamically

adjusts the HELLO packet interval and the timeout timer

based on the swarm mission information and the network

condition, in order to minimize the energy consumption in

FANET routing schemes.

An enhanced version of AODV, called robust and adaptive

reliable predictive (RARP) scheme [21], is proposed for UAV

networks which combines the omnidirectional and direc-

tional transmissions, and uses a modified RREQ format that

includes sender’s trajectory information (in 3D), minimum

expected connection time of the path and maximum of nodes’

failure probability. The destination waits for a specific time to

receive several RREQs and selects the path based on a utility

function which is a weighted sum of the metrics in RREQ and

the hop count to the destination. The authors in [22] propose

the PSO-GLFR protocol, which improves greedy forwarding

routing (GFR) using particle swarm optimization (PSO) and

limited flooding. Besides the distance factor, the PSO-GLFR

protocol considers the number of neighbors and deflection

angle to find the next forwarding relay.

Some studies have extended OLSR [23] in order to adapt

it for FANET. To address the high-mobility of UAVs, [24]

weights the expected transmission count (ETX) metric based

on the relative speed between the nodes using the GPS

information. In [25], a mobility and load aware OLSR

(ML-OLSR) is proposed which assigns a stability degree

to the links based on the statistical information of the dis-

tance. Moreover, a load factor is calculated using the buffer

load of the node and its neighbors, which avoids selecting

the congested paths in the path selection phase. In a sim-

ilar approach, a link-quality and traffic-load aware OLSR

(LTA-OLSR) protocol is proposed in [26], in which the
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statistical information of received signal strength is used

to find the link quality. The traffic load of each UAV is

obtained using the node’s buffer load and the channel uti-

lization (which is an indication of neighbors’ traffic load).

Despite the effectiveness of such proactive schemes, the need

for frequently updating the topology state introduces high

overhead, and the computational complexity of path selection

algorithmmay be a hindrance, especially in large networks of

battery powered UAVs [2].

In swarm networks with sparse density, the store-carry-

forward technique is a popular solution that benefits from

the node mobility to forward packets to suitable nodes. The

authors in [27] propose the location-aided delay tolerant

routing (LADTR) protocol, which combines geographic for-

warding with store-carry-forward strategy to improve the

availability of paths between searching UAVs in post-disaster

operations. The GPS information is used to estimate the

future locations of UAVs. To create a reliable end-to-end

communication in fast and random flying UAV networks,

[28] uses the queue backlog information along with the geo-

graphic information of the nodes to select the next forwarding

relay in the store-carry-forward method. Moreover, the Rap-

torQ code technique is used to further reduce the packet loss

rate. Although these routing schemes improve the delivery

ratio, they are more suitable for delay-tolerant applications

due to the latency caused by store and carry procedure.

A relatively lightweight stochastic packet forwarding

scheme is proposed in [29], where the forwarding probability

to each neighbor is found using the link throughput and

expiration time. These two metrics are estimated based on

geographic coordination and moving information propagated

via HELLO packets. The stochastic forwarding can distribute

the packets among several forwarders based on their weights

and hence, reduces the interference among nodes compared

to single path routing. Distributing packets over a routing

‘‘pipe’’ (instead of a routing path) is another approach to

mitigate the inter-node interference, which is investigated

in [30] using multi-beam directional antenna (MBDA). How-

ever, the use of MBDA may be costly in large-scale UAVs

networks.

With popularity of online learning andAI algorithms, some

researchers have used such techniques in swarm networks.

For example, in [31] an online reinforcement learning (RL)

scheme is used for transferring time-insensitive packets in

sparse networks, where UAVs help to transfer data. Inspired

by geographical routing, it defines a reward function and

learns whether to relay data among UAVs or move UAVs to a

new location. Although several studies have been conducted

to improve the convergence speed of RL algorithms [32],

they still face the convergence problem in large state space.

The use of DRL has shown more promising results for large

state and action sets. The deep Q-learning technique is used

in [33] in an airborne network composed of powerful air-

planes at the higher layer and high-density UAV swarm at

the lower layer. The scheme adjusts the locations of some

UAVs to make up for the broken RF links. However, due to its

high computation complexity, DRL may not be applicable in

resource-constrained UAV networks. Table 1 compares some

of the major routing protocols, in terms of routing category,

the metrics being used, load balancing, communication over-

head and computation complexity.

TABLE 1. Routing protocols comparison for UAV network.

The scheme proposed in this article is distributed and

avoids the overhead and complexity of the centralized solu-

tions such as SDN and AI-based approaches, while adapting

to the network conditions. It uses the geometric forward-

ing and hence, does not rely on the geographic coordinates

(which may be sometimes unavailable). To the best of our

knowledge, it is the first work that benefits from the geo-

metric addressing derived from the UAV swarm structure.

Compared to [29], SSR forwards data to only a subset of

neighbors in the direction of the destination (according to the

geometric addressing) instead of all the neighbors, so that the

data is not diverted from the desired trend in large networks.

SSR does not perform route discovery and thus, avoids

the latency and overhead of flooding RREQs. Moreover,

it dispatches data through a routing pipe which signifi-

cantly improves the throughput. Similar to [25], [26], it is

a load-balanced routing scheme, but does not require fre-

quent update of the link state information required by proac-

tive approaches. However, it requires the distribution of the

updated geometric address table, which is not very frequent in

the formation-based UAV network, considered in this article.

III. SYSTEM MODEL

In this section, a swarm network model is described and the

system assumptions for the morphing and routing schemes

are provided. The UAVs are interchangeably referred to as

the network ‘‘nodes’’ in the paper.
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A. NETWORK ASSUMPTIONS

1) NODE RESOURCES

As the GPS data may not be available at some nodes,

the proposed scheme does not rely on the exact geographic

location information. To stay in a proper relative position,

the nodes estimate the angle and distance of their neigh-

bors by using inexpensive equipment, such as compass and

sensors. The inter-node distance can also be estimated via

RSS-based methods. Nodes have limited power and compu-

tational resources and are thus not able to execute complex

algorithms. Simple omnidirectional antennas are used here

and nodes’ time clocks are synchronized.

2) SWARM TOPOLOGY

Swarm nodes fly in a 2D environment. One of the nodes is

assumed to be the swarm leader, which is pre-selected and

fixed in this article. The leader can access larger resources.

However, in order to make the scheme applicable to networks

with limited resources, it is assumed that only the leader

has access to the mission commands. The leader may decide

about the swarm topology itself or receive the command from

another entity, e.g., the control station.

The information about the new structure can be represented

as the basic information about the skeleton, such as the length

and angle of the bones and is transmitted by the leader to the

nearby bone nodes. The swarm acts in a distributed manner

and each node guides its child node to the proper position

(parent-child formation control strategy). Hence, the need for

the geographic information (e.g. GPS data) and the trajectory

of all the swarm nodes is eliminated. This reduces the com-

plexity of the formation control algorithm, specially in large

swarms, and improves the scalability and the flexibility of the

network.

3) NODE MOBILITY

The UAVs are assumed to move at a speed of 10∼50m/s.

In mission-driven swarm networks, the UAVs cooperate

with each other to fulfill a mission. However, the mission-

driven formation doesn’t mean that all the nodes have a

pre-determined trajectory and all the locations are pre-known

and exact. Nodes can still move freely in their proximity, but

they need to maintain the overall topology and, therefore,

an approximate swarm ‘‘framework’’ should be kept (called

skeleton in this article). When a new swarm mission com-

mand is received, nodes may move together towards a target

area or locally to properly fill a region. They may also move

to help with the route establishment. Hence, the network

dynamics can be described by a topology prediction model.

4) TABLES MAINTAINED IN NODES

In addition to the general neighbor table that records

the 1-hop neighbors’ information (such as their IDs, dis-

tances, etc.), each node also maintains a geo-address

table that contains all nodes’ ID and their geo-addresses,

as well as the time-stamp when the geo-address is updated.

The geo-address table is distributed throughout the network

(by the leader) when the swarm formation is constructed, and

may be updated if there are major changes in the swarm (e.g.,

after each shape morphing). Meanwhile, each node may also

update the geo-address extracted from a packet’s header, if the

corresponding time-stamp is newer than the one saved in the

table. Nodes also maintain a routing table for one or more

destinations, which includes the next-hop relay nodes (called

potential forwarders or PF) and the cost of the path to the

destination, initiated by each PF (denoted as Qj).

B. SSR COMPONENTS

Fig. 3 illustrates the multi-tier architecture of the proposed

SSR scheme. At the very bottom layer, geometric addressing

system provides the approximate location of each node. The

formation information, such as the length and the angle of the

bones, is distributed through the skeleton by the leader via

mission command messages, helping to construct and morph

the formation. The geo-address table, containing the nodes’

geometric addresses, is constructed based on the skeleton

structure and a parent-child relation model among the nodes.

Using this table and some basic information on the structure

(can also be extracted from the table), the nodes construct

their routing tables which include the set of next-hop for-

warders PF and their qualification valuesQj. Forwarding to a

set of next-hop nodes leads to a leaf-like routing pipe between

a source-destination pair.

FIGURE 3. SSR modules.

SSR is a distributed scheme. To make its forwarding deci-

sions, a node needs information only from the nodes in the

PF set, i.e. their Q values, instead of all the pipe nodes or

the whole network. This is why the SSR protocol has a lower

complexity compared to the conventional RL-based schemes

or proactive link-state routing schemes. The Qj values can be

derived based on a weighted combination of some metrics,

such as queue status (including service delay, queue length,

etc.), channel condition, the node’s remaining power, link

stability or expiration time, etc. When the data packets are

dispatched through the pipe, nodes gradually update their
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value and the forwarding probability to the PF set, leading

to the selection of high-quality paths.

IV. LEAF-LIKE PIPE FRAMEWORK

In order to speed up the data forwarding process and reduce

the route discovery overhead, the SSR protocol uses the

greedy forwarding concept by exploiting the swarm structure.

Based on the approximate geometric position of the destina-

tion, a relay node transmits the packets to a set of its neighbors

called potential forwarders that are in the direction to the

destination based on their geo-addresses.

A. SWARM SKELETON STRUCTURE

The skeleton is used as a reference to facilitate the geomet-

ric addressing and shape morphing. A similar concept has

been previously used for static sensor network [8], where

the extracted skeleton was the medial axle of the network

shape. In our case, due to themission-guidedUAVmovement,

the skeleton is a pre-known structure that can guide the swarm

to form a new shape.

Inspired by the study in [34], a star-shaped skeleton with

the swarm leader as its root is used, as shown in Fig. 4.

The reasons behind choosing star skeleton are threefold:

1) it facilitates the propagation of leader’s commands uni-

formly and quickly throughout the network, 2) it helps to

guide the nodes to build a new formation in a distributed

manner during the swarm morphing process, 3) it provides

a 2D coordinate system suitable for the geo-addressing

framework.

FIGURE 4. Examples of swarm formations with skeleton consisting of 8
bones.

The skeleton consists of branches (Fig. 4), which form

the skeleton bone and are not necessary arranged in a line.

The use of ‘‘elbow’’ nodes enables the skeleton to represent

more complex shapes and divide them into approximately

equal-area pieces. In general, the nodes are classified into

fourmain categories: 1) leader or root l; 2) skeleton node set S

that consists of bone nodes Bi ⊆ S, i = 1, . . . , k , where k is

the number of skeleton bones; 3) edge nodes located in the

border of the swarm, and 4) regular nodes. Each bone can

have up to e elbows.

The skeleton nodes can guide other nodes to form a desired

swarm shape. To manage the formation in a distributed man-

ner, nodes follow a hierarchical parent-children structure as

shown in Fig. 5(a). The leader l transmits the abstract infor-

mation on the desired swarm structure to the nearby bone

nodes and guides them to reach the desired positions. Then

this information is passed through the bones and each bone

node guides the next bone node (its child) until the complete

framework is constructed (parent-child formation control

strategy). Transmitting this geometric structure information

only to the skeleton nodes instead of the entire network,

reduces the communication overhead.

FIGURE 5. (a) Parent-children relation between different node types.
Here an arrow points from a parent to its children. (b) Priorities of
different swarm messages.

The network can first make a rough representation of the

desired shape by constructing the skeleton and some main

edges. Then other (regular) nodes can be placed, starting from

the inner layers. Some UAVs, called free nodes, may move

towards inner parts to fill any vacant area there. A node can

leave its parent node, if it receives a positioning command

with a higher priority.

B. SWARM MESSAGES

Swarm messages have different priorities as illustrated

in Fig. 5(b). Here ‘‘A-B’’ command means that a node with

role ‘‘A’’ commands another node to accept the role ‘‘B’’.

For instance, if a node has already been accepted as a skele-

ton node (by receiving a leader or skeleton-skeleton mes-

sage), it will discard any skeleton-regular or regular-regular

messages. Among all command messages, the leader and

skeleton-skeleton messages have different formats as they

contain the information on the skeleton’s shape, such as the

angles and the lengths of the bones. The swarm messages are

briefly described below.

1) SKELETON MESSAGE

Every bone node that receives a skeleton command message

records all the information about the skeleton, and updates its

position based on its assigned bone index. Then it passes the

message to the next bone node. Fig. 6 illustrates the command

message format. Suppose the number of bones is 8, then the

skeleton information can be fit into a 72-Byte (72B) packet,

containing 8B information for each bone and an additional

8B for the packet type and sender and receiver information.

In Fig. 6, the 4-bit Num field specifies the total number of

bones k(k ≤ 16) in the skeleton. The bIdx contains the bone

index that the sender is located in, where 1 ≤ bIdx ≤ k .
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FIGURE 6. Format of the command message.

SenderBoneIdx contains the bone index of the sender. Ini-

tially, the root sets it to zero, and it increases by one when

passing through each bone node. The BoneLengthi represents

the number of nodes in bone i (denoted as |Bi|). By assigning

10 bits to it, |Bi| can reach 1024, which represents a large

swarm network. The 11-bit BoneAnglei field specifies the

initial angle of the bone i, in terms of a pre-defined reference

line such as the East or North direction. The ElbowIndexi and

ElbowAnglei represent the bone index and the angle of the

elbow node in ith bone, respectively. ElbowIndexi = 0 means

that ith bone does not have any elbow.

Upon receiving a command message, the node first checks

bIdx and increases it by one. Then it finds its own bone

index by increasing SenderBoneIdx field and compares it

with ElbowIndexi. If the node is located after an elbow

node, it takes the corresponding ElbowAnglei as its bone

parent; otherwise, it adjusts its position corresponding to

BoneAnglei’s value. If the node’s bone index is equal to the

value of BoneLengthi, it is located at the end of bone i. The

end bone node guides left- and right-edge nodes to reach their

desired positions, based on the fields LeftEdgeAnglei and

RightEdgeAnglei, respectively. Then every edge node that has

been adjusted in the determined location guides the next edge

node (by sending an edge-edge command message).

2) EDGE AND REGULAR COMMAND MESSAGES

These messages do not contain much information about

the skeleton. They only tell about the new position of the

receiver node. Besides common information on packet type

and sender/receiver IDs, an edge-edge command includes

the direction and distance that the receiver needs to travel,

in order to reach the desired location in the swarm edge.

C. SKELETON-BASED GEOMETRIC ADDRESSING

The geometric addressing of each node is determined based

on its distance to the adjacent bones. Here the number of hops

is used as the distance to a node since the exact geographic

location of the nodes may not be accessible. Still nodes

are distinguished by their unique IDs. If the destination has

recently moved in the region, a local search is performed

to find the new geometric position (geo-address) of the

destination.

The proposed addressing procedure is inspired by the nam-

ing method of the medial axis based naming and routing

protocol (MAP) [8]. However, the addressing procedure pro-

posed in this article overcomes three drawbacks of MAP

scheme: (1) MAPmay get too far from the shortest path when

it first moves along the latitude and then along the longitude,

as shown in Fig. 7. The proposed scheme moves along the

diameter direction to reduce the path length. (2) Unlike MAP,

the proposed scheme does not require that every node has

a complete knowledge of the skeleton. Note that frequently

updating the skeleton information and flooding it all through

the network introduce a high overhead. (3) MAP-based rout-

ing cannot achieve load balancing. For instance, two sources

with the same height hwill transmit their data along the same

h-latitude route, which may lead to a congested path. In con-

trast, the SSR-based leaf-like routing pipe (shown in Fig. 7(b))

can easily achieve load balancing by using different paths.

FIGURE 7. Comparison of data forwarding paths in SSR and MAP.

A given node g is addressed using the tuple G(g) =

(Ri, ni, ni+1, hi, hi+1). Here Ri is the index of the region

surrounded by two bones bi and bi+1. The number of skeleton

bones, k , stays constant during the swarming process. These

bones are indexed in order, but their sizes and shapes may

change. ni and ni+1 are the indices (hop counts) of the nodes

located in bones bi and bi+1, respectively. These are the roots

of the shortest-path trees from the bones to g. hi and hi+1 are

the hop-count distances of g from ni and ni+1, respectively.

They also reflect the depth of the entire tree. If g is a bone

node, then the geo-address can be simplified as G(g) =

(Ri, ni, 0, 0, 0), where ni is the index of the bone node. The

leader’s geo-address is a tuple of zeros.

By using such an addressing system, a 2D virtual coor-

dination system is generated, where the skeleton bones are

located in the coordination axis. Fig. 8 illustrates an example

of geometric addressing for a given node g. Considering i = 2

(i.e., the node is located in the region Ri = 2, which is

surrounded by b2 and b3), the address of node g is G(g) =

(2, 4, 2, 2, 3) in this example.

D. LEAF ESTABLISHMENT AND POTENTIAL FORWARDERS

Similar to AODV scheme, every node maintains a routing

table for one or more destinations (denoted as qi). However,

there are some differences between SSR and AODV routing

1292 VOLUME 9, 2021



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

FIGURE 8. An example of assigning geo-addresses.

FIGURE 9. An example of SSR routing table.

tables. Fig. 9 illustrates the structure of a typical routing

table in SSR. Since there is no route discovery phase and

consequently no RREQ and RREP packets, the ‘‘destination

sequence number’’ and ‘‘hop count’’ fields are not used.

Another major difference is that the ‘‘next hop’’ field is

now a multi-input field that can record up to J (=4 in this

example) potential forwarders (i.e., the next-hop relay nodes,

denoted as uj ⊆ PF(qi)) to reach the destination. This

routing table has another field that records the cost of the path

(denoted asQj) initiated by each potential forwarder, which is

described in Section VI. It is used to calculate the forwarding

probability for different next-hop nodes.

After knowing the geo-address of the destination q,

the source node p starts data transmission. In order to not

divert the packets much from the shortest path between

nodes p and q, the routing scheme dispatches the pack-

ets inside a leaf-like pipe around the shortest path, shown

by the shaded area in Fig. 7(b). Upon receiving the data,

the relay node g keeps an entry in its routing table for des-

tination q, similar to the case shown in Fig. 9. The node

finds the PF set, and distributes the received packets among

them, based on the forwarding probability (to be explained

in Section VI).

Each node that receives a packet addressed to the desti-

nation q estimates the direction of q, called trend, and then

selects the set of next relay nodes with equal or shorter

distance to q. It is worth mentioning again that by distance we

mean hop-count distance based on the geo-address. By com-

paring the first element of their geo-addresses, the node will

know that it is in the same or different region as q. If the node

g and destination node q (with G(g) = (Ri, ni, ni+1, hi, hi+1)

and G(q) = (Rj, nj, nj+1, hj, hj+1)) are in the same region R,

the hop-count distance corresponding to the bone bi can be

found as follows:

d(g, q) =

√

(ni − nj)2 + (hi − hj)2 (1)

Note that (1) can be rewritten with respect to bone bi+1

as well. Estimating the distance of nodes located in different

regions may need a more complex calculation. However,

a good estimation can be obtained using trigonometry (illus-

trated in Fig. 10). The distance d(g, q) can be found through

the following equations:

α =

j−1
∑

k=i+1

αk + tan−1 hj

nj
+ tan−1 hi+1

ni+1
(2)

d(g, q)

=

√

n2i+1+h
2
i+1+n

2
j +h

2
j −2

√

n2i+1+h
2
i+1

√

n2j +h
2
j cosα

(3)

FIGURE 10. Finding hop-count distance based on geo-address
information and skeleton structure.

where αk is the angle between the skeleton bones located in

the areas between the Ri and Rj regions. If the node does

not know the precise values of αk , it can use an approximate

value; αk = 360/k . The above equations are derived by

assuming that the node estimates a trend in a clockwise

direction around the root by comparing Ri and Rj. If the

trend is anti-clockwise, the equations should be updated

by substituting (hj, nj) with (hj+1, nj+1), and (hi+1, ni+1)

with (hi, ni), respectively. To make the search of PF easier,

the node g can first find the closest bone node in the trend

(mi+1 in Fig. 10), and then use (1) to locally compare the

distance of the neighbors to mi+1. Here mi+1 can be found

by using the equations below:

γ = sin−1

√

n2j +h
2
j sinα

d(g, q)
, β =180−(γ +tan−1 hi+1

ni+1
)

(4)

mi+1 =









sin γ

√

n2i+1 + h2i+1

sinβ









(5)

VOLUME 9, 2021 1293



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

V. SWARM MORPHING

In the initial phase of the skeleton construction, the leader

propagates the positioning commands to the first layer of

bone nodes, which can be a set of the neighbors close to

the specified position in the desired skeleton structure. Every

bone node is responsible to find the next bone node. A parent-

children relation is established across the bone. The last bone

node in bone bi adjusts the locations of the first edge nodes

in its left and right sides, based on the edge angle information

in the command message. The edge construction proceeds

across the edge until it is completed. A rough layout of the

formation can be detected after the construction of the swarm

bones and edges. Then the (regular) nodes can be arranged to

fill out the entire swarm.

The morphing phase initializes by propagated a new com-

mand message through the bones. Bone child position is

adjusted based on the information held in the command mes-

sage. Upon moving, a node sends a FOLLOW message to

its children containing its movement information. If a child

receives such messages from both parents (one parent is in

the tree rooted in bone bi and the other is in the tree rooted

in bone bi+1, see Fig. 8), it chooses one of them and the

parent-children relation with the other parent may break.

Fig. 11 illustrates how a bone shrinks or expands. If the

length of the new bone is shorter than the previous bone, extra

bone nodes will be added to the edges, as shown in Fig. 11(a).

If it is longer, then the closer edge nodes will join the bone to

expand it (see Fig. 11(b)). The reason for exchanging only the

bone and edge nodes during expansion or shrinking, is to keep

the boundaries closed and reduce the changes in the nodes’

geometric addresses.

FIGURE 11. An example of a) bone shrinking, and b) bone expansion.

After adjusting its child in the bone, every bone node

adjusts the position of the left or right (regular) children.

This procedure continues through the regular nodes. Nodes

select new child only from its own region (which is known

through the first element of the geometric address). This helps

to keep a UAV in the same region during the morphing. This

also helps to reduce the overhead of searching a displaced

node and simplify the routing process. When a node cannot

be found in the expected place, a local search limited to the

region Ri is carried out to find the new location, as explained

in Section VI. Here, a region refers to the area surrounded by

two bones.

If a node updates its geo-address, its children need to

update theirs accordingly. Upon changes in its geo-address,

every node g broadcasts the new geo-address (via HELLO

packets) to its neighbors. The leader gathers all the nodes’

geometric addresses after each shape morphing, as the

address of several nodes might have changed. The leader

constructs an updated geo-address table and propagates it

throughout the network.

It is worth mentioning again that UAVs in mission-driven

formation move in an organized and controlled manner to

maintain the overall structure. When the structure is chang-

ing, nodes move in a way that has the minimum impact on

swarm instability (it is called distortion hereafter). Nodes

located in the inner parts of the swarm, experience the lowest

displacement while those in the outer parts may have to move

further. Considering that SSR establishes a data forwarding

‘‘pipe’’ instead of a single or several separate paths, multiple

active paths are available to the destination, even if several

links are broken. The routing pipe is discussed further in the

following section.

VI. SKELETON-BASED ROUTING

The SSR scheme aims to achieve an intelligent swarm-

adaptive, load-balanced, and high-throughput routing.

It builds a leaf-like routing pipe (from the source to the

destination) composed of inter-connected paths, as illustrated

in Fig. 12. Based on the feedback received from the potential

forwarders, nodes gradually adjust the frequency of data

transmission through these paths.

FIGURE 12. A leaf-like pipe composed of inter-connected paths. Each link
is associated with a forwarding probability.

When a source node p decides to send packets to a des-

tination q, it first looks for a matching entry in its routing

table and extracts G(q) from the geo-address table. If there is

a corresponding forwarder set PF that is up-to-date (SSR can

find this by comparing G(q) and its time-stamp with those in

the routing table), it starts to dispatch packets among PF(q)

based on the corresponding Q-values. Otherwise, it first

updatesPF(q) and their correspondingQ-values, as described

in Sections III and IV.

Besides the source and destination IDs, the data packet’s

header also includes G(p) and G(q) (as well as the time-

stamp) when the source has updated G(q). When a relay

node receives a packet, it updates G(p) in its geo-address

table. If the node has a newer G(q) compared to the one

in the packet, it inserts the updated one in the packet

header and notifies the source about the changes in G(q).

In general, every node that hears a new geo-address will

update its table. Upon significant changes in the geo-address
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of the node or destination q, the set of next-hop nodes,

PF(q), is updated and the Q-values of newly added nodes is

initialized.

A. BUILDING SKELETON ROUTING VIA A DISTRIBUTED

STOCHASTIC DYNAMIC PROGRAMMING APPROACH

The mesh architecture shown in Fig. 12 inspires us to for-

mulate the problem of skeleton-based routing as a stochastic

shortest-path problem [35], which can be solved using a

dynamic programming approach [36]. A cost (or reward)

is assigned to each link inside the leaf-like pipe, and the

cumulative cost is calculated in a backward recursion fashion.

However, the cost values are not known in advance, and

are subject to the changes due to the dynamic nature of the

swarm network. Hence, an online dynamic-programming-

based approach is used which can adapt quickly to the

changes of the network conditions. It has two main advan-

tages:

1) It is solved in a distributed manner. Instead of having

a central point which gathers all the state information

frequently and solves the whole problem, every node

calculates its own value.

2) Nodes gradually update their forwarding probabilities

based on the values of their forwarding nodes and

hence, the scheme will learn how to dispatch the data

packets inside the pipe in order to get the best perfor-

mance with a low computation complexity.

To dispatch the cumulative cost (or reward) through the

path in the backward manner, one can take advantage of

the ACK messages that are popularly used in routing pro-

tocols. A mini-pipe is initiated from each relay node g to

the destination q, as shown in Fig. 12. The ‘‘expected’’ cost

(or reward) of the sending packets from the node g through

the mini-pipe, is denoted as V (g), which can be piggybacked

onto g’s ACKmessages. Upon receiving it, the sender updates

the Q-value that corresponds to the forwarder node g in the

routing table.

The problem can be modeled as a Markov decision pro-

cess (MDP) in which every node is a state, s ∈ S = N

(N is the set of the nodes in the pipe), with the action space

A , PF(s) and the next state s′ = a(s). Here the transition

probability function is the probability of choosing a possible

forwarder, i.e., P(s′|s, a(s)) = P(a(s)|s). Then the expected

cost (value) at each node v can be found by using the Bellman

equation [36]:

V (v) =
∑

u∈PF(v)

[cvu + V (u)]P(u|v) (6)

where cvu is the immediate cost of transferring packets

from v to u, and V (u) is the cost value of node u. P(u|v)

is the probability of forwarding packets to node u, where
∑

u∈PF(v) P(u|v) = 1. Initially, when a new forwarder is

added to the pipe, its associated cost is set to the initial

value V0 which gets updated as the packets pass through

the node. Considering αQ as the learning rate, the Q-value

in the routing table can be updated by using the following

equation:

Q(u) = (1 − αQ)Q(u) + αQV (u) (7)

B. PACKET FORWARDING PROBABILITY

A node u ∈ PF(v) may become the next forwarder based

on a probability distribution function. There are differ-

ent action-selection strategies in the reinforcement learning

(RL)-based schemes, such as random action-selection and ǫ-

greedy approaches. Here, the Boltzmann approach is adopted

which selects the actions based on a probability distribution

function, such that the more rewarding actions are selected

with higher probabilities (more frequently).

The major advantage of the Boltzmann approach over the

ǫ-greedy approach is that the non-optimal actions are not

selected with equal probability. Instead, they are taken with

a frequency corresponding to their estimated rewards. Hence,

more rewards can be gathered in the exploration phase. In this

approach, the probability function is represented by the Soft-

max function (or normalized exponential function) with the

temperature parameter τ . Here, the proper choice of τ is

important. The higher values lead to almost equiprobable

actions as in random approach, while the lower values can

make a big difference in action selection probability [37].

Other exploration approaches such as Bayesian neural net-

works or deep RL (DRL) might work better but introduce

a high computation complexity (thus not suitable to UAVs

networks). Thus, the Boltzmann action-selection approach is

adopted where the probability of choosing node u as the next

forwarder (i.e., forwarding probability) can be found through

the following equation [38]:

P(u|v) =
eQ(u)/τ

∑

y∈PF(v) e
Q(y)/τ

(8)

Note that in (8), the Q values represent the reward asso-

ciated with the actions. Thus, if the problem is formulated as

minimizing a cost, the cost valuesQc can be first converted to

reward values Qr before calculating the forwarding probabil-

ity. For instance,Qc can be normalized and thenQr = 1−Qc.

C. COST FUNCTION

The definition of cvu is application-specific and depends on

QoS requirements. It can be a weighted combination of sev-

eral metrics. For instance, video streaming demands a high

data rate and very low latency. Control packets hold sen-

sitive information and hence require timely delivery. Some

IPv4 applications and offline transfer of texts or documents

can be classified as the best-effort services.

For the best-effort traffic, the data packets can be routed

through the paths with a higher remaining energy in the inter-

mediate nodes, although they may not provide low-latency

communications. For instance, the work in [39] has proposed

an energy-aware reward function which, with respect to our

problem, can be represented as follows:

rEAvu = sigm(△E(u) × βe) (9)
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where △E(u) is the difference between the energy of the

node v and the next forwarder node u, and βe is an energy

difference scaling factor. The Sigmoid function rescales the

energy difference with [−1, 1].

To make SSR support high-throughput and low-latency

communication for high-priority traffic, the per-hop service

delay is defined as the cost, i.e., the time duration from the

moment the packet enters the queue to the moment it is suc-

cessfully delivered, denoted by cSDvu . It represents the queue

length and the channel utilization (i.e., the medium access

delay in contention based protocols) and hence, leads to a

load-balanced solution [25], [26]. It also indirectly tells about

other situations such as RF interference, channel collisions

and link handoff. If a node is experiencing high interference

or poor SINR (due to the long distance), the packet drop

rate increases, which leads to increase in packet delivery

delay. A node can find the expected service delay through

the statistics of the past experiences.

D. LOCAL SEARCH

If the destination q moves away from the expected location

specified in the packet header, a node that expects q to be in

its neighborhood (by comparing their geometric addresses)

may not be able to find it. In this case, the node initiates a

local search to find the current address of q by broadcasting

an address request (AREQ) packet. AREQ contains the initia-

tor’s ID and address, q’s ID and its previous address, and the

time-stamp. Any node with a newer address should reply and

every node hearing a newer address updates its geo-address

table.

In fact, a newer address represents q’s trajectory towards

the new position. The initiator is responsible for gathering the

addresses and sending an update on the latest address to the

source. AREQ flooding only occurs in a small region (Ri) in

the skeleton-based routing protocol.

E. TWO-STEP DISCARDING POLICY (TSDP)

For service delay as the cost function, V (v) in (6) repre-

sents the expected latency before reaching the destination.

It can also be used for active queue management that aims

at relieving the network congestion or reducing the end-to-

end latency by discarding some packets in the queue before

it gets full. Tail drop and random early detection (RED)

are examples of widely used discarding approaches (RFC

2309 and 7567). However, for delay-sensitive applications

with large queue sizes, it is preferable to use a discarding

policy that drops packets based on the priority levels and the

probability of on-time delivery to the destination. Inspired

by weighted random early detection (WRED) approach [40],

here a two-step discarding policy (TSDP) is proposed that

operates based on the service delay.

TSDP consists of two steps:

1) Finding Pubd , the upper bound of the packet discard

probability. As illustrated in Fig. 13(a), this value is low (close

to 0) for low-latency queues, but increases linearly as the

service delay rises until reaching Pmaxd . One can determine

how to discard the packets with different traffic types through

different configurations of Pmaxd , SDmin and SDmax . The cal-

culated Pubd will be used in the second step.

2) In this step, the discarding probability of packets (in the

same traffic type) is differentiated by estimating the possibil-

ity of timely delivery. Assume that tl is the packet lifetime,

tvq is the expected latency from node v to destination q, and

tpkt is the packet age. Then the survival ratio of packet pkt

entering node v’s queue can be defined as follows:

SR(pkt, v) =
max(tl − tpkt − tvq, 0)

tl
(10)

When the packet is new and a low-latency route is esti-

mated, the survival ratio increases, which leads to a decrease

in Pd , as shown in Fig. 13(b). However, a low SR(pkt) indi-

cates that the packet has a small chance of arriving at the

destination in time and hence, this packet is dropped with a

higher probability.

FIGURE 13. (a) Upper bound on the drop probability in the first step
of TSDP, (b) Finding the drop probability of a packet in the second step
based on its probability of on-time delivery to the destination.

Plbd is a fraction of Pubd , i.e. Plbd = αPubd . If a node does

not have enough information to estimate tvq, α can be set to 1

(i.e., the survival ratio is not counted). In general, tvq can be

estimated through the recursive equation (6), i.e, it is equal

to V (v) if cvu is the per-hop service delay. Each node v in the

pipe can evaluate the service delay to the next forwarder u,

calculate tvq and send it to its upstream node.

F. RESILIENCE TO INTENTIONAL INTERFERENCE

SSR can be combined with the detection schemes for inten-

tional interference to detour the data around the interfered

areas. If UAVs are capable of detecting the intentional

interference and scoring themselves based on the probabil-

ity of being interfered (similar to [30]), this score can be

reflected in the Q value of nodes. Hence, in (8), the prob-

ability of forwarding to a potential forwarder u ∈ PF(v)

increases, if the mini-pipe initiated from u has a lower

chance of being involved in intentional interference activ-

ities (see Fig. 12). In this case, SSR can route the pack-

ets through the ‘‘safe’’ areas in the pipe. Please note that

boundary nodes, i.e. the nodes close to the interfered area,

are more vulnerable to intentional interference in the near

future due to mobility. Thus, they should be assigned a lower

score.

1296 VOLUME 9, 2021



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

FIGURE 14. a) Initial positions of UAVs randomly distributed in a 10km × 10km rectangular area; b) Square formation based on the skeleton concept; c)
Triangular formation.

VII. PERFORMANCE EVALUATION

In this section, the performance of the proposed UAV swarm

morphing and SSR routing scheme is evaluated. A wire-

less swarm networking platform is developed in Matlab,

where the nodes can morph from one shape into another

and exchange packets through IEEE 802.11 channel access

model. The simulation parameters are summarized in Table 2.

TABLE 2. Simulation parameters.

A. SWARM CONSTRUCTION

The swarm formation of two example shapes (square and

triangular) is examined using the procedures explained in

Sections IV and V. To construct the swarm formation from

randomly distributed UAVs within a 10km × 10km rect-

angular area, as depicted in Fig. 14(a), the leader in the

center propagates command messages to the nearby nodes

and guides them to move towards the desired locations to

form the first layer. Then, the skeleton nodes construct the

core of swarm based on the information in the command

message (Fig. 6).

The final shapes of the square and triangle formations

are illustrated in Fig. 14(b) and (c), respectively. The results

validate the ability of the simulator in terms of using the

skeleton nodes to facilitate the swarm formation.

B. ESTABLISHMENT OF LEAF-LIKE ROUTING PIPE

In this part, several scenarioswith different source-destination

pairs are considered, and the ability of the proposed model

to construct leaf-like routing pipes based on the skele-

ton infrastructure and geometric addressing is evaluated.

Fig. 15(a) illustrates the pipe constructed between two rel-

atively far-away nodes (in two opposite regions in a square

formation). The pipe starts from the source at the top, passes

through several regions and gets merged again near the

destination. Fig. 15(b) illustrates a smaller pipe from the

leader to destination.

As seen in Fig. 15(a) with (b), if the distance between

the source and destination is longer, the formed leaf could

become wider and allows the establishment of more backup

paths in the pipe. A wider pipe also leads to a higher

throughput and better traffic balancing performance since

more non-interfering paths can be built. Fig. 15(c) depicts

another example of the pipe within a triangle formation.

The pipe may not be like a leaf when the inter bones’

angles are different or the bone elbows are presented. How-

ever, this is not the main concern as long as a group of

nodes can be found to build the optimal routes among

them.

C. SSR PERFORMANCE IN LIGHT EXTERNAL TRAFFIC

In this section, performance of the SSR scheme is examined

when the external (or background) network traffic is light

and has a lower priority than the flow under investigation

and is generated by other applications. Only one source and
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FIGURE 15. Establishing a leaf-like routing pipe based on the proposed geometric addressing: a) a large leaf in square formation; b) a small leaf in
square formation; c) a small leaf in triangular formation.

destination pair is active in the routing pipe. Fig. 16 compares

the (normalized) throughput of SSR protocol with that of

AODV scheme, for the formation and the routing pipe illus-

trated in Fig. 15(a). Moreover, the impact of different values

of τ (the thermal factor in Boltzman model) on the routing

performance is investigated. Here, τ is a hyper-parameter and

determines the sensitivity of action selection in Markov deci-

sionmodel (smaller τ means higher sensitivity). In this figure,

SSR-random represents the case when the data forwarders

(PF) are chosen randomly.

As shown in Fig. 16, all schemes work well for a low

data generation rate. When the source rate increases, SSR

with τ = 0.05 still shows a satisfactory performance while

others have degrading throughput. The reason is that SSR

with τ = 0.05 distributes packets to the paths that have a

lower RF interference with each other. However, when source

data generation rate exceeds 2.5Mbps, SSR with τ = 0.05

also exhibits throughput degradation. The main reason for

throughput drop in high data rates is that the source node

cannot timely flush out all the generated packets due to the

congested channel.

Uniformly distributing packets among the forwarders in

SSR-random scheme may not be a good solution since the

inner nodes will suffer a stronger interference from nearby

nodes. The result shows that SSR-random and SSR with

τ = 1 exhibit a similar performance. The throughput of

AODV, on the other hand, falls more rapidly since it uses only

a single path at the center of the pipe.

Fig. 17 compares the delay of packets received at the desti-

nation for the above-mentioned scenarios. The result reveals

that a higher τ causes longer delay since the service time

grows in queues. The AODV’s expected delay is lower than

the other schemes at higher data generation rates as it passes

the packets through the shortest path in the middle of the pipe.

FIGURE 16. Throughput comparison for different forwarding action
selection schemes when network traffic is light.

FIGURE 17. Received packet delay comparison for different forwarding
action selection schemes when traffic is light.

However, a large portion of the packets are dropped on their

way to the destination.

To account for the dropped packets in delay performance

analysis, Fig. 18 illustrates the total delay as the expected

1298 VOLUME 9, 2021



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

FIGURE 18. Total delay comparison for different forwarding action
selection schemes when traffic is light.

delay of all packets, where the delay associated with a

dropped packet is considered to be the packet lifetime.

Based on the figure, AODVdelay is similar to that of SSRwith

τ = 1 and SSR-random, while SSRwith τ = 0.05 has the best

performance in terms of routing the data through faster paths.

The total delay is used in delay analysis hereafter.

D. SSR PERFORMANCE WHEN NETWORK IS CONGESTED

Next, the performance of SSR in terms of its load-balancing

capability is investigated under network congestion, for the

network topology shown in Fig. 15(a). The external traf-

fic could cause certain congestion around the leader node,

as depicted in Fig. 21(a).

The throughput and delay for several configurations are

evaluated in Figs. 19 and 20, respectively. Again, SSR shows

a better performance when using smaller values of τ , as the

probability of choosing the optimal actions in Markov model

increases. Though τ = 1 performs poorly, it is still slightly

better than the random selection of the forwarders. Higher

value of τ leads to almost equal probability of actions in

Markov model, and hence, the result is closer to that of SSR-

Random.

The SSR performance is compared with FANET routing

protocols ML-OLSR [25] and LTA-OLSR [26], which are

load-aware proactive routing schemes. Both the ML-OLSR

and LTA-OLSR find the best route to the destination which

experiences the lowest traffic load. Averaging over buffer

load and channel occupation, LTA-OLSR performance is

comparable to SSRwith τ = 0.05 for smaller data generation

rates, as shown in Fig. 19. However, when the source rate

rises, LTA-OLSR performance degrades due to the inter-node

interference in single path routing, whereas SSR(τ = 0.05)

outperforms LTA-OLSR as it dispatches the data packets

though a routing pipe which can lead to a higher throughput.

As shown in Fig. 20, the packet delay in SSR-Random and

τ = 1 may not always have an increasing trend when the

source rate increases. In Fig. 21(b) and (c), some packets may

be dropped in the path, which helps to mitigate the congestion

and reduces the delay for the rest of the traffic. This fact is

also mentioned in [30]. Due to the use of routing pipe, SSR

with τ = 0.05 can balance the traffic load and decrease the

FIGURE 19. Throughput comparison for different action selection
schemes (with congestion).

FIGURE 20. Delay comparison for different action selection schemes
(with congestion).

delay more efficiently compared to LTA-OLSR which uses a

single-path routing.

Fig. 21 compares the load distribution of SSR traffic across

the entire leaf-like pipe, for the topology shown in Fig. 15(a).

Here the routing traffic is almost evenly distributed

in SSR-Random scheme or when using τ = 1, regardless

of the external traffic. However, the traffic load is heavier in

the start section of the pipe but it decreases when it travels

through the pipe, because some packets are dropped before

reaching the destination. In these cases, SSR ignores the

location of the congested areas and therefore cannot avoid

them. On the contrary, the traffic associated with smaller

values of τ can successfully get away from the congested

area, as depicted in Fig. 21(d) and (e).

Fig. 21(f) reveals that when there is no congestion SSR can

evenly distribute traffic in the entire pipe, and the center of the

pipe experiences slightly less traffic than the outer areas (thus

the nodes in the center experience less interference). Here the

destination receives more packets from the outer areas than

the center.

Although small τ increases the throughput by selecting

the optimal Markov actions more frequently, it also reduces

the possibility of exploring other actions. Hence the routing

scheme may not be able to quickly adapt to the changes

in network conditions. Thus, selection of a suitable value

of τ is a trade-off between performance and learning speed
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FIGURE 21. (a) External load distribution due to other applications; (b) Load distribution of SSR traffic with random action selection under congestion;
(c) Load distribution of SSR traffic for τ = 1 under congestion; (d) Load distribution of SSR traffic for τ = 0.2 under congestion; (e) Load distribution of
SSR traffic for τ = 0.05 under congestion; (f) Load distribution of SSR traffic for τ = 0.05 without congestion.

FIGURE 22. Throughput comparison with and without the use of TSDP in
congested scenario.

in dynamic swarm environment. In the experiments, using

τ = 0.05 achieves an optimal routing performance.

E. SSR PERFORMANCE WITH TSDP

Figs. 22 and 23 illustrate the effect of TSDP on the SSR

throughput and delay, for the congestion scenario shown

FIGURE 23. Delay comparison with and without TSDP in congested
scenario.

in Fig. 21(a). Table 3 summarizes the TSDP parameters for

the SSR and the low-priority external traffic. In Fig. 22,

TSDP does not noticeably affect the performance when

the throughput is high. However, when the queues get
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FIGURE 24. Swarm morphing from a square to triangular formation and the changes of the leaf-like routing pipe: a) Initial leaf-like pipe in
the square formation; b) A snapshot of swarm at the middle of morphing; c) The end pipe in the triangular formation. The morphing
process takes about 125s.

TABLE 3. TSDP simulation parameters.

congested and the throughput degrades at higher source rates,

TSDP improves the performance by filtering out part of the

low-priority traffic as well as packets having a low chance of

reaching the destination in time. Therefore, the competition

for the channel access is moderate and more high-priority

packets can reach the destination.

Fig. 23 reveals that TSDP may slightly increase the

expected delay of the received packets, because more packets

can reach the destination before expiration.

F. SWARM MORPHING

In this section, the performance of the SSR scheme is eval-

uated when the swarm morphs from one shape to another.

Here, morphing from the square formation to triangular shape

takes around 125s. The morphing results at three different

time instances are illustrated in Fig. 24.

During morphing, the geometric addresses of some nodes

may change and some other nodes may join or leave the pipe.

This may also lead to an undesired change in the PF list.

Generally, minimizing the topology distortion (in terms of RF

connectivity) during morphing is preferred. We thus define

the morphing distortion as the difference (in terms of the

hop-count distance) between the previous and new geometric

address.

Fig. 25 shows that about 58% of the nodes moved only

1-hop away in the geometric addressing system during mor-

phing, and only 6% of them moved more than 3-hops away.

This implies that due to localized movement of nodes, most

FIGURE 25. Morphing distortion measurement for the scenario shown
in Fig. 24.

paths inside the pipe still have good RF connectivity. Most

displacements occur in the outer areas of swarm, and the inner

nodes can still maintain their established links. Moreover,

the nodes do not leave their region Ri during morphing which

significantly helps the local search (Section VI).

VIII. OVERHEAD AND COMPLEXITY ANALYSIS

The communication overhead incurred by transmitting the

formation command message is O(Ns), where Ns is the num-

ber of skeleton nodes. It can be rewritten as O(k × d), where

k is the number of bones and d is the average length of a bone.

These control messages are only transmitted along the skele-

ton bones. Other nodes are guided through the parent-child

formation control strategy.

Updating the geo-address locally does not introduce a

noticeable communication overhead. A child node updates

its geo-address upon changes in the parent’s address which

is transferred via the conventional HELLO packets. It is not

necessary to flood the new address if it has changed by

only one or two hops due to using routing pipe and local

search. Updating the geo-address table of all nodes after a

major change in formation shape (which is not frequent) can
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have an overhead comparable to OLSR topology database

update. Alternatively, the leader can gather the addresses in

each region through the parent-child relations, combine them

all and flood it to the network which have communication

complexity of O(2N ), where N is the number of nodes.

The communication complexity of local search in case

of node displacement is O(2N/k), since the route-seeking

messages are only flooded inside a particular region. The

overhead can be further reduced if amulti-point relaying tech-

nique is used. Lastly, the SSR routing has a low computation

complexity, as it is executed in a distributed manner. Every

node in the pipe updates the forwarding probability of its PF

set when the value corresponding to a potential forwarder has

changed. The complexity of this operation is O(|PF |).

IX. CONCLUSION

In this article, a novel UAV routing and morphing scheme

based on the skeleton structure, called SSR, was proposed

for swarm network. SSR includes an addressing system that

provides nodes with geometric coordinates. Based on that,

a pipe with interconnected paths is constructed between a

source-destination pair, which provides a foundation for the

adaptive online routing algorithm. This routing scheme has

low complexity, can avoid congested areas, and achieves

traffic balancing in the pipe. SSR uses geometric forwarding

and avoids the flooding of route search messages throughout

the network. It only needs a local search in a specific region,

whenever the destination moves away.

The simulation results verified that the SSR scheme

can successfully establish a load-balanced high-throughput

leaf-like routing pipe. SSR outperformed the single path

throughput by up to two times and noticeably reduced the

latency. The proposed skeleton structure can also simplify

and facilitate the UAV swarm morphing process. The future

research will investigate the application of DRL for seeking

the optimal routing pipe parameters such as pipe width and

trend in a centralized large-scale UAV swarm network.
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