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Abstract
Sketch-based modeling holds the promise of making 3D modeling accessible to a significantly wider audience

than current modeling tools. We present a modeling system that is capable of constructing 3D models of particular

object classes from 2D sketches. The core of the system is a sketch recognition algorithm that seeks to match the

points and curves of a set of given 2D templates to the sketch. The matching process employs an optimization

metric that is based on curve feature vectors, and the search space of possible correspondences is restricted by

encoding knowledge about relative part locations into the 2D template. Once a best-fit template is found, a 3D

object is constructed using a series of measurements that are extracted from the labelled 2D sketch. We apply our

sketch-recognition and modeling algorithms to sketches of cups and mugs, airplanes, and fish. The system allows

non-experts to use drawings to quickly create 3D models of specific object classes.

Keywords: sketch-based modeling, sketch recognition, geometric modeling

1. Introduction

Consumers now have the ability to render 3D content on al-

most every computer and a growing number of portable de-

vices. However, the capabality for non-experts to create 3D

content has not kept pace. Even those with in-depth knowl-

edge of computer graphics will often go to considerable

lengths to find existing 3D models before resorting to build-

ing a 3D model of their own. This can be seen as an interface

problem — if we were to imagine describing the shape of a

mug to a colleague, we could imagine using hand gestures

or a hand-drawn sketch to communicate the object shape,

to a first approximation. However, developing 3D modeling

systems to support this type of input is a daunting task. For

example, inferring the 3D shape of objects from line draw-

ings is a well-studied and largely unsolved computer vision

problem.

The system we present builds 3D models from hand-

drawn sketches. To make the problem tractable, we make

a number of assumptions. First, we equip the system with

a priori knowledge about particular classes of objects that

we expect to be drawn using the system. This knowledge

is encoded in terms of: (a) a flexible 2D template that can

† email: cyang,dsharon,van@cs.ubc.ca

Figure 1: Example input sketches and output 3D models.

The airplane uses both the side view and the top view to con-

struct the 3D model. Strokes which are not recognized as be-

ing part of an object can be treated as annotation scribbles

that are mapped to the 3D surface, as shown in the example

mug sketch on the top right.

be matched to the sketch, and (b) a procedure for building

the 3D model from the 2D template. Second, we require

that the user draw in a fashion that is not overly sloppy,

and require that the user have familiarity with the general

structure of the underlying template. Our system does not

solve the general problem of building 3D models from
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arbitrary hand-drawn sketches. Significantly, however, our

system allows fast and flexible sketch-based modeling of

particular classes of 3D objects with minimal training.

Several examples of the input and output of our system are

shown in Figure 1. A video of our results can be viewed at

http://www.cs.ubc.ca/~van/papers/sketch3D.mov.

Our system assumes that it is worthwhile designing highly

parameterized 3D objects for specific applications. This

would allow for more transparent, user-driven content cre-

ation for games, such as a flight simulator where the user

could sketch their own particular airplane design. Automo-

tive design is another potential application that falls into this

category. Our system opens the door to more general ’draw-

it-as-you-see-it’ modeling.

Our specific contributions are twofold: (1) a sketch-

recognition algorithm that is tailored to the needs of sketch-

based 3D model construction, and (2) a proof-of-concept

system that demonstrates the potential of a new class of

sketch-based modeling tools.

The remainder of this paper is structured as follows.

Section 2 presents related work in 3D-modeling, sketch-

recognition, and computer vision. An overview of our sys-

tem is given in section 3. Section 4 describes the construction

of the 2D templates and details the sketch recognition algo-

rithm. Section 5 explains the 3D model construction. Sec-

tion 6 presents results obtained with the system, followed by

a discussion in section 7 of several common questions that

arise with respect to our approach. Finally, section 8 presents

conclusions and future work.

2. Related Work

There exists a large body of literature in the broad areas

related to sketch-based modeling. A first research thread

looks at the recognition of diagrammatic sketches such as

hand-drawn circuit diagrams [AD04, GKS04], math nota-

tion [LZ04], drawings with engineering symbols [KS04],

military planning drawings and other types of diagrams with

symbols and connectors. A variety of algorithms are ex-

ploited within this domain, often including a mix of top-

down and bottom-up procedures that are informed by some

domain knowledge, or are statistically informed based on

the observed stroke order [SD05] or the interpretation as-

signed to neighboring strokes [QSM05]. Forms of graph iso-

morphism have been exploited [MF02], as have dynamic

bayesian networks [AD04]. However, the algorithms for this

class of sketch recognition problem and their comparative

evaluation [OAD04] still leave many unresolved issues in

terms of building robust-yet-flexible systems. The sketch

recognition component of our problem can also be thought

of as being "diagrammatic". However, our 2D templates

have features that are specifically tailored to our problem do-

main, such as the notion of part hierarchies, optional parts,

and one-of-N part selection. We consider handwriting recog-

nition as a distantly-related problem.

Interpreting line drawings of 3D polygonal objects is a

problem that has attracted considerable interest in the past

[LF92, BT93, EHBE97, KHD95], and continues to be the

subject of ongoing work [LS02,SC04]. However, these tech-

niques are limited to polygonal objects and they work best

with objects having many 90-degree corners or sets of sym-

metric angles.

Sketch recognition can also be formulated as a 2D shape

matching problem, where parts of a sketch can be identi-

fied and labelled by finding 2D templates that can match

parts in the sketch while allowing for some class of deforma-

tions. A survey of shape matching can be found in [Lon98]

while examples of recent shape matching work can be found

in [BM02,CF02,TY04,FPZ04]. Much of this work assumes

a single template that can undergo arbitrary scaling and rota-

tion, as well as small non-affine deformations. We wish our

templates to be more flexible in terms of handling large lo-

calized changes of scale, such as a small plane with large

wings, and sub-parts that may or may not exist. The perfor-

mance of shape contexts [BM02] in such situations is un-

clear. Shape contexts also require first point sampling all

the strokes, which throws away useful information because

a good set of segmented curves is readily obtained from a

hand-drawn sketch. Thus, we choose to work with curves

as a base primitive rather than the points required by shape

contexts.

Many techniques for 2D shape matching use a silhou-

ette matching approach. These do not apply to our prob-

lem because of important interior details in the sketches

and our need to recognize parts for the 3D reconstruction.

Work in model-based vision [Low91] is also related to our

problem, although the models used are usually only param-

eterized in limited ways. More distantly related is the work

of [RA99], which fits parameterized generative models to

3D range data.

The notion of ‘pictorial structure’ is used in a variety of

vision algorithms to encode predictive spatial relationships

between sub-parts or features of an object [PSZ98, CK01,

FH05]. A similar idea is presented in the agent-based sketch

interpretation system in [MA03]. We use 2D templates that

encode similar predictive information regarding the location

of various parts. Our template features are curve based and

not image-based, and our goal is not only to identify a part

but also to identify key points and curves on the part, as

is necessary for the informed 3D construction of the object

from the matched 2D template.

A variety of constructive, gestural 3D modeling tech-

niques have been developed for pen-based interaction. These

use pen strokes to incrementally develop the shape of a 3D

object. SKETCH [ZHH96] and [IMT99] represent seminal

work in this area. Our work has been inspired by these

systems, and also by recent work on sketching clothing

[TCH04]. The sketch-based system that we present assumes

more knowledge about the objects to be drawn, but, in ex-
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change, it supports drawings that can directly represent the

final object shape. We see these approaches as being largely

complementary in their application.

Also relevant to our work are ideas related to sketch-based

retrieval of objects from a 3D database [FMK∗03, FKS∗04,

CTSO03]. If there are a large number of sub-parts to an ob-

ject, each of which can be parameterized in its own way, an

approach that matches complete models requires a database

to contain the cross-product of all variations, which does not

scale effectively. A last interesting application of databases

is the work of [TBSR04], where a database of airplane im-

ages is used to help simplify the design of 3D-curve net-

works, although the end product is not a 3D model and there

is no general part recognition scheme.

3. System Overview

An overview of the system is given in Figure 2 and a spe-

cific example of the recognition process is given in Figure 3.

The input pen strokes are first preprocessed in order to pro-

duce a graph structure. The preprocessing steps consist of (1)

adding nodes at the start and end of each stroke; (2) adding

nodes at corners and points of local curvature maxima; and

(3) merging all nodes that are within a threshold distance

of each other. The segmented strokes become the edges of

the graph. The resulting sketch graph will not necessarily

be fully connected because some parts such as windows and

eyes can be drawn in isolation. We also choose not to seg-

ment strokes at T-junctions; these typically occur when sub-

parts are attached to main object parts and our sketch recog-

nition does not require graph connectivity for the recognition

of such sub-parts. Figures 3(a) and (b) show the strokes of

an input sketch and the resulting sketch graph.

Figure 2: System Overview.

Given a sketch graph, the next step is that of fitting a se-

ries of 2D templates to the sketch graph. This happens at two

levels: at the higher level, multiple object templates are fitted

to the sketch graph and scored for their fit. At a lower level,

each object template consists of multiple part templates. The

object template supports a flexible instantiation of the part

templates. Parts may be deemed as mandatory or optional.

(a) (b)

(c) (d)

Figure 3: The recognition process. (a) original sketch, con-

sisting of 5 strokes. (b) graph computed from sketch strokes.

(c) cup-body template graph. (d) computed best-fit corre-

spondences.

A choose-one-of-N option may also be specified. For exam-

ple, a cup template can specify that it may have an optional

right handle and that the system should choose between a

rounded handle part template and a square handle template,

depending on which one fits best. The ability to support this

type of information distinguishes our approach from most

other shape recognition approaches that support only a flat

hierarchy, i.e., given N fixed templates, find the best-fit tem-

plate.

Both object and part templates are represented as graphs

with pre-specified node locations. Just as in a sketch graph,

template graph edges are sketched curves. The actual pro-

cess of matching part templates is thus accomplished using a

search over node correspondences, which are then scored us-

ing a curve-matching metric on the best-fit curve correspon-

dences that the node correspondences induce. Figure 3(c)

shows a cup-body template and Figure 3(d) lists the best-

fit correspondences that were computed for it. These corre-

spondences thus define the labelling of the sketch graph.

Given a best-fit object template and all the instanced part

templates that participated in the fit, the last step is that of

constructing a 3D model from the labelled 2D sketch. This is

done by extracting measurements from the 2D sketch, such

as wing length or cup height, as well as by fitting spline

curves to particular stroke segments. For example, we use

a multi-segment spline curve to smoothly approximate the
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sides of the airplane fuselage and the shape of the rounded

cup handle. Given a priori knowledge of the object class and

the extracted measurements that describe this particular de-

sired instance, a 3D model can be constructed. Adding a new

class of object to the system requires designing a 2D object

template, consisting of multiple part templates, as well as

developing a procedural means of constructing the 3D shape

from the labelled sketch.

4. Sketch Recognition

A sketch recognition algorithm is at the core of our sketch-

based modeling system. In this section, we first describe

the 2D templates and their construction. We then describe

how template graphs are matched to the sketch graph us-

ing a search over possible correspondences. We explain the

curve feature vector which is used to evaluate the correspon-

dences. Lastly, we give further details about the hierarchical

structure of the templates.

4.1. Template Construction

Like the sketch graph, an object template is a graph, consist-

ing of nodes which represent key points on the object, and

edges, which represent curves of particular shapes that are

expected to be found in a sketch. An example of an object

template for a cup is shown in Figure 4. An object template

is itself constructed using a sketch, where each stroke be-

comes an edge in the resulting template graph.† Nodes are

added at the start and end of each stroke and then merged

with nearby neighbors. Figure 4(a) shows the initial sketch

for the template. The resulting template graph is shown in

Figure 4(b). The coloring of this figure also illustrates the

next step, which consists of creating multiple part templates

from the global template.

Figure 4: Construction of the cup template. (a) sketched

strokes (b) strokes grouped by part (c) the cup-body tem-

plate and its 4 key-points and 5 curves, drawn with its child

parts separated for clarity. The left-side handles, right-side

handles, and saucer are parented by the cup-body curves 3,

4, and 5, respectively.

Individual part templates are subgraphs of the global tem-

plate graph. A simple graphical user interface supports their

construction. Using a mouse, the user selects a set of edges

† Stroke segmentation is turned off when drawing the template

graph.

that constitute a desired part template. The nodes and edges

of this subgraph are then saved as the part template defini-

tion. Lastly, a hierarchy is established among the parts by

designating an edge of an existing part template to serve as

the parent edge of the new part template. This serves the

dual purpose of introducing a hierarchical order for search

and instantiating the model parts, as well as a means to en-

code knowledge about the relative location of parts.

Creating a 2D template for a new class of objects requires

careful thought, although its actual construction can be done

in about 15-20 minutes using the GUI. The template should

represent a stereotypical example of the desired class of ob-

ject. The template parts also need to provide the information

necessary for the appropriate 3D reconstruction of the vari-

ous parts.

Also associated with the parent edge is a bounding poly-

gon (BP), which serves to represent the area in which to

search for a part template during the sketch recognition. We

use a convex quadrilateral to represent the BP. The BP is

specified during the design of a part template by dragging its

vertices to the desired locations in the template sketch win-

dow. The polygon lives in a coordinate system that is defined

by the parent edge. One of the two nodes associated with the

edge becomes the origin of this coordinate system, and the

other node locates the point (1,0). As shown in Figure 5,

this allows the BP to be transformed to the sketch coordinate

system once the parent edge has been labelled in the sketch.

If the parent edge is not labelled in the sketch, i.e., the par-

ent part was not instantiated, then there will be no attempts

to fit the part templates which use that parent edge. The BP

provides the sketch-recognition algorithm with necessary in-

formation about the expected relative location of parts and

thus serves to greatly constrain the search space of possible

correspondences, as will be discussed further in section 4.2.

Figure 5: Transformation of the bounding polygon for the

right-cup handle. The template is shown on the left, and a

sketch on the right. The right-hand edge of the cup-body tem-

plate serves as the parent edge for this part.

The part templates that are at the root of the part hierar-

chy, such as the body of the plane or the body of the cup, do

not have a parent edge. For these parts, the part template ex-

plicitly stores an expected location for the graph nodes that

comprise the part. By using a normalized coordinate system

that is defined by the axis-aligned bounding box of the tem-

plate sketch, normalized coordinates are computed for each
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node. The bounding box of a drawn sketch serves to instan-

tiate this normalized coordinate system for the sketch and

thereby provides a set of expected locations for the nodes.

As shown in Figure 6, the sketch recognition algorithm will

only search for correspondences for a template-graph node

within a given radius of the expected location. This radius is

defined in normalized coordinates (we use r = 0.3) and thus

typically maps to an elliptical region in the sketch.

Figure 6: Expected locations in the sketch graph are com-

puted for the template graph nodes of the cup body using a

normalized coordinate system based on the bounding box.

4.2. Template Matching

Given a sketch graph and a series of object templates, the

sketch recognition system needs to determine which object

template best fits the given sketch graph. Each object tem-

plate consists of multiple part templates and thus at the core

of the sketch recognition algorithm is a scheme for match-

ing a given part template to the sketch. The matching process

consists of searching the sketch graph for best-fit correspon-

dences of the template graph nodes and edges. A best-fit so-

lution consists of (1) a corresponding sketch graph node for

each template graph node; (2) a correponding path of one-

or-more sketch edges (curves) for each template edge; and

(3) a score that denotes the quality of the fit.

The matching process is summarized in Algorithm 1 and

consists of an iterative process that begins by assigning a

particular set of corresponding sketch-graph nodes to the

template-graph nodes (lines 4–6). From this assumed node

correspondence, a best-fit correspondence is computed for

each template edge (lines 8–12). To understand this process,

we note that a given template edge, such as the left-hand

side of the cup body, may correspond to a path in the sketch

graph that traverses multiple sketch-graph edges. This is be-

cause the sketch strokes may be over-segmented when con-

structing the sketch graph, or because a particular feature

may have been drawn using multiple strokes. Both of these

cases can be observed in the example shown in Figure 3.

There may furthermore be multiple paths between a given

pair of nodes in the sketch graph, and it needs to be deter-

mined which of these paths best corresponds to the given

template edge. The pathset(na,nb) function determines a set

of possible paths, P, between nodes na and nb in the sketch

graph using a depth-first graph traversal. In order to limit

the number of possible paths, which can become large for a

highly connected sketch graph, we bound the search to paths

whose ratio of arclength to straight-line distance is less than

twice this same ratio as computed for the template edge that

we are seeking to match.

Algorithm 1 Part Matching

1: input S(Ns,Es) { Sketch Graph}

2: input T(Nt ,Et) { Template Graph}

3: for i = 1 to Niter do
4: for all nt ∈ Nt do
5: C[nt ]← select( Ns )

6: end for
7: score← 0

8: for all et ∈ Et do
9: P← pathset( C[n1(et)],C[n2(et)] )

10: p← bestMatchPath( et ,P )

11: score← score + M(et , p)
12: end for
13: if score > bestScore then
14: update bestScore and best correspondences

15: end if
16: end for

Each path p∈P is tested for similarity with the given tem-

plate edge that we seek to match (line 10). This is accom-

plished by computing a curve feature vector, F, for the tem-

plate curve et and for each path p, and computing a match

score M(F(et),F(p)) based upon these feature vectors. The

details of how F and M(F1,F2) are computed are given in

the following section.

Several methods could be used to arrive at appropriate

choices of node correspondences to be evaluated (lines 4–

6). One choice would be to systematically evaluate all per-

mutations of assignments of the Nt template nodes to the

Ns sketch nodes. While this approach is guaranteed to find

globally-optimal correspondences, it suffers from a com-

binatorial explosion of the number of combinations to be

considered. Our system currently employs a stochastic lo-

cal search method, beginning a search by using a uniform

random assignment of sketch nodes to template nodes. Ran-

domized local changes to the current set of correspondences

are then evaluated and accepted or rejected in a greedy fash-

ion. If a local maxima is reached, the current best solu-

tion is updated if necessary, and the search is restarted at

another randomized point in the space of all possible cor-

respondences. We limit the total number of iterations to

Niter = 2000.

4.3. Curve Matching

In order to determine if a given path through the sketch

graph is similar in shape to a desired edge of the template
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that we seek to locate in the sketch, we first define a curve

feature vector F over paths or edges. This is defined as

F = [ f1 f2 f3]
T , where f1 = θ , f2 = a/d, f3 = A/d2, θ

is the angle of the straight line between the curve endpoints

with respect to the horizontal, a is the arclength of the curve,

d is the straight-line distance between the endpoints, and A

is the signed area between the curve and the straight-line.

The key parameters are illustrated in Figure 7. Feature f1
encodes preferences for desired angles, as our sketch recog-

nition scheme is not rotation-invariant. Features f2 and f3
encode information about the type of curve that connects the

endpoints and provide useful distinctions between a curve

that passes to above or below the straight line ( f1), as well

as how much the curve meanders ( f2).

We note that a limitation of the curve feature vector is

that two curves that are symmetric with respect to the per-

pendicular bisector of the endpoints will have the same

curve feature vector. Also, the curve-feature vector is poten-

tially problematic for closed curves. For this reason, closed

curves are automatically segmented into open curves. An

axis-aligned box is computed for the stroke. If w > h, the

curve is segmented at the points where xmin and xmax occur.

Otherwise, the curve is segmented where ymin and ymax oc-

cur.

Figure 7: Key parameters used to compute the curve feature

vector: arclength a, straight-line distance d, angle θ , and

area A.

The matching function that compares two curve fea-

ture vectors is defined as M(Fa,Fb) = k∑i wig(σi, fia − fib),

where g(σ ,x) = e−0.5(x/σ)2

and k = 1/∑i wi. The wi values

provide a relative weighting of the feature vector compo-

nents.‡ The matching function provides a maximum score

of 1 for curves that are highly similar, and a score of zero for

those that are very dissimilar. σi provides a means of scal-

ing the feature vector elements (or rather their differences)

to provide a meaningful level of sensitivity.§ As described

in Algorithm 1, the match scores of all curves that make up

a part template are summed in order to yield a total match

score for the part template.

4.4. Template Hierarchy

Object templates are specified in a simple script file and con-

sist of an ordered list of part templates Tj to be matched to

‡ We use w1 = 2,w2 = 1,w3 = 1.
§ We use σ1 = 22◦,σ2 = 0.25,σ3 = 0.1.

the sketch graph, S, as well as an instancing threshold, α j.

The thresholds provide a means to allow parts that have a low

best-match score to not be instanced as part of the model.

This provides control to the template designer as to whether

or not a scribble drawn to the right of the cup should be in-

terpreted as a cup-handle anyhow (low threshold), or as a

scribble that is to be ignored (high threshold).

Part templates also provide support for one-of-N match-

ing. For example, it may be possible to interpret a cup-

handle as either a rounded handle or a square handle, each

of which has its own part template and its own associated

3D-model-construction method. A comma-seperated list of

part-template names in the object template has a one-of-N

semantics, meaning that a fit should be attempted of all the

templates in the list, but only the best-fitting template should

be instanced.

The scores of part templates can be combined to compute

an overall object template score. Currently, we compute a

score based on the mean scores of the instantiated part tem-

plates. The object template scores allow a sketch to be fit

with all the possible object templates, with only the best-fit

object template being used to instantiate the 3D model.

5. 3D Model Construction

Once the sketch recognition is complete, a 3D model is con-

structed in a procedural fashion. This procedural construc-

tion is hard-coded for each object class. We have found that

this is generally the most time-consuming aspect of adding a

new object class. We now discuss the construction rules used

for each object class.

The cup construction proceeds as follows. A centerline is

estimated from the axis-aligned bounding box for the cup-

body strokes. A spline is fitted to the sketched curves seg-

ments that make up the right side. A surface of revolution

is then constructed from the centerline and the fitted spline.

The saucer is similarly constructed as a surface of revolu-

tion from a spline that is fitted to the appropriate sketched

curves. The 3D handle is constructed by sweeping a pre-

defined 3D cross-section along a spline that is fitted to the

sketched handle. Adjustments are made to the positions of

the saucer and the handle(s) so that these parts are contact-

ing the body even if there are gaps that exists in the sketch.

Unrecognized strokes that are drawn over the region of the

cup body are projected onto the cup body as annotations, as

shown in Figure 1.

Our airplane model assumes the existence of two recog-

nized sketches of traditional orthographic views: a side view

and a top view. These each have their own separate template.

The information from both labelled sketches is then com-

bined in the model building process. The system can also

accept a top-view alone, in which case default assumptions

are made about the fuselage and the tail.

The airplane fuselage has a default cross-sectional shape
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p
¯
lane n e c

¯
up n e f

¯
ish n e

body 2 2 body 4 5 body 3 3

Lwing 4 3 saucer 2 1 topfin 2 1

Rwing 4 3 RHround1 2 1 midfin 2 1

Ltail 4 3 RHround2 2 1 eye 2 2

Rtail 4 3 LHround1 2 1 botfin1 2 1

Lengine 2 1 LHround2 2 1 botfin2 2 1

Rengine 2 1 RHsquare 4 3

Lengine2 2 1 LHsquare 4 3

Rengine2 2 1

Table 1: List of template parts used to build the cup, plane,

and fish templates. n and e denote the number of nodes and

edges in the part template graphs, respectively.

that is uniformly scaled as it is swept along the spline

curves defined by the fuselage side, top, and bottom curves.

The wings and horizontal stabilizers are constructed using a

swept-airfoil cross-section. The tail fin has a similar swept

construction. Engines are instanced as copies of a single 3D

engine model, scaled and translated to match the top-view

sketch. Left-right symmetry is enforced in the final model.

The model building process must also resolve any conflicts

between the top view and the side view, such as the length

of the fuselage. This is handled by scaling one of the views

so that the fuselage lengths matches the other view.

The 3D fish model consists of a body, dorsal fin, anal fin, a

pair of pectoral fins, and a pair of pelvic fins. Top and bottom

splines are fitted to the top and bottom of the body, starting

at the front tip of the fish and ending at the top and bottom

of the caudaul fin, respectively. A default elliptical cross-

sectional shape is then swept from front-to-back along these

splines, undergoing uniform scaling as necessary. This swept

surface is tapered to end with zero-width at the beginning of

the caudal fin, which is identified as the narrowest part of

the right-half of the fish. All the fins, including the caudal

fin, are modeled as polygons. The pectoral and pelvic fins

are tilted at predefined angles away from the body.

6. Results

The current recognition process requires on the order of

one second to match an object template hierarchy against

a sketch, as measured on an 800 Mhz TabletPC. The cur-

rent sketching interface consists of a sketch area, an area for

displaying the resulting 3D model, and a button panel. The

user draws their desired sketch in the sketch area and hits

a ’Recognize’ button. The interface supports a progressive

workflow if this is desired. The recognition and model build-

ing can thus be invoked at any time for whatever parts that

have currently been drawn. One caveat is that parts such as

the handles of the cup cannot be recognized in isolation. The

parent part must first be successfully instantiated.

Figure 8: The cup template graph, and sketches of cups and

wine glasses shown together with the synthesized 3D models.

We have tested the system using 3 classes of objects: cups,

planes, and fish. Table 1 gives the list of part templates used

for each object template. Symmetry in the drawn sketch is

not a requirement of the system, as can be seen in the side

view of the airplane.

The most effective mode of use for our system is one in

which the user can tell the system which class of object is

being drawn, and thus the system knows in advance which

object template hierarchy to match against the drawn sketch.

Another mode that we support is to have the system do a

linear search through each of the available object templates

in turn and then instantiate the 3D object corresponding to

the best-fit object template.

Images can be loaded into the background to use as a ref-

erence for tracing a particular airplane, cup, or fish. At the

same time, the model building can extract a texture map from

the background image if this is desired. This thus supports

quick-and-dirty construction of models from photographs.

The cup template represents the prototypical view that is

commonly used to draw or photograph a cup. A variety of

cups and mugs modeled using our system are shown in Fig-

ures 1 and 8. The template supports left and right rounded

handles and square handles. A second left and right rounded

handle can also be recognized, which can serve to either

define inside and outside edges for the handle, or as a sec-

ond rounded handle. In our implementation, it is the model

building process that distinguishes between these two cases.

For single-curve handles, a default handle width and cross-

section is assumed. For double-curve handles, a rounded-

rectangular cross-section is assumed that has fixed depth but

varies in width according to the drawn curves.

Figures 1 and 9 show a number of sketches and the re-

submitted to 2nd Eurographics Workshop on Sketch-Based Interfaces and Modeling (2005)



8 C. Yang, D. Sharon, M. van de Panne / Sketch-based Modeling of Parameterized Objects

sulting 3D airplane models. The current implementation as-

sumes that the side-view sketch is drawn and recognized

first. The 3D model is then instanced when the top-view

sketch is drawn and recognized.

Figure 9: The airplane side-view and top-view templates,

and five examples of input-sketches shown together with the

resulting 3D models.

Figure 10 shows two examples of fish that have been con-

structed by tracing over photographs of fish. The texture is

then lifted from the images and applied to the 3D models.

7. Discussion

An obvious question that arises from our template-driven

system is: "Is it not simpler to have users directly edit the

template curves to get the object they want?". Our answer to

this is twofold. First, drawing is often easier than template

manipulation. Consider the case of the cup template, which

has 4 handles and a saucer, as shown in Figure 4. A great

Figure 10: The fish template and two fish models that were

created by tracing over photographs.

many control points would need to be repositioned to create

the tall mug shown in Figure 1, whereas it can be drawn in a

matter of seconds. The user also has to understand what con-

trol points are, why there are two left handles and two right

handles, has to delete 3 of these, and then move the control

points on the remaining handle in order to achieve the squar-

ish right handle that is finally desired. A similar case can

be made for drawing airplanes instead of editing an airplane

template. All the optional template parts introduce consid-

erable visual clutter and need to be explained to the user.

A sketched curve that represents a particular feature, such

as the side of a cup can be fit with a dynamically-chosen

number of spline segments, whereas a template would typi-

cally be constructed with a fixed number of spline segments.

Second, and perhaps most importantly, a drawing interface

allows for the kind of transparency in use that we strive for

in this work. The user should be required to know as little

as possible about the underlying representation and assump-

tions that will be used to construct the 3D model.

A second question that one can ask of our system is: "Will

it scale to large numbers of object classes?". Our solution is

scalable with the addition of more templates. To be efficient

with a large number of templates would require a separate

object classification step in order to identify a small set of

candidate object classes to which the full template match

could then be applied. While our system still has robustness

issues, it can support large within-class variations. For ex-

ample, our cup template can model a large variety of cup or

mug types and shapes (Figures 1 and 8). Similarly, our air-

plane template supports a significant variety of shapes (Fig-

ures 1 and 9). With respect to the use of templates, is is clear

that some form of prior knowledge is essential for sketch

or line-drawing recognition, and we choose to embody this

prior knowledge in our 2D templates.

How familiar do users need to be with the templates in or-

der to use the system? This project began with us collecting

sketch data on a TabletPC, giving purposely-vague instruc-

tions by asking users (with no knowledge of templates) to

“draw a cup,” or “draw a plane,” in a wizard-of-oz experi-

ment. Many of the cup sketches can be recognized by our
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system. The airplanes can generally not be recognized with-

out some errors. Thus, some familiarity with the template is

generally required, as mentioned in the introduction.

8. Conclusions and Future Work

We have presented a system that supports quick-and-dirty

creation of 3D models based upon a sketching interface.

Many recent sketch-based systems apply a gestural or

context-sensitive interpretation to drawn strokes. Instead, we

propose a template-based recognition algorithm which treats

strokes as a sparsely-populated image and then drives the in-

stantiation of a flexibly-paramaterized 3D model.

Our sketching system has a number of known limitations.

The system is not nearly as robust as we would like. The

most common reason for sketches not being recognized is

because of some sloppiness in sketches that results in dis-

connected strokes. Increasing the threshold distance within

which sketch-graph nodes are merged allows for more of

such gaps to be bridges, but this comes at the expense of los-

ing further detail in the drawn parts because strokes which

were intended to be distinct may be merged together. The

key-points in the curves that become the nodes of the sketch

graph are not always extracted as desired. The curve fea-

ture vector currently has no notion of the smoothness of the

curve, and thus smooth template curves may be matched to

jagged paths through the sketch graph without penalty, as-

suming that the remaining curve features match well.

If there are many templates loaded, the recognition can

become slow and it also becomes more prone to recognition

errors, such as potentially interpreting a flat cup as a plane

body. In the future, statistically-based object-class recogni-

tion algorithms borrowed from the computer vision literature

could be used to help identify likely object classes and to

therefore avoid a linear search through all object templates.

There are numerous interesting directions for future work.

Our sketch recognition method allows for recognition with

only one example per object class, namely the object tem-

plate, but a statistically-based approach based on a set of

hand-labelled sketches would potentially provide a more in-

formed approach. This could be applied to modeling the

space of expected part shapes as well as the sketching toler-

ances that should be accomodated. We foresee the possibility

of using current-generation image segmentation algorithms

to further automate the knowledge-based construction of 3D

models from images.

User testing under controlled conditions would provide

useful data with respect to robustness and determining the

extent to which familiarity with the template structure is

helpful. Given a 3d object, how do people sketch it in the

absence of any instructions ? What is the variability in such

drawings?
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