
Souvorov et al. Genome Biology (2018) 19:153

https://doi.org/10.1186/s13059-018-1540-z

SOFTWARE Open Access

SKESA: strategic k-mer extension for
scrupulous assemblies
Alexandre Souvorov1, Richa Agarwala1* and David J. Lipman1,2

Abstract

SKESA is a DeBruijn graph-based de-novo assembler designed for assembling reads of microbial genomes sequenced

using Illumina. Comparison with SPAdes and MegaHit shows that SKESA produces assemblies that have high sequence

quality and contiguity, handles low-level contamination in reads, is fast, and produces an identical assembly for the

same input when assembled multiple times with the same or different compute resources. SKESA has been used for

assembling over 272,000 read sets in the Sequence Read Archive at NCBI and for real-time pathogen detection.

Source code for SKESA is freely available at https://github.com/ncbi/SKESA/releases.

Keywords: Illumina reads, De-novo assembly, DeBruijn graphs, Sequence quality, Contamination

Background
Sequence alignment, assembly, variation detection, or

some combination thereof are usually the major modules

of any bioinformatics pipeline analyzing next-generation

sequence (NGS) read data [1–6]. An important appli-

cation for microbial genome sequencing is to detect

pathogenic outbreaks in the food supply chain [7–9] and

in hospitals [10–13]. Advantages and bioinformatics chal-

lenges in using NGS for surveillance and outbreak inves-

tigations of foodborne pathogens were reviewed using

Listeria Monocytogenes as an example [14] and by citing

retrospective and real-time outbreaks [15]. Both reviews

identified de-novo assembly of NGS as a significant chal-

lenge in using the information.

A collaboration between US states, federal agencies,

and international partners to deposit foodborne bacte-

rial pathogen sequence data at the National Center for

Biotechnology Information (NCBI), referred to as the

Pathogen Detection Project (PDP), has accelerated NGS-

based investigations of outbreaks. The number of read

sets submitted for the four major species of foodborne

pathogens, namely, Salmonella, Listeria, Escherichia and

Shigella, and Campylobacter, have scaled rapidly from

44011 to 85823 to 145178 read sets in the results pub-

lished by PDP at the beginning of 2016, 2017, and 2018,

*Correspondence: agarwala@ncbi.nlm.nih.gov
1NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, MD 20894, USA

Full list of author information is available at the end of the article

respectively. More outbreaks are now identified when

clusters are still small and fewer people are affected

[11, 16]. The dominant sequencing technology in PDP is

Illumina that has very low insertion deletion error rate

but suffers from some systematic biases and low-level

carryover contamination from earlier runs [17–20].

Several de-novo assemblers for sequence reads have

been published [21–28]. Some are specialized for ploid-

ity [29], metagenomes [30–35], single cell [36], sequenc-

ing technologies [37], or combine several assemblies into

one [38]. No assembler guarantees an “error-free” assem-

bly even for haploid genomes. In addition to microbial

genomes, haploid assemblies are of interest for special

human genome cases, such as from a hydatidiform mole

[39]. Some applications for microbial genomes, such as

PDP, rely on vertical inheritance of genomic data from

mother to daughter cell and resolve patterns of read set

clonality based on very few variations, typically less than

10 variations in a 4 Mb genome [15]. Such applications

require assemblies with very high sequence quality so that

true variations can be detected with confidence.

Assessment of assemblies using read sets generated by

sequencing machines requires a publicly available bench-

marking set that contains both the reads and a near

complete high-quality draft assembly for the same sam-

ple. FDA-ARGOS is a database developed by the Food

and Drug Administration (US FDA) [19] that consists of

regulatory grade sequences for microbes and satisfies the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-018-1540-z&domain=pdf
http://orcid.org/0000-0002-5518-9723
https://github.com/ncbi/SKESA/releases
mailto: agarwala@ncbi.nlm.nih.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Souvorov et al. Genome Biology (2018) 19:153 Page 2 of 13

benchmark requirements for assembly quality assessment

of microbial genomes.

Here, we focus on the problem of quickly computing

a high-quality de-novo sequence assembly of reads from

microbial genomes generated using Illumina sequenc-

ing technology and present our de-novo assembler called

SKESA [skee–sa] (strategic k-mer extension for scrupu-

lous assemblies). Heuristics used by SKESA are designed

to reduce the effect of low-level contamination and strand

specific errors in Illumina sequencing on the quality of

the assembly. For other sequencing technologies with high

error rates, conservative heuristics used by SKESA will

create less contiguous assemblies than those generated

by some other assemblers. SKESA can assemble genomes

larger than microbial genomes but has not been pro-

filed or compared to other assemblers for such genomes.

For example, SKESA assembles SRR7262862 (49.8 million

reads with total length 9.2 Gb) for Monilinia fructigena

and SRR6748693 (73.2 million reads with total length

18.3 Gb) forMonilinia laxawhere assemblies are∼ 40Mb

long in under 3 h with 10 cores and under 30 min with 100

cores.

Many de-novo assemblers, including SPAdes [24] and

MegaHit [35], use DeBruijn graphs and multiple k-mer

lengths during assembly. ALLPATHS_LG [40] used a

specific short insert library construction protocol where

100 bp mates overlapped by 40 bases. Using the over-

lap, they produced 160 bp merged reads but only used

96 as the largest k-mer size for their assembly. The dis-

tinguishing feature of SKESA is that it generates k-mers

that are longer than mates and up to insert size from

mini-assemblies of a subset of reads. This feature of using

longer than mate length k-mers allows SKESA to assem-

ble regions accurately that have repeats shorter than insert

size but longer than the mate length. To our knowledge,

all current assemblers, in contrast, only use k-mers up to

the size of mates.

In this manuscript, we compare SKESA to SPAdes and

MegaHit using five types of microbial test sets [41]: (i) run

time set (RTS) that has 56 read sets identified by the PDP

team, (ii) benchmark set that has 403 read sets from FDA-

ARGOS, (iii) random set that has 5000 randomly chosen

read sets from Sequence Read Archive (SRA), (iv) con-

tamination set that is a simulated set with six read sets

at different levels of contamination, and (v) substrings set

that is also a simulated set with 131 read sets at different

lengths of substrings of a reference genome. These sets

provide a total of 6044 runs for each assembly method

as each read set in the RTS set was run three times each

and on three different compute resource settings. A full

description of the test sets is given in the “Methods”

section. We chose MegaHit and SPAdes for comparison

as MegaHit is a very fast assembler and SPAdes is a ver-

satile and widely used assembler that provides options for

various technologies and sample types. Results that also

include comparison to IDBA [36] (version 1.1.1) designed

to handle uneven coverage of genome by reads and to

ABySS [28] (version 2.0.2) designed to assemble both large

and small genomes are available in supplementary mate-

rial (Additional file 1) but are not discussed in the main

manuscript as the implication of these results is same as

the one we get using MegaHit and SPAdes.

We show that for assemblies of microbial genomes,

SKESA and MegaHit are comparable in speed and signif-

icantly faster than SPAdes. SKESA can also access reads

directly from SRA and doing so is faster than reading the

input from files. Assembly quality measured by the num-

ber of mismatches per 100 Kb as computed by QUAST

[42], assembly contiguity as measured by the N50 statistic,

and deviation from the length of the reference assem-

bly show that quality of SKESA assemblies is better than

that of SPAdes and MegaHit. On the same input, SKESA

produces identical results regardless of the number of

threads, memory, or the number of times runs are done.

This is a critical requirement for production systems that

handle large volumes of data and require regression tests.

In our tests, both SPAdes and MegaHit produce different

assemblies across iterations, even for the same setting of

number of threads and memory. Therefore, SKESA meets

all the requirements for producing microbial assemblies

needed for applications such as PDP where assemblers are

required to produce assemblies that have high base level

sequence quality and contiguity sufficient for downstream

analysis, handle low-level contamination in reads, and

be fast and robust in production environments. SKESA

is currently used in production at NCBI for assembling

microbial genomes for SRA and has been incorporated

into the workflow of PDP. Software for SKESA is freely

available [43, 44] (see “Availability and requirements”) and

will also be made available in the cloud.

Results and discussion
Production usage

As of March 2018, SKESA had been used by NCBI

to assemble over 272,000 read sets available in SRA

including assemblies for Salmonella (131,581 assem-

blies), Listeria (19,718 assemblies), Escherichia (65,307

assemblies), Shigella (10,942 assemblies), Campylobacter

(32,416 assemblies), and Clostridioides (12,042 assem-

blies). These species are of importance for detecting

pathogens in the food supply chain and in hospitals.

Assemblies are publicly available in a downloadable object

for each read set from the SRA website.

Computation time

For read sets in the RTS set, Table 1 shows median wall-

clock time and distribution of wall-clock time by method

and compute resource settings where input is read from

Souvorov et al. Genome Biology (2018) 19:153 Page 3 of 13

Table 1 Run time comparison using 56 inputs in the run time set

Run time 4 cores, 16 Gb 8 cores, 32 Gb 12 cores, 32 Gb

(seconds) SKESA SPAdes MegaHit SKESA SPAdes MegaHit SKESA SPAdes MegaHit

<= 300 6 1 6 16 2 24 32 3 37

301 − 400 3 0 2 16 1 12 11 3 11

401 − 500 5 2 8 7 3 7 2 1 5

501 − 600 6 1 10 6 1 8 3 3 0

601 − 700 10 1 6 0 3 2 3 3 0

>700 26 51 24 11 46 3 5 43 3

Median 688 2303 616 359 1319 328 275 1086 240

Best of three wall-clock times is used for each input, method, and resource combination

files. For each read set R, each method M, and each

resource setting S, assembly was performed three times

and the minimum of the three wall-clock times was taken

as the time reported for that combination of R,M, and

S. Results for the median wall-clock time show that all

methods scale well with increase in compute resources.

The distribution of wall-clock time shows that MegaHit

is fastest with SKESA being a close second, but SPAdes

is substantially slower. SKESA is faster when reads are

accessed directly from SRA (data not shown).

Software robustness

SKESA and MegaHit were successful in assembling all

read sets in all test sets under all settings of compute

resources used. SPAdes did not produce an assembly for

23 out of 6044 runs. These were (i) three runs for read

set SRR1515967 in the RTS set done using 4 cores and

16 Gb memory, (ii) 18 read sets from the benchmark set

even with 100 cores and 250 Gb memory, and (iii) read

sets at k-mer length 34 and 56 in the substrings set. In

addition, assembly for 10 read sets from the random set

using SPAdes required more than 16 Gb whereas SKESA

andMegaHit were successful in assembling them with the

16-Gb memory limit.

SKESA produces the same assembly for a read set

regardless of the number of times assembly is performed,

number of cores, or memory available. The same does not

hold true for MegaHit and SPAdes. As an example, with

MegaHit, all nine runs for read set SRR2820668 in the run

time set produced the same N50 of 101,087 bp but differ-

ent number of contigs (172 to 178) and nine different sizes

of assembly (6,872,670 bp to 6,874,132 bp). An example

where SPAdes produced different number of contigs and

assembly sizes for the same read set and same settings of

resources is SRR1515967. In three runs for SRR1515967

with 12 cores and 32 Gb memory, SPAdes produced

1937 contigs with assembly size 5,553,327 and N50 of

135,184 bp, 1952 contigs with assembly size 5,555,233 and

N50 of 154,465 bp, and 1927 contigs with assembly size

5,552,535 and N50 of 115,121 bp. We note that for the 56

read sets in the RTS set, MegaHit did not produce an iden-

tical assembly in all nine runs for any of the read sets while

SPAdes did so for 12 read sets.

Sequence quality

For the benchmark set and each assembly method,

the number of misassemblies (Table 2), number of

mismatches per 100 Kb (Table 3), deviation statistics

(Table 4), and contiguity statistics (Table 5) show that

SKESA has a lower number of misassemblies, better

base level sequence correctness, lower deviation from the

length of reference, and contiguity comparable to that of

SPAdes and MegaHit.

For the contamination set, SKESA has no misassem-

blies, SPAdes has one misassembly for all inputs, and

MegaHit has one misassembly for all inputs except the

one at 15x where it has twomisassemblies. The number of

mismatches per 100 Kb (Table 3) and contiguity statistics

(Table 5) show that SKESA suffers the most in contigu-

ity when contamination level increases to 9x or above

but maintains good base level accuracy, SPAdes maintains

Table 2 Number of misassemblies in 381 inputs in the

benchmark set

Count SKESA SPAdes MegaHit

0 214 172 128

1 83 98 91

2 40 43 66

3 13 30 30

4 9 12 18

5 7 7 15

6 2 3 10

7 2 0 5

8 1 1 3

9 0 0 2

10+ 10 15 13

Median 0 1 1

Souvorov et al. Genome Biology (2018) 19:153 Page 4 of 13

Table 3 Mismatches per 100 Kb as reported by QUAST for

benchmark and contamination sets

Benchmark set

Measure SKESA SPAdes MegaHit

Median 0.08 2.76 1.89

Maximum 7.78 41.60 31.94

Average 0.40 3.21 2.79

Assembly counts in benchmark set

Mismatches range SKESA SPAdes MegaHit

0 105 1 1

0.01 − 1 247 40 80

1.01 − 2 9 76 121

2.01 − 3 9 89 58

3.01 − 4 1 71 45

>4 10 104 76

Mismatches reported in contamination set

Set SKESA SPAdes MegaHit

No contamination 0 1.44 3.83

3x contamination 0 1.42 3.21

6x contamination 0 1.44 3.02

9x contamination 0.02 1.61 4.38

12x contamination 0.02 1.52 4.96

15x contamination 0.04 1.50 5.83

contiguity at an increased rate of base level inaccuracies,

and MegaHit loses some contiguity as well as accuracy.

Table 4 shows that assembly lengths of SKESA assem-

blies have the least total deviation across all sets, that

assembly lengths of SPAdes assemblies do not depend

on contamination, and that assembly lengths of MegaHit

Table 4 Deviation of assembly length produced by the

assemblers from the assembly length of the reference as

computed using aligned length reported by QUAST and

assembly lengths for benchmark and contamination sets

Benchmark set

Measure SKESA SPAdes MegaHit

Median 2.72 10.91 5.59

Maximum 135.75 775.14 407.78

Average 4.61 57.98 24.23

Deviation in contamination set

Contamination SKESA SPAdes MegaHit

None 1.33 1.68 1.35

3x 1.36 1.68 1.33

6x 1.33 1.68 1.30

9x 1.36 1.67 1.47

12x 1.41 1.68 2.05

15x 1.44 1.68 2.96

Table 5 Contiguity for benchmark, random, and contamination

sets

Benchmark set

N50 measure SKESA SPAdes MegaHit

<= 10 Kb 14 69 19

10001 − 50 Kb 40 41 46

50001 − 100 Kb 41 56 67

100001 − 250 Kb 191 169 197

250001 − 500 Kb 77 43 48

>500 Kb 18 3 4

Median 170,647 117,340 124,833

Minimum 1832 364 687

Maximum 1,197,860 622,367 617,087

Average 195,141 131,823 146,706

N50 statistic in contamination set

Contamination SKESA SPAdes MegaHit

None 282,763 260,531 202,384

3x 282,763 260,531 202,384

6x 282,763 260,532 202,384

9x 225,630 260,531 151,916

12x 77,455 260,531 107,175

15x 42,440 260,531 65,124

Random set

N50 measure SKESA SPAdes MegaHit

<= 10 Kb 6 10 6

10001 − 50 Kb 349 206 285

50001 − 100 Kb 788 409 1516

100001 − 250 Kb 2307 2369 2889

250001 − 500 Kb 1324 1616 266

>500 Kb 226 390 38

Median 170,877 208,907 117,074

Minimum 2414 209 4182

Maximum 1,545,488 1,530,182 1,499,532

Average 213,847 255,079 136,339

assemblies become most deviant at higher levels of con-

tamination.

Contiguity statistics for the random set (Table 5) show

that all methods produce good contiguity for most sets

with SPAdes giving the best overall contiguity.

For the substrings set that has single reads, SKESA

has no misassemblies, SPAdes has nine misassemblies

for the read set generated with length 22, and MegaHit

has at least one misassembly for all read sets generated

with length 60 or above. With MegaHit, nine inputs have

two misassemblies and assembly of the read set with

longest reads has three misassemblies. SKESA also has no

mismatches while both SPAdes and MegaHit have mis-

matches as shown in Fig. 1. SKESA starts out with smallest

contiguity at short read lengths but has highest contigu-

ity at longer read lengths as shown in Fig. 2. SKESA also

Souvorov et al. Genome Biology (2018) 19:153 Page 5 of 13

Fig. 1 Substrings mismatches: mismatches per 100 Kb seen in assemblies of SPAdes and MegaHit for inputs in substrings set. SKESA has no

mismatches at any length in this set

starts out with most deviation from the reference assem-

bly length but becomes least deviant at inputs with longer

reads as shown in Fig. 3.

Read trimming

No read sets in benchmark, contamination, or substrings

set were trimmed. Only 5 out of 56 read sets in the

RTS set and 219 out of 5000 read sets in the random

set were trimmed. We compared the most frequent k-

mer marked as suspect in each of the 224 runs with

known Illumina adaptors. All five in the RTS set and

199 in the random set had AGATGTGTATAAGAGACAG

as the most frequent k-mer that is a known Illu-

mina adaptor (Nextera and others). The remaining 20

Fig. 2 Substrings contiguity: N50 for assemblies generated by SKESA, SPAdes, and MegaHit for inputs in substrings set

Souvorov et al. Genome Biology (2018) 19:153 Page 6 of 13

Fig. 3 Substrings deviation: deviation for assemblies generated by SKESA, SPAdes, and MegaHit for inputs in substrings set. We do not show values

for input length 22 where MegaHit has value of almost 100 and input length 34 and 56 for which SPAdes did not produce an assembly

included 12 that consisted of homopolymer C, 5 that

consisted of homopolymer A, one that is a TrueSeq

adaptor (AGATCGGAAGAGCGTCGTG), and one each that

were ATCAAAGGAAATGATAGCA (in SRR5221560) and

CTTTTTTGGTGCTTTAGCA (in SRR5414541). It appears

to us that the k-mers found as suspected in SRR5221560

could be from a cloning vector and confirm that a plas-

mid is not produced in SKESA assembly of SRR5414541

because of read trimming. In all read sets except

SRR5414541 and SRR5221560, there was no pattern for

the position on reads for the first k-mer marked as suspect

but in these two read sets, over 70% of the reads trimmed

were clipped at the start of the read.

Conclusions
Sequence assembly of reads for microbial genomes for

applications such as real-time pathogen detection in food-

borne and clinical samples require high sequence quality,

sufficient contiguity, and good scaling in performance

with compute resources. Reproducibility of the results is

also a critical requirement in production systems han-

dling large volumes of data, especially for public health

applications. We presented a de-novo assembler, SKESA,

that does strategic k-mer extension for scrupulous assem-

blies and achieves desired properties for the assembly

of reads from the microbial genomes sequenced using

Illumina sequencing platform. The assembly approach

utilizes DeBruijn graphs and conservative heuristics using

k-mer counts of alternate choices to decide between

extending or creating a break in the assembly. Multiple

iterations with several k-mer sizes up to the expected

length of insert size for paired reads are used to produce

the assembly. SKESA also handles presence of low-level

contamination from different samples gracefully.

We compared SKESA to two widely used de-novo

assemblers: SPAdes, a versatile assembler in the range

of sequences it can assemble, and MegaHit, a very fast

assembler. For the specific application of microbial assem-

blies SKESA was designed for, we showed that the quality

of SKESA assemblies is better than both SPAdes and

MegaHit, and its speed is comparable to MegaHit. Con-

tiguity of SKESA and MegaHit drop with increasing level

of contamination while SPAdes maintains contiguity. The

same assembly is produced by SKESA on the same input

when runs are performedmultiple times or when compute

resources provided to the runs are changed. The same

does not hold true for SPAdes and MegaHit.

Future work for SKESA includes (i) using a k-mer

histogram to make a quick assessment of whether con-

tamination in the sample is high enough to warrant no

assembly, (ii) exploring extensions to other sequencing

technologies such as nanopore that have good genome

coverage but suffer from high error rate, (iii) explor-

ing extension to diploid genomes with heterozygous sites

assembled using appropriate ambiguity code, (iv) under-

standing behavior on large genomes, and (v) adding mod-

ules to detect rare cases where read trimming removes

k-mers that can be self-assembled.

Souvorov et al. Genome Biology (2018) 19:153 Page 7 of 13

In all future work, our goal will continue to be to pro-

duce assemblies with close to perfect base level accuracy.

Methods
We present the algorithm design for SKESA, some impor-

tant implementation details, design of test sets used for

running time and assembly quality comparisons, and

command lines used for doing the runs. We compare

SKESA to SPAdes v3.11.1 and MegaHit v1.1.2. Assess-

ment of assembly quality was done using QUAST. We

attempted to use misFinder [45] and ReMILO [46] but

neither worked reliably. When misFinder or ReMILO

worked, results were similar to that of QUAST.

Algorithm design for SKESA

A flowchart describing the main modules of SKESA is

shown in Fig. 4. Other than reading input and writing out-

put, the four main parts of the SKESA algorithm are as

follows:

• Trimming of reads.
• Detection of parameters: A user should specify the

option for whether the reads are paired or single and

the compute resources available. All other

parameters are determined internally by SKESA

unless explicitly specified.

Fig. 4 SKESA flowchart: flowchart describing main steps in the

algorithm used by SKESA for assembly

• Assembly using a specific k-mer size: In each

iteration, the assembly process uses the DeBruijn

graph for that k-mer size and an empty or current set

of contigs. Multiple k-mer sizes are used. Short

k-mers can assemble low-coverage areas of the

genome while long k-mers can resolve repeats.
• Marking reads: This module decides reads that are

used up and no longer needed for future iterations.

After trimming of reads, the rest of the SKESA process

uses trimmed reads only and we overload “read” to mean

trimmed reads after this step. If input has paired reads,

after iterating using k-mers up to mate length, any read

still available for assembly has a mini-assembly performed

treating its mates as ends of contigs. Assembled reads are

used for generating three sets of k-mers that are longer

than the mate size and up to the expected insert size. No

explicit error correction of reads is done by SKESA as

the heuristics of SKESA can handle the errors in a typi-

cal illumina read set. Next, we describe each of the five

modules.

Read trimming

K-mer size of 19 is used for counting frequency of k-mers

in the read set. If a k-mer is seen in at least Vf fraction of

reads (default 0.05), it is considered suspect and used for

trimming reads. Starting from the first k-mer in a mate

and checking all consecutive k-mers, the first occurrence

of a k-mer flagged as suspect trims the rest of the mate.

Parameter detection

SKESA builds a histogram for frequency of k-mers at the

minimal k-mer length Kmin (default 21) seen in trimmed

reads. Using the histogram, it decides the peak where the

distribution around the peak likely corresponds to the

k-mers from the genome being assembled. This distribu-

tion is used to estimate the genome size G. If no peak

is detected, then 80% of the entire distribution is used

as an estimate of G. Additional peaks present and dis-

tributions around those peaks are usually due to noise,

repeats, or plasmids. For example, Figs. 5 and 6 are two

parts of the histogram for SRR2821438 generated with 21-

mers. Figure 5 shows the noise and distribution for k-mers

from the genome and Fig. 6 shows two peaks that have

much higher k-mer counts but relatively few k-mers as

compared to the distributions in Fig. 5.

To account for more noise in high-coverage read sets,

the minimum frequency count, Cmin is computed as

max(2,T/(G ∗ 50)) where T is the total length of reads.

All k-mers with count below the minimum count are

ignored in the assembly. The program also computesCmax

as max(10,T/(G ∗ 10)). Choice of k-mer lengths is made

by SKESA using Kmin, number of steps S (default 11), and

maximal k-mer length Kmax where Kmax is determined

Souvorov et al. Genome Biology (2018) 19:153 Page 8 of 13

Fig. 5Main distribution in SRR2821438: histogram for frequency of 21-mers seen in SRR2821438 with counts on X axis up to 400 and number of

21-mers with that count on Y axis

using the average of all mate lengths Aread and counts of

k-mers. Kmax is initially set to Aread. If the average count

of k-mers at currentKmax is below the desired countCmax,

then Kmax is iteratively reduced by Aread/25 bases until a

Kmax with average count of at least Cmax is found. If Kmax

is more than 1.5 times Kmin, then S − 2 additional k-mers

between Kmin and Kmax are chosen. These are odd inte-

gers that are spread evenly. Otherwise, only Kmin is used

for an assembly and a warning that iterations are disabled

is printed.

For paired runs, if the insert size I is not provided, then

it is estimated using a random sample of 10,000 reads.

An unambiguous assembly for each of these reads with

the two mates as ends of contigs is attempted using Kmin.

Fig. 6 Small distributions in SRR2821438: histogram for frequency of

21-mers seen in SRR2821438 with counts on X axis between 325 and

2000 and number of 21-mers with that count on Y axis

Using the length of reads assembled, insert size I is esti-

mated. Three additional k-mer sizes added for additional

iterations are 1.25Kmax, (1.25Kmax + I)/2 and I. The pro-

gram also uses 3I as the maximal insert size expected for

any read.

Assembling using a specific k-mer size K

All k-mers of length K with frequency at least Cmin are

generated. If a main peak in the histogram of the fre-

quency of generated k-mers is detected, the left low end

of the distribution around the main peak is called the

Valley for the iteration and only k-mers with count above

the valley are used to start new contigs. A valley is set to

zero if no main peak is found in the histogram.

At any stage, an attempt to extend an end of a contig

by the next base results in three possibilities: (i) no k-

mer extension is possible, (ii) only one k-mer extension

is possible, or (iii) there are alternate choices. In the first

case, the end of the contig has been reached and no fur-

ther extension is possible. In the second case, the contig is

extended by one base only if the extension from the new

k-mer produced by addition of the base to the previous k-

mer (last k-mer of the end of the contig) is also possible

using the same criteria used for extending from previous

k-mer to the new k-mer. In the third case, all choices with

counts below the threshold for extension (default 0.1) with

respect to the maximum counts for any choice are con-

sidered as noise and dropped. If more than one choice

for extension survives this count based filtering, potential

Illumina strand-specific systematic error signatures are

evaluated. The program does this by comparing counts

observed on both strands. If there is a choice with counts

Souvorov et al. Genome Biology (2018) 19:153 Page 9 of 13

balanced on both strands, all choices with counts seen in

predominately one strand are dropped. If more than one

choice for extension survives this strand-based filtering,

each choice is used for finding paths that are extended by

a maximum of max(100,K) steps. If only one path sur-

vives, then it is kept while others are removed as dead

ends. If more than one path survives, a contig break is cre-

ated. When a contig reaches the stage where an extension

is no longer possible, the last k-mer bases are removed to

ensure that the sequence built was verified by assembling

from both directions.

In the process of contig extension, suppose contig C is

being extended by a base b resulting in last k-mer L in C

that includes b. The program checks if L is already present

in any contig D. If no such D exists, C is extended using L.

If such a D exists and L is at the end of D, programmerges

C and D. Otherwise, C is not extended. This ensures that

no k-mer is included more than once in the assembled

contigs in the iteration for that k-mer.

Marking reads as used

After each iteration, the reads that have a k-mer located

deeper than buffer zone M inside a contig are marked

as used as they cannot contribute any new information.

Value of M is I + 50 + F where flank F is set to Kmax if

reads being removed are the input reads and not the ones

assembled as a pair for generating k-mers larger than the

mate size. Otherwise, F is set to zero.

Connecting paired reads

If input is for paired reads, after the iterations using

k-mers up to mate length, the program attempts to unam-

biguously connect reads that are not marked as used.

Starting from the last k-mer of the first mate to first k-

mer of the second mate, all paths up to maximal insert

size are assembled. Similarly, an assembly from reverse

complement of the first k-mer of the second mate to

reverse complement of the last k-mer of the first mate is

attempted. If both produce only one path and sequence is

same for both paths (except for reverse complement), the

assembled sequence is used for generating longer k-mers.

For pairs that are inside the buffer zoneM, sequence from

the contig is used for generating long k-mers.

Implementation

Dependencies

SKESA uses the freely available Boost library [47]. If direct

access to SRA is desired for retrieving reads, then the SRA

toolkit library is also needed. For k-mers, the long integer

implementation from [48] is used and is included in the

SKESA package.

K-mer counting and searching

For k-mer counting, two options are implemented. By

default, all k-mers from all reads are generated and

counted after sorting. If the memory available is not suffi-

cient to store k-mers from all reads, then a hash function

is used to determine smaller batches of k-mers to process

from all reads in several rounds. In each round, k-mers

that do not meet the threshold Cmin are discarded. The

second method uses a hash table and a Bloom filter [49]

to filter out k-mers that have counts below the threshold

Cmin. A small number of k-mers below the Cmin threshold

not detected by the Bloom filter are removed later. Gen-

erally, the method utilizing the Bloom filter consumes less

memory during the counting but the resulting hash table

is larger than the default method that uses a sorted array

for counting.

For k-mer searching, binary search is used for finding k-

mers when they are stored in a sorted array. In the second

implementation that uses a hash table, k-mer search uses

the hash function to directly find the index in the hash

table.

Multi-threading

All steps in the SKESA implementation are highly multi-

threaded. No intermediate or temporary output is gen-

erated in order to reduce the load on storage bandwidth

when runs are done with many compute nodes available.

For counting k-mers using sorting, a hash function is

used to separate generated k-mers into non-overlapping

bins. Each bin is sorted and counted by a separate thread.

The sorted and counted bins are merged afterwards. Both

the Bloom filter and hash table are implemented as lock-

free structures using compare-and-swap (CAS) hardware

operation.

The assembly process is designed not to include the

same k-mer in different contigs in the iteration for that k-

mer size. To accomplish this, each k-mer in the DeBruijn

graph has a lock-free atomic variable. When a k-mer is

used in a contig, this variable is set and that prevents any

further use of the k-mer.

During a multi-threaded operation, several threads

could start assembling the same contig from different

starting k-mers. However, at some point, they will col-

lide on a k-mer that will stop further assembly, resulting

in contig fragments. After each iteration, all assembled

sequences are analyzed and connected to each other

appropriately to account for this collision. If a contig con-

nects to itself, this is recognized and contig is marked as

circular.

Multi-threading results in random orientation of con-

tigs. Circular contigs also have random breakpoints. After

each iteration, only the contig or its reverse complement

is kept depending on which one starts with the smaller k-

mer in the lexicographic order. Each circular contig and

its reverse complement are checked for the smallest k-mer

and that k-mer is chosen as the breakpoint. All contigs

are then sorted. These steps guarantee that each iteration

Souvorov et al. Genome Biology (2018) 19:153 Page 10 of 13

starts from the same state regardless of the number of

cores and memory used for the assembly.

Output

Alphabetically sorted assembled contigs are output as

a FASTA file. Each contig is named with format Con-

tig_N_C where N is a sequential contig number starting at

one and C is the average of count for k-mers in the contig

at k-mer size Kmin. If a contig was recognized as circular,

contig name is suffixed by _Circ.

Test sets and testing criteria for comparison

Five microbial test sets were used for comparing assem-

blers: run time set covering a range of microbial species,

benchmark set where a reference assembly and reads for

the same sample are available, random set of read sets

from SRA for four microbial species, contamination set

where contamination is spiked in at different levels, and

substrings set where all substrings of a genome at various

lengths were used as input reads. We used QUAST for

computing the number of misassemblies and mismatches

per hundred kilobases of the reference assembly. Assem-

bly contiguity was assessed using N50 criteria. Assembly

length discrepancy was assessed as LR+LA−2∗CRA where

LR is the length of reference assembly, LA is the length of

assembly being tested, and CRA is the length reported as

aligned between A and R by QUAST. The composition of

test sets [41] and their use for various testing criteria are

described next.

Run time set

The run time set shown in Table 6 consists of 56 read sets

representing 34microbial species. This set was selected by

the PDP team from FDA-ARGOS available in May 2016

and publications. For running time, each read set was run

three times on three different settings of number of cores

and memory. Settings used were 4 cores and 16 Gb, 8

cores and 32 Gb, and 12 cores and 32 Gb. Runs were done

on CentoS 7.

Benchmark set

FDA-ARGOS had 403 read sets with reads sequenced

using Illumina and a good quality assembly in GenBank

in March 2018. Of these, SPAdes failed to produce an

assembly for 18 read sets. For four read sets (SRR2814770,

SRR2820671, SRR5413268, and SRR5866647), QUAST

reported more than 10 mismatches per 100 Kb for all

assembly methods. We show quality assessment results

using the remaining 381 read sets.

Random set

Four of themost common foodborne pathogen species are

Salmonella Enterica, Listeria Monocytogenes, Escherichia

coli and Shigella, and Campylobacter. From SRA, we

Table 6 Runs and species for testing running time performance

SRA run Species

SRR2820668 Achromobacter xylosoxidans

SRR2822445 Achromobacter xylosoxidans

SRR2821368 Achromobacter xylosoxidans

SRR2821369 Achromobacter xylosoxidans

SRR2823707 Bartonella bacilliformis

SRR2823715 Bordetella bronchiseptica

SRR2823716 Bordetella bronchiseptica

SRR2824043 Bordetella pertussis

SRR2822462 Citrobacter amalonaticus

SRR2818794 Citrobacter amalonaticus

SRR1284629 Citrobacter freundii

SRR2821773 Citrobacter sp.

SRR1515967 Enterobacter cloacae

SRR1576778 Enterobacter cloacae complex

SRR1576808 Enterobacter cloacae complex

SRR2822449 Enterococcus sp.

ERR008613 Escherichia coli

ERR022075 Escherichia coli

SRR530851 Escherichia coli

SRR587217 Escherichia coli

SRR2817810 Grimontia hollisae

SRR2817811 Grimontia hollisae

SRR2822309 Hafnia alvei

ERR351267 Helicobacter pylori

SRR2821438 Klebsiella aerogenes

SRR2820617 Klebsiella aerogenes

SRR2820618 Klebsiella aerogenes

SRR1501122 Klebsiella oxytoca

SRR1427234 Klebsiella pneumoniae

SRR1505904 Klebsiella pneumoniae

SRR1427243 Klebsiella pneumoniae

SRR1501128 Klebsiella pneumoniae

SRR1510963 Klebsiella pneumoniae

SRR941212 Mannheimia haemolytica

SRR2823701 Morganella morganii

SRR2822442 Pantoea agglomerans

SRR2820663 Providencia stuartii

SRR498276 Salmonella enterica

SRR2814419 Salmonella enterica

SRR2814420 Salmonella enterica

SRR2819198 Serratia liquefaciens

SRR2812569 Shigella sonnei

SRR2812570 Shigella sonnei

SRR1206476 Staphylococcus aureus

SRR2822404 Staphylococcus aureus

SRR2820641 Staphylococcus lugdunensis

SRR2820657 Staphylococcus lugdunensis

SRR2822469 Staphylococcus saprophyticus

SRR2820294 Staphylococcus saprophyticus

SRR2819094 Staphylococcus simulans

SRR2820674 Streptococcus pyogenes

SRR2815879 Vibrio fluvialis

Souvorov et al. Genome Biology (2018) 19:153 Page 11 of 13

Table 6 Runs and species for testing running time performance

Continued

SRA run Species

SRR2817447 Vibrio harveyi

SRR2818033 Vibrio mimicus

SRR2818092 Vibrio parahaemolyticus

SRR2818127 Vibrio vulnificus

randomly selected 5500 read sets from these species

sequenced on Illumina machines, sorted them by number

of bases in reads, and dropped 250 runs each with low-

est and highest base counts. The remaining 5000 reads

sets used as the random set have 3306 Salmonella, 428

Listeria, 773 Escherichia, 148 Shigella, and 345 Campy-

lobacter. These sets were used to test the contiguity of

assemblies. Runs for the random set were done in an

uncontrolled environment on compute farm.We note that

the CPU times reported by the compute farm (data not

shown) on these 5000 read sets corroborate the run time

performance presented in Table 1.

Contamination set

Paired reads were generated from Salmonella

typhimurium strain LT2 (NC_003197.1) randomly cov-

ering the genome at 60x. For adding contamination, the

same reference genome was randomly mutated at 0.1% of

the positions. Reads from the mutated genome at cover-

age of 3×, 6×, 9×, 12×, and 15× were added to the clean

set to generate six simulated sets for testing the effect

of contamination ranging from no contamination to a

fifth of the reads coming from the mutated reference. All

reads generated had mates that were 150 bp in length and

insert size of 300 bp. These sets were used for assessing

sequence quality and behavior of contiguity at different

levels of contamination.

Substrings set

Single reads were generated from Salmonella

Typhimurium strain LT2 (NC_003197.1) where for each

value of K from 22 to 152, all substrings of that length

were used as input reads for assembly. One read per base

pair of the genome was generated resulting in coverage

of K for a read set generated with substring length of K.

Substrings generated at even positions of the reference

genome were reverse complemented. As such, this test

varied length and coverage but did not introduce any

errors. These sets were used for assessing sequence

quality and behavior of contiguity at different levels of

coverage and read length.

Commands for programs

For doing the runs comparing performance of different

software, defaults were used except for parameters that

specify the number of cores and memory allowed. For

SKESA, the flag for specifying that reads are paired was

also given as appropriate. Command lines for, say, run-

ning SRR498276 for SKESA, SPAdes, and MegaHit are as

follows:

skesa --fastq SRR498276_1.fq,SRR498276_2.fq

--cores 4 --memory 16 --use_paired_ends

spades.py -1 SRR498276_1.fq -2 SRR498276_2.

fq-t 4 -m 16

megahit -1 SRR498276_1.fq -2 SRR498276_2.fq

-t 4 -m 17179869184

For SKESA, if direct SRA access is available, one can

instead do the following:

skesa --sra_run SRR498276

--cores 4 --memory 16 --use_paired_ends

For the substring set that has single reads, option

use_paired_ends is not specified for SKESA runs and

option only_assembler is specified for SPAdes runs.

For SKESA, we recommend providing 16 Gb of memory

and using defaults so it can internally tune the parame-

ters for best results. Additional options are exposed for

users who may wish to use SKESA for non-standard

applications or understand SKESA behavior.

Availability and requirements
Project name: SKESA

Source code: https://github.com/ncbi/SKESA/releases

Archived version: http://doi.org/10.5281/zenodo.1407162

Operating system: Linux

Other requirements: BOOST

License: Freely available to the public for use with

exception of bundled third party code. The third party

code contained in SKESA release is available under

GNU GPLv3. See https://github.com/ncbi/SKESA/blob/

master/LICENSE for details.

Additional file

Additional file 1: Supplementary notes, tables, and figures. (PDF 166 KB)

Acknowledgements

We thank Eugene Yaschenko and Michael Kimmelman from the SRA team at

NCBI for incorporating SKESA in their workflow. Bill Klimke, Martin Shumway,

and Mike Feldgarden from PDP team at NCBI pointed us to the FDA-ARGOS

resource and picked the assemblies from publications for run time testing. We

also appreciate the code review for an earlier version of SKESA by Alejandro

Schaffer, code building in non-NCBI environment by Alexander Morgulis, and

suggestions for improving the exposition of the manuscript by Bill Klimke,

Steve Sherry, and Paul Kitts.

Funding

This research was supported by the Intramural Research Program of the

National Institutes of Health, National Library of Medicine.

Availability of data andmaterials

The datasets generated and analyzed for comparing SKESA to other assemblers

are available at ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets [41].

The SKESA source code is available on GitHub at https://github.com/ncbi/

SKESA/releases [43] and on Zenodo at https://zenodo.org/record/1407162

https://github.com/ncbi/SKESA/releases
http://doi.org/10.5281/zenodo.1407162
https://github.com/ncbi/SKESA/blob/master/LICENSE
https://github.com/ncbi/SKESA/blob/master/LICENSE
https://doi.org/10.1186/s13059-018-1540-z
https://www.ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets
https://github.com/ncbi/SKESA/releases
https://github.com/ncbi/SKESA/releases
https://zenodo.org/record/1407162

Souvorov et al. Genome Biology (2018) 19:153 Page 12 of 13

[44]. SKESA source code is freely available to the public for use with exception

of bundled third-party code. The third-party code contained in SKESA release

is available under GNU GPLv3, see https://github.com/ncbi/SKESA/blob/

master/LICENSE for details.

Authors’ contributions

AS did the software development. RA did testing and assisted AS in some

design decisions. DL conceived and guided the project. All authors read and

approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, MD 20894, USA.
2 Impossible Foods, impossiblefoods.com, Redwood City, CA 94063, USA.

Received: 8 May 2018 Accepted: 12 September 2018

References

1. Lugli GA, Milani L, Cand M, van Sinderen D, Ventura M. Megannotator: a

user-friendly pipeline for microbial genomes assembly and annotation.

FEMS Microbiol Lett. 2016;363(7). https://doi.org/10.1093/femsle/fnw049.

2. Pina-Martins F, Vieira BM, Seabra SG, Batista D, Paulo OS. 4pipe4–a 454

data analysis pipeline for SNP detection in datasets with no reference

sequence or strain information. BMC Bioinformatics. 2016;17:41. https://

doi.org/10.1186/s12859-016-0892-1.

3. Lai B, Wang F, Wang X, Duan L, Zhu H. Intemap: integrated

metagenomic assembly pipeline for NGS short reads. BMC Bioinformatics.

2015;16:244. https://doi.org/10.1186/s12859-015-0686-x.

4. Wolfinger MT, Fallmann J, Eggenhofer F, Amman F. Viennangs: a toolbox

for building efficient next-generation sequencing analysis pipelines.

F1000Res. 2015;4:50. https://doi.org/10.12688/f1000research.6157.2.

5. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de

novo assembly of microbial genomes. PLoS One. 2012;7(9):42304. https://

doi.org/10.1371/journal.pone.0042304.

6. Xiao W, Wu L, Yavas G, Simonyan V, Ning B, Hong H. Challenges,

solutions, and quality metrics of personal genome assembly in advancing

precision medicine. Pharmaceutics. 2016;8(2). https://doi.org/10.3390/

pharmaceutics8020015.

7. About GMI - Vision and Objectives. http://www.globalmicrobialidentifier.

org/about-gmi/vision-and-objectives.

8. Allard MW, Strain E, Melka D, Bunning K, Musser SM, et al. Practical value

of food pathogen traceability through building a whole-genome

sequencing network and database. J Clin Microbiol. 2016;54(8):1975–83.

9. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, et al. Rapid

whole-genome sequencing for surveillance of Salmonella enterica

serovar Enteritidis. Emerg Infect Dis. 2014;20(8):1306–14.

10. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Program NCS, et al. Tracking

a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with

whole-genome sequencing. Sci Transl Med. 2012;4(148). https://doi.org/

10.1126/scitranslmed.3004129.

11. Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A, et al. Implementation

of nationwide real-time whole-genome sequencing to enhance listeriosis

outbreak detection and investigation. Clin Infect Dis. 2016;63(3):380–6.

12. van Duin D, Perez F, Rudin SD, Cober E, Hanrahan J, et al. Surveillance of

carbapenem-resistant Klebsiella pneumoniae: tracking molecular

epidemiology and outcomes through a regional network. Antimicrob

Agents Chemother. 2014;58(7):4035–41.

13. Katz LS, Griswold T, Williams-Newkirk AJ, Wagner D, Petkau A, et al. A

comparative analysis of the lyve-set phylogenomics pipeline for genomic

epidemiology of foodborne pathogens. Front Microbiol. 2017;8. https://

doi.org/10.3389/fmicb.2017.00375.

14. Lüth S, Sylvia K, Sascha AD. Whole genome sequencing as a typing tool

for foodborne pathogens like Listeria monocytogenes – the way towards

global harmonisation and data exchange. Trends Food Sci Technol.

2018;73:67–75.

15. Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B,

Shi J. High throughput sequencing for detection of foodborne pathogens.

Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.02029.

16. Allard MW, Bell R, Ferreira CM, Gonzalez-Escalona N, Hoffmann M, et al.

Genomics of foodborne pathogens for microbial food safety. Curr Opin

Biotechnol. 2018;49:224–9.

17. Meacham F, Boffelli D, Dhahbi J, Martin DI, Singer M, Pachter L.

Identification and correction of systematic error in high-throughput

sequence data. BMC Bioinformatics. 2011;12. https://doi.org/10.1186/

1471-2105-12-451.

18. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep

sequencing data-high-throughput sequencing errors and their

correction. Brief Bioinform. 2016;17(1):154–79.

19. Infectious Disease Next Generation Sequencing Based Diagnostic

Devices: Microbial identification and detection of antimicrobial resistance

and virulence markers. https://www.fda.gov/downloads/MedicalDevices/

DeviceRegulationandGuidance/GuidanceDocuments/UCM500441.pdf.

20. MiSeq© System Guide. https://support.illumina.com/content/dam/

illumina-support/documents/documentation/system_documentation/

miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf.

21. Luo R, Liu B, Xie Y, Li Z, Huang W, et al. Soapdenovo2: an empirically

improved memory-efficient short-read de novo assembler. Gigascience.

2012;1(1):18. https://doi.org/10.1186/2047-217X-1-18.

22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res. 2008;18(5):821–9. https://doi.org/10.

1101/gr.074492.107.

23. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The

MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–77.

https://doi.org/10.1093/bioinformatics/btt476.

24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. Spades: a

new genome assembly algorithm and its applications to single-cell

sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/

cmb.2012.0021.

25. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, et al. Allpaths

2: small genomes assembled accurately and with high continuity from

short paired reads. Genome Biol. 2009;10(10):1975–83.

26. Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast,

lightweight genome assembler. BMC Bioinformatics. 2007;8:64. https://

doi.org/10.1186/1471-2105-m.

27. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, et al. Metamos: a

modular and open source metagenomic assembly and analysis pipeline.

Genome Biol. 2013;14(1):2. https://doi.org/10.1186/gb-2013-14-1-r2.

28. Simpson JT, Wong K, Jackman SD, et al. Abyss: a parallel assembler for

short read sequence data. Genome Res. 2009;19(6):1117–23.

29. Safonova Y, Bankevich A, Pevzner PA. dipspades: Assembler for highly

polymorphic diploid genomes. J Comput Biol. 2015;22(6):528–45. https://

doi.org/10.1089/cmb.2014.0153.

30. Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, et al. Mocat2: a

metagenomic assembly, annotation and profiling framework.

Bioinformatics. 2016. https://doi.org/10.1093/bioinformatics/btw183.

31. Guo X, Yu N, Ding X, Wang J, Pan Y. Dime: a novel framework for de

novo metagenomic sequence assembly. J Comput Biol. 2015;22(2):

159–77. https://doi.org/10.1089/cmb.2014.0251.

32. Peng Y, Leung HCM, Yiu SM, Chin FYL. Meta-idba: a de novo assembler

for metagenomic data. Bioinformatics. 2011;27(13):94–101. https://doi.

org/10.1093/bioinformatics/btr216.

33. Afiahayati, Sato K, Sakakibara Y. Metavelvet-SL: an extension of the velvet

assembler to a de novo metagenomic assembler utilizing supervised

learning. DNA Res. 2015;22(1):69–77. https://doi.org/10.1093/dnares/

dsu041.

34. Haider B, Ahn TH, Bushnell B, Chai J, Copeland A, Pan C. Omega: an

overlap-graph de novo assembler for metagenomics. Bioinformatics.

2014;30(19):2717–22. https://doi.org/10.1093/bioinformatics/btu395.

https://github.com/ncbi/SKESA/blob/master/LICENSE
https://github.com/ncbi/SKESA/blob/master/LICENSE
http://www.impossiblefoods.com
https://doi.org/10.1093/femsle/fnw049
https://doi.org/10.1186/s12859-016-0892-1
https://doi.org/10.1186/s12859-016-0892-1
https://doi.org/10.1186/s12859-015-0686-x
https://doi.org/10.12688/f1000research.6157.2
https://doi.org/10.1371/journal.pone.0042304
https://doi.org/10.1371/journal.pone.0042304
https://doi.org/10.3390/pharmaceutics8020015
https://doi.org/10.3390/pharmaceutics8020015
http://www.globalmicrobialidentifier.org/about-gmi/vision-and-objectives
http://www.globalmicrobialidentifier.org/about-gmi/vision-and-objectives
https://doi.org/10.1126/scitranslmed.3004129
https://doi.org/10.1126/scitranslmed.3004129
https://doi.org/10.3389/fmicb.2017.00375
https://doi.org/10.3389/fmicb.2017.00375
https://doi.org/10.3389/fmicb.2017.02029
https://doi.org/10.1186/1471-2105-12-451
https://doi.org/10.1186/1471-2105-12-451
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM500441.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM500441.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-for-local-run-manager-15027617-04.pdf
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1186/1471-2105-m
https://doi.org/10.1186/1471-2105-m
https://doi.org/10.1186/gb-2013-14-1-r2
https://doi.org/10.1089/cmb.2014.0153
https://doi.org/10.1089/cmb.2014.0153
https://doi.org/10.1093/bioinformatics/btw183
https://doi.org/10.1089/cmb.2014.0251
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/dnares/dsu041
https://doi.org/10.1093/dnares/dsu041
https://doi.org/10.1093/bioinformatics/btu395

Souvorov et al. Genome Biology (2018) 19:153 Page 13 of 13

35. Li D, Luo R, Liu CM, Leung CM, Ting HF, et al. Megahit v1.0: A fast and

scalable metagenome assembler driven by advanced methodologies

and community practices. Methods. 2016. https://doi.org/10.1016/j.

ymeth.2016.02.020.

36. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler

for single-cell and metagenomic sequencing data with highly uneven

depth. Bioinformatics. 2012;28(11):1420–8. https://doi.org/10.1093/

bioinformatics/bts174.

37. Shelton JM, Coleman MC, Herndon N, Lu N, Lam ET, et al. Tools and

pipelines for bionano data: molecule assembly pipeline and fasta super

scaffolding tool. BMC Genomics. 2015;16(1):734. https://doi.org/10.1186/

s12864-015-1911-8.

38. Wences AH, Schatz MC. Metassembler: merging and optimizing de novo

genome assemblies. Genome Biol. 2015;16:207. https://doi.org/10.1186/

s13059-015-0764-4.

39. Steinberg KM, Schneider VA, Graves-Lindsay TA, Fulton RS, Agarwala R,

et al. Single haplotype assembly of the human genome from a

hydatidiform mole. Genome Res. 2014;24(12):2066–76.

40. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, et al.

High-quality draft assemblies of mammalian genomes from massively

parallel sequence data. Proc Natl Acad Sci USA. 2011;108(4):1513–8.

41. Souvorov A, Agarwala R, DJ L. SKESA Data.

http://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets.

42. Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool

for genome assemblies. Bioinformatics. 2013;29(8):1072–5. https://doi.

org/10.1093/bioinformatics/btt086.

43. Souvorov A, Agarwala R, DJ L. SKESA Source Code; GitHub 2018. https://

github.com/ncbi/SKESA/releases.

44. Souvorov A, Agarwala R, DJ L. SKESA Source Code; Zenodo 2018. https://

zenodo.org/record/1407162.

45. Zhu X, Leung HCM, Wang R, Chin FYL, Yiu SM, et al. Misfinder: identify

mis-assemblies in an unbiased manner using reference and paired-end

reads. BMC Bioinformatics. 2015;16:386. https://doi.org/10.1186/s12859-

015-0818-3.

46. Bao E, Song C, L L. Remilo: reference assisted misassembly detection

algorithm using short and long reads. Bioinformatics. 2018;34(1):24–32.

47. BOOST C++ Libraries. https://www.boost.org/.

48. Drezen E, Rizk G, Chikhi R, Deltel C, Lemaitre C, et al. Gatb: Genome

assembly & analysis tool box. Bioinformatics. 2014;30(20):2959–61.

49. Putze F, Sanders P, Singler J. Cache-, hash-, and space-efficient bloom

filters. J Exp Algorithmics. 2009;14. https://dl.acm.org/citation.cfm?doid=

1498698.1594230.

https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1186/s12864-015-1911-8
https://doi.org/10.1186/s12864-015-1911-8
https://doi.org/10.1186/s13059-015-0764-4
https://doi.org/10.1186/s13059-015-0764-4
https://www.ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/skesa/datasets
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://github.com/ncbi/SKESA/releases
https://github.com/ncbi/SKESA/releases
https://zenodo.org/record/1407162
https://zenodo.org/record/1407162
https://doi.org/10.1186/s12859-015-0818-3
https://doi.org/10.1186/s12859-015-0818-3
https://www.boost.org/
https://dl.acm.org/citation.cfm?doid=1498698.1594230
https://dl.acm.org/citation.cfm?doid=1498698.1594230

	Abstract
	Keywords

	Background
	Results and discussion
	Production usage
	Computation time
	Software robustness
	Sequence quality
	Read trimming

	Conclusions
	Methods
	Algorithm design for SKESA
	Read trimming
	Parameter detection
	Assembling using a specific k-mer size K
	Marking reads as used
	Connecting paired reads

	Implementation
	Dependencies
	K-mer counting and searching
	Multi-threading
	Output

	Test sets and testing criteria for comparison
	Run time set
	*3ptBenchmark set
	Random set
	Contamination set
	Substrings set

	Commands for programs

	Availability and requirements
	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

