
SKELETONIZATION: 
A TECHNIQUE FOR TRIMMING THE FAT 

FROM A NETWORK VIA RELEVANCE ASSESSMENT 

Michael C. Mozer 

Paul Smolensky 

Department of Computer Science & 
Institute of Cognitive Science 

University of Colorado 

Boulder, CO 80309-0430 

ABSTRACT 

This paper proposes a means of using the knowledge in a network to 

determine the functionality or relevance of individual units, both for 

the purpose of understanding the network's behavior and improving its 

performance. The basic idea is to iteratively train the network to a cer

tain performance criterion, compute a measure of relevance that identi

fies which input or hidden units are most critical to performance, and 

automatically trim the least relevant units. This skeletonization tech

nique can be used to simplify networks by eliminating units that con

vey redundant information; to improve learning performance by first 

learning with spare hidden units and then trimming the unnecessary 

ones away, thereby constraining generalization; and to understand the 

behavior of networks in terms of minimal "rules." 

INTRODUCTION 

One thing that connectionist networks have in common with brains is that if you open 

them up and peer inside, all you can see is a big pile of goo. Internal organization is 

obscured by the sheer number of units and connections. Although techniques such as 

hierarchical cluster analysis (Sejnowski & Rosenberg, 1987) have been suggested as a 

step in understanding network behavior, one would like a better handle on the role that 

individual units play. This paper proposes one means of using the knowledge in a net

work to determine the functionality or relevance of individual units. Given a measure of 

relevance for each unit, the least relevant units can be automatically trimmed from the 

network to construct a skeleton version of the network. 

Skeleton networks have several potential applications: 

• Constraining generalization. By eliminating input and hidden units that serve no pur

pose, the number of parameters in the network is reduced and generalization will be 

constrained (and hopefully improved) . 

• Speeding up learning. Learning is fast with many hidden units, but a large number of 

hidden units allows for many possible generalizations. Learning is slower with few 

107 



108 Mozer and Smolensky 

hidden units. but generalization tends to be better. One idea for speeding up learning is 

to train a network with many hidden units and then eliminate the irrelevant ones. This 

may lead to a rapid learning of the training set. and then gradually, an improvement in 

generalization performance . 

• Understanding the behavior of a network in terms of "rules". One often wishes to get a 

handle on the behavior of a network by analyzing the network in terms of a small 

number of rules instead of an enormous number of parameters. In such situations, one 

may prefer a simple network that performed correctly on 95% of the cases over a com

plex network that performed correctly on 100%. The skeletonization process can dis

cover such a simplified network. 

Several researchers (Chauvin, 1989; Hanson & Pratt, 1989; David Rumelhart, personal 

communication, 1988) have studied techniques for the closely related problem of reduc

ing the number of free parameters in back propagation networks. Their approach 

involves adding extra cost terms to the usual error function that cause nonessential 

weights and units to decay away. We have opted for a different approach - the all-or

none removal of units - which is not a gradient descent procedure. The motivation for 

our approach was twofold. First, our initial interest was in designing a procedure that 

could serve to focus "attention" on the most important units, hence an explicit relevance 

metric was needed. Second, our impression is that it is a tricky matter to balance a pri

mary and secondary error term against one another. One must determine the relative 

weighting of these terms, weightings that may have to be adjusted over the course of 

learning. In our experience, it is often impossible to avoid local minima - compromise 

solutions that partially satisfy each of the error terms. This conclusion is supported by 

the experiments of Hanson and Pratt (1989). 

DETERMINING THE RELEVANCE OF A UNIT 

Consider a multi-layer feedforward network. How might we determine whether a given 

unit serves an important function in the network? One obvious source of information is 

its outgoing connections. If a unit in layer I has many large-weighted connections, then 

one might expect its activity to have a big impact on higher layers. However, this need 

not be. The effects of these connections may cancel each other out; even a large input to 

units in layer 1+1 will have little influence if these units are near saturation; outgoing 

connections from the innervated units in 1+1 may be small; and the unit in I may have a 

more-or-Iess constant activity, in which case it could be replaced by a bias on units in 

1+1. Thus, a more accurate measure of the relevance of a unit is needed. 

What one really wants to know is, what will happen to the performance of the network 

when a unit is removed? That is, how well does the network do with the unit versus 

without it? For unit i , then, a straightforward measure of the relevance, Pi' is 

Pi = E without .wt i - E with .wt i , 

where E is the error of the network on the training set. The problem with this measure is 

that to compute the error with a given unit removed, a complete pass must be made 

through the training sel Thus, the cost of computing P is O(np) stimulus presentations, 

where n is the number of units in the network and p is the number of patterns in the 



Skeletonization 109 

trammg set. Further, if the training set is not fixed or is not known to the experimenter, 

additional difficulties arise in computing p. 

We therefore set out to find a good approximation to p. Before presenting this approxi

mation, it is fust necessary to introduce an additional bit of notation. Suppose that asso

ciated with each unit i is a coefficient ai which represents the attentional strength of the 

unit (see Figure 1). This coefficient can be thought of as gating the flow of activity from 

the unit: 

OJ = f (~Wji aioi) , 

i 

where OJ is the activity of unit j, Wji the connection strength to j from i, and f the sig

moid squashing function. If ai = 0, unit i has no influence on the rest of the network; if 

ai = I, unit i is a conventional unit. In terms of a. the relevance of unit i can then be 

rewritten as 

Pi = Ea.:::(J - Ea.=1 • 

We can approximate Pi using the derivative of the error with respect to a: 

lim E a.=y - E a.=1 

1-+1 y- 1 

iJE 
=--

iJa· I a.=1 

Assuming that this equality holds approximately for y = 0: 

Ea.:::(J - Ea.=1 dE 
------ -- or 

-1 daj a.=1 

O .. fi . th A iJE ur approxunatton or pj IS en Pi = --;-- . 
uaj 

This derivative can be computed using an error propagation procedure very similar to 

that used in adjusting the weights with back propagation. Additionally, note that because 

the approximation assumes that o,j is I, the aj never need be changed. Thus. the ai are 

not actual parameters of the system, just a bit of notational convenience used in 

Figure 1. A 4-2-3 network with attentionaI coefficients on the input and hidden units. 



110 Mozer and Smolensky 

estimating relevance. 

In practice, we have found that dE Ida. fluctuates strongly in time and a more stable esti

mate that yields better results is an exponentially-decaying time average of the derivative. 

In the simulations reported below, we use the following measure: 

dE(t) 
~i(t+I)=.8~i(t)+ . 2 d . 

Clj 

One fmal detail of relevance assessment we need to mention is that relevance is com

puted based on a linear error function, E' = 1: I tpj - opJ I (where p is an index over pat

terns, j over output units; tpj is the target output, Opj the actual output). The usual qua

dratic error function, Ef = !Jtpj - Opj )2, provides a poor estima~ of relevance if the out

put pattern is close to the target. This difficulty with Ef is further elaborated in Mozer 

and Smolensky (1989). In the results reported below, while Ef is used as the error 

metric in training the weights via conventional back propagation, ~ is measured using E'. 
This involves separate back propagation phases for computing the weight updates and the 

relevance measures. 

A SIMPLE EXAMPLE: THE CUE SALIENCE PROBLEM 

Consider a network with four inputs labeled A-D, one hidden unit, and one output. We 

generated ten training patterns such that the correlations between each input unit and the 

output are as shown in the fIrst row of Table 1. (In this particular task. a hidden layer is 

not necessary. The inclusion of the hidden unit simply allowed us to use a standard 

three-layer architecture for all tasks.) 

In this and subsequent simulations, unit activities range from -I to I, input and target 

output patterns are binary (-lor 1) vectors. Training continues until all output activities 

are within some acceptable margin of the target value. Additional details of the training 

procedure and network parameters are described in Mozer and Smolensky (1989). 

To perform perfectly, the network need only attend to input A. This is not what the 

input-hidden connections do, however; their weights have the same qualitative proflle as 

the correlations (second row of Table 1).1 In contrast, the relevance values for the input 

Table 1 

Input Unit 

A B C D 

Correlation with Output Unit 1.0 0.6 0.2 0.0 

Input-Hidden Connection Strmgths 3.15 1.23 .83 - .01 

Pi 5.36 0.(11 0.06 0.00 

~i 0.46 -0.03 0.01 -0.02 

1 The values reported in Table 1 are an average over 100 replications of the simulation with different initial ran

dom weights. Bs:fore averaging. however, the signs of the weights were flipped if the hidden-output connection 

was negative. 



Skeletonization 111 

units show A to be highly relevant while B-D have negligible relevance. Further, the 

qualitative picture presented by the profile of (Ji s is identical to that of the Pi s. Thus, 

while the weights merely reflect the statistics of the training set, "i indicates the func
tionality of the units. 

THE RULE-PLUS-EXCEPfION PROBLEM 

Consider a network with four binary inputs labeled A-D and one binary output. The task 

is to learn the function AB+ABci5; the output unit should be on whenever both A and B are 

on, or in the special case that all inputs are off. With two hidden units, back propagation 

arrives at a solution in which one unit responds to AB - the rule - and the other to 

ABeD - the exception. Clearly, the AB unit is more relevant to the solution; it accounts 

for fifteen cases whereas the ABeD unit accounts for only one. This fact is reflected in 

the (Ji: in 100 replications of the simulation, the mean value of (JAB was 1.49 whereas ~ABCD 

was only .17. These values are extremely reliable; the standard errors are .003 and .005, 

respectively. 

Relevance was also measured using the quadratic error function. With this metric, the AB 

unit is incorrectly judged as being less relevant than the ABcD unit (JiB is .029 and (JIBCD is 

.033. As mentioned above, the basis of the failme of the quadratic error function is that 

"f grossly underestimates the true relevance as the output error gbes to zero. Because 

the one exception pattern is invariably the last to be learned, the pUtput error for the fIf
teen non-exception patterns is significantly lower, and consequently, the relevance values 

computed on the basis of the non-exception patterns are much smaller than those com

puted on the basis of the one exception pattern. This results in the relevance assessment 

derived from the exception pattern dominating the overall relevance measure, and in the 

incorrect relevance assignments described above. However, this problem can be avoided 

by assessing relevance using the linear error function. 

If we attempted to "trim" the rule-plus-exception network by eliminating hidden units, 

the logical first candidate would be the less relevant ABeD unit. This trimming process 

would leave us with a simpler network - a skeleton network - whose behavior is easily 

characterized in tenns of a simple rule, but which could only account for 15 of the 16 

input cases. 

CONSTRUCTING SKELETON NETWORKS 

In the remaining examples we construct skeleton networks using the relevance metric. 

The procedure is as follows: (1) train the network until all output unit activities are 

within some specified margin around the target value (for details, see Mozer & Smolen

sky, 1989); (2) compute" for each unit; (3) remove the unit with the smallest ,,; and (4) 

repeat steps 1-3 a specified number of times. In the examples below, we have chosen to 

trim either the input units or the hidden units, not both simultaneously. but there is no 

reason why this could not be done. 

We have not yet addressed the crucial question of how much to trim away from the net

work. At present. we specify in advance when to stop trimming. However. the pro

cedure described above makes use only of the ordinal values of the (J. One untapped 



112 Mozer and Smolensky 

source of information that may be quite informative is the magnitudes of the (J. A large 

increase in the minimum (J value as trimming progresses may indicate that further trim

ming will seriously disrupt performance in the network. 

THE TRAIN PROBLEM 

Consider the task of determining a rule that discriminates the "east" trains from the 

"west" trains in Figure 2. There are two simple rules - simple in the sense that the rules 

require a minimal number of input features: East trains have a long car and triangle load 

in car or an open car or white wheels on car. Thus, of the seven features that describe 

each train, only two are essential for making the east/west discrimination. 

A 7-1-1 network trained on this task using back propagation learns quickly, but the final 

solution takes into consideration nearly all the inputs because 6 of the 7 features are par

tially correlated with the east/west discrimination. When the skeletonization procedure is 

applied to trim the number of inputs from 7 to 2, however, the network is successfully 

trimmed to the minimal set of input features - either long car and triangle load, or open 

car and white wheels on car - on each of 100 replications of the simulation we ran. 

The trimming task is far from trivial. The expected success rate with random removal of 

the inputs is only 9.5%. Other skeletonization procedures we experimented with resulted 

in success rates of 50%-90%. 

THE FOUR-BIT MULTIPLEXOR PROBLEM 

Consider a network that learns to behave as a four-bit multiplexor. The task is, given 6 

binary inputs labeled A-D, Mit and M2, and one binary output, to map one of the inputs A-D 

to the output contingent on the values of MI and M2. The logical function being computed 

is MI~A + MIM2B + M1M1C + M\M1.D. 

EAST WEST 

I.-Jib 
Figure 2. The train problem. Adapted from Medin, Wattenmaker, & Michalski, 1987. 



Skeletonization 113 

Table 2 

median epochs median epochs 

architecture failure rate to criterion to criterion 

(with 8 hidden) (with 4 hidden) 

standard 4-hidden net 17% -- 52 

8-+4 skeleton net 0% 25 45 

A standard 4-hidden unit back propgation network was tested against a skeletonized net

work that began with 8 hidden units initially and was trimmed to 4 (an 8-+4 skeleton net

work). If the network did not reach the performance criterion within 1000 training 

epochs, we assumed that the network was stuck in a local minimum and counted the run 

as a failure. 

Performance statistics for the two networks are shown in Table 2, averaged over 100 

replications. The standard network fails to reach criterion on 17% of the runs. whereas 

the skeleton network always obtains a solution with 8 hidden units and the solution is not 

lost as the hidden layer is trimmed to 4 units.2 The skeleton network with 8 hidden units 

reaches criterion in about half the number of training epochs required by the standard 

network. From this point, hidden units are trimmed one at a time from the skeleton net

work, and after each cut the network is retrained to criterion. Nonetheless, the total 

number of epochs required to train the initial 8 hidden unit network and then trim it down 

to 4 is still less than that required for the standard network with 4 units. Furthermore, as 

hidden units are trimmed, the performance of the skeleton network remains close to cri

terion, so the improvement in learning is substantial. 

THE RANDOM MAPPING PROBLEM 

The problem here is to map a set of random 20-element input vectors to random 2-

element output vectors. Twenty random input-output pairs were used as the training set 

Ten such training sets were generated and tested. A standard 2-hidden unit network was 

tested against a 6~2 skeleton network. For each training set and architecture, 100 repli

cations of the simulation were run. If criterion was not reached within 1000 training 

epochs, we assumed that the network was stuck in a local minimum and counted the run 

as a failure. 

As Table 3 shows, the standard network failed to reach criterion with two hidden units on 

17% of all runs. whereas the skeleton network failed with the hidden layer trimmed to 

two units on only 8.3% of runs. In 9 of the 10 training sets, the failure rate of the skele

ton network was lower than that of the standard network. Both networks required com

parable amounts of training to reach criterion with two hidden units, but the skeleton net

work reaches criterion much sooner with six hidden units, and its performance does not 

significantly decline as the network is trimmed. These results parallel those of the four

bit multiplexor. 

1 Here and below we report median epochs to criterion rather than mean epochs to avoid aberrations caused by 

the large number of epochs consumed in failure runs. 



114 Mozer and Smolensky 

Table 3 

standard network 642 skeleton network 

median epochs median epochs median epochs 

training set % failures to criterion % failures to criterion to criterion 

(2 hidden) (6 hidden) (2 hidden) 

1 14 20 7 11 22 

2 16 69 13 12 47 

3 25 34 0 7 14 

4 33 38 0 10 21 

5 38 96 55 35 <max> 

6 9 17 1 9 17 

7 9 28 5 14 43 

8 6 13 0 8 16 

9 8 12 0 8 17 

10 12 12 2 8 17 

SUMMARY AND CONCLUSIONS 

We proposed a method of using the know ledge in a network to determine the relevance 

of individual units. The relevance metric can identify which input or hidden units are 

most critical to the performance of the network. The least relevant units can then be 

trimmed to construct a skeleton version of the network. 

Skeleton networks have application in two different scenarios. as our simulations demon

strated: 

• Understanding the behavior of a network in terms of "rules" 

- The cue salience problem. The relevance metric singled out the one input that was 

sufficient to solve the problem. The other inputs conveyed redundant information. 

- The rule-plus-exception problem. The relevance metric was able to distinguish the 

hidden unit that was responsible for correctly handling most cases (the general rule) 

from the hidden unit that dealt with an exceptional case. 

- The train problem. The relevance metric correctly discovered the minimal set of 

input features required to describe a category . 

• Improving learning performance 

- The four-bit multiplexor. Whereas a standard network was often unable to discover 

a solution. the skeleton network never failed. Further. the skeleton network learned 

the training set more quickly. 

- The random mapping problem. As in the multiplexor problem. the skeleton net

work succeeded considerably more often with comparable overall learning speed. 

and less training was required to reach criterion initially. 

Basically. the skeletonization technique allows a network to use spare input and hidden 

units to learn a set of training examples rapidly. and gradually. as units are trimmed. to 

discover a more concise characterization of the underlying regularities of the task. In the 

process, local minima seem to be avoided without increasing the overall learning time. 



Skeletonization 115 

One somewhat surprising result is the ease with which a network is able to recover when 

a unit is removed. Conventional wisdom has it that if, say, a network is given excess hid

den units, it will memorize the training set, thereby making use of all the hidden units 

available to it. However, in our simulations, the network does not seem to be distributing 

the solution across all hidden units because even with no further training, removal of a 

hidden unit often does not drop performance below the criterion. In any case, there gen

erally appears to be an easy path from the solution with many units to the solution with 

fewer. 

Although we have presented skeletonization as a technique for trimming units from a net

work, there is no reason why a similar procedure could not operate on individual connec

tions instead. Basically, an 0. coefficient would be required for each connection, allow

ing for the computation of aE lao.. Yann Ie Cun (personal communication, 1989) has 

independently developed 'a procedure quite similar to our skeletonization technique 

which operates on individual connections. 

Acknowledgements 

Our thanks to Colleen Seifert for conversations that led to this work; to Dave Goldberg, 

Geoff Hinton, and Yann Ie Cun for their feedback; and to Eric Jorgensen for saving us 

from computer hell. This work was supported by grant 87-2-36 from the Sloan Founda

tion to Geoffrey Hinton, a grant from the James S. McDonnell Foundation to Michael 

Mozer, and a Sloan Foundation grant and NSF grants IRI-8609599, ECE-8617947, and 

CDR-8622236 to Paul Smolensky. 

Rererences 

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden units. In 

Advances in Neural Network Information Processing Systems. San Mateo, CA: 

Morgan Kaufmann. 

Hanson, S. J., & Pratt, L. Y. (1989). Some comparisons of constraints for minimal 

network construction with back propagation. In Advances in Neural Network 

Information Processing Systems. San Mateo, CA: Morgan Kaufmann. 

Medin, D. L., Wattenmaker, W. D., & Michalski, R. S. (1987). Constraints and 

preferences in inductive learning: An experimental study of human and machine 

performance. Cognitive Science, 11, 299-339. 

Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming the 

fat from a network via relevance assessment (Technical Report CU-CS-421-89). 

Boulder: University of Colorado, Department of Computer Science. 

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce 

English text. Complex Systems, 1, 145-168. 


