
Sketch-Based Shape Retrieval

Mathias Eitz∗

TU Berlin

Ronald Richter

TU Berlin

Tamy Boubekeur

Telecom ParisTech – CNRS

Kristian Hildebrand

TU Berlin

Marc Alexa

TU Berlin

Figure 1: A complete scene with objects retrieved using our sketch-based system in a total time of about two minutes.

Abstract

We develop a system for 3D object retrieval based on sketched fea-
ture lines as input. For objective evaluation, we collect a large
number of query sketches from human users that are related to an
existing data base of objects. The sketches turn out to be gener-
ally quite abstract with large local and global deviations from the
original shape. Based on this observation, we decide to use a bag-
of-features approach over computer generated line drawings of the
objects. We develop a targeted feature transform based on Gabor fil-
ters for this system. We can show objectively that this transform is
better suited than other approaches from the literature developed for
similar tasks. Moreover, we demonstrate how to optimize the pa-
rameters of our, as well as other approaches, based on the gathered
sketches. In the resulting comparison, our approach is significantly
better than any other system described so far.

CR Categories: H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—Retrieval models; I.3.3 [Computer
Graphics]: Picture/Image Generation—Line and Curve Genera-
tion;

Keywords: Shape Retrieval, Visual Search, Bag-of-Features, Lo-
cal Descriptors

Links: DL PDF

1 Introduction

Working with large collections of 3D models requires fast content-
based retrieval techniques, especially since public collections are

∗e-mail: m.eitz@tu-berlin.de

often insufficiently annotated. In that case a keyword based search
alone is not promising. While research on example-based retrieval –
where users provide a full model as the query – has recently found a
lot of interest in the community [Tangelder and Veltkamp 2008], its
practical application is difficult, since a good example is often not
at hand. Instead, sketch-based retrieval has been proposed [Löffler
2000; Funkhouser et al. 2003; Chen et al. 2003; Yoon et al. 2010;
Shao et al. 2011], where users sketch the desired model as seen
from one or more viewpoints. We consider sketch-based retrieval to
be even more challenging than example-based retrieval as the query
contains only partial information about the projection of the shape.
Most humans have limited drawing skills and lines may addition-
ally deviate significantly from that projection. These properties of
the input directly translate into desiderata of sketch-based shape re-
trieval systems: a) partial matching of feature lines of the shape in
b) all potential viewing directions to the sketch, tolerating c) global
and local deformation; and, clearly, the retrieval performance has
to d) scale to large collections.

We present, to our knowledge, the first approach that addresses all
of the desiderata. The approach is based on the visual analysis of
meshes: we sample the set of likely view directions, generate line
drawings with state of the art line rendering techniques, and en-
code the line drawings with a bag-of-features approach. This choice
is directly related to the requirements. First, rather than trying to
match projected lines to shape features in 3D, we exploit current
line art rendering techniques. They have reached a mature state,
in which almost all lines drawn by humans are also generated by
algorithms [Cole et al. 2008]. Second, bag-of-features approaches,
which are well known in the image retrieval community [Sivic and
Zisserman 2003], use local image descriptors that are independent
of location. This is ideal, as it immediately enables partial match-
ing and is resilient to global deformations. We achieve additional
resilience to local deformations by quantization of the local im-
age descriptors (identifying so-called “visual words”) and matching
based on histograms. This data reduction leads, third, to the desired
fast query times.

We make use of successful techniques from other domains where
appropriate and provide the following novel contributions:

• A large-scale benchmark for sketch-based retrieval systems.
The benchmark is based on a real-world dataset of 1,914
sketches gathered from a large variety of participants in a per-
ceptual experiment. We provide this dataset as a free resource.

http://doi.acm.org/10.1145/10.1145/2185520.2185527
http://portal.acm.org/ft_gateway.cfm?id=1145/2185520.2185527&type=pdf

• A new feature transform based on a bank of Gabor filters that
is tuned to the requirements of sketch-based shape retrieval.
This descriptor outperforms other existing transformations.

• A general approach to determine optimal parameters for such
feature transformations. We demonstrate that even existing
systems can be improved using this approach.

Overall, this leads to a system with high quality retrieval perfor-
mance as we demonstrate in our objective evaluation as well as
the accompanying video using a large variety of real-world user
sketches. We also demonstrate the power of our system in Fig. 1
where we gather all objects for a complete scene in about two min-
utes. However, we also find that the real-world dataset of sketches
gathered in the experiment is challenging for current systems. In
particular, our dataset reveals that allowing only closed contour
curves for retrieval [Chen et al. 2003] oversimplifies reality: a large
majority of our participants’ sketches contain a substantial amount
of interior lines. The insights gained from an analysis of our dataset
open up several promising areas of further research which we iden-
tify in Sec. 8.

2 Related work

While there exists a huge amount of work on example-based
model retrieval (we refer the reader to the survey of Tangelder et
al. [2008]), sketch-based retrieval is often only studied in the con-
text of an example-based retrieval engine [Funkhouser et al. 2003;
Chen et al. 2003]. As a consequence, to our knowledge, no bench-
mark has been established that would allow objective comparison
of sketch-based retrieval systems. We hope to alleviate this problem
with the benchmark presented later in this paper.

2.1 Sketch-based model retrieval

One of the earliest references to sketch-based model retrieval is
given by Löffler [2000] who describe a system that lets users re-
fine an initial keyword based search using a sketch of the desired
view. Funkhouser et al. [2003] describe an image based approach.
In a pre-processing phase they extract boundary contours from 13
orthographics view directions for each model. They represent each
view by a global – but rotation invariant – boundary descriptor and
compute best matching models by comparing the corresponding
view descriptors to the boundary descriptor computed from the in-
put sketch(es). Chen et al. [2003] describe a system for example-
based retrieval that also supports query by sketch. They densely
sample view directions to form a Lightfield descriptor. This de-
scriptor however is only defined for closed contour curves, which,
as we demonstrate later, is not how humans sketch for shape re-
trieval. Daras and Axenopolous [2010] describe a unified frame-
work that supports both sketch-based as well as example-based re-
trieval. They extract 32 views from each model and compute three
2D rotation invariant shape descriptors per view. While a qual-
itative evaluation demonstrates good retrieval results they do not
perform a quantitive evaluation for sketch-based retrieval. Yoon et
al. [2010] propose measuring orientation of sketch lines using the
diffusion tensor – as the final descriptor they propose an orientation
histogram that globally encodes each view of a model.

2.2 Domain specific specializations

When designing engineering parts, models are often described by
three orthogonal 2D views. Consequently, Pu et al. [2005] extract
six views by projection onto the faces of the model’s bounding box.
They encode each view image by the distribution of pairwise Eu-
clidean distances between densely sampled random points on the

h
o
rs
e

h
u
m
an

h
el
ic
o
p
te
r

Figure 2: Subsets of the sketches gathered for the benchmark, each
sketch corresponds to a specific category from the PSB. Examples
of corresponding 3D shapes are shown on the right.

feature lines and employ a Euclidean distance metric to compare
histograms of this distribution. Hou and Ramani [2006] extend
this approach: instead of relying on a single feature they learn a
classifier based on three shape descriptors. Their system follows a
two-tier retrieval approach: first, they show best matching classes
of models and second, they sort the models within each class ac-
cording to similarity to the query.

2.3 Sketch-based synthesis

Using sketch-based interaction to create new content is an intrigu-
ing idea: users could assemble an object from existing parts or even
create a complete scene from existing objects, using only rough
sketching strokes. Shin and Igarashi [2007] propose a system for
interactively composing 3D scenes using existing models. They
query models using a sketch-based interface based on contours gen-
erated from 16 reference views and encode each view using a Cen-
troid Fourier Descriptor. Lee and Funkhouser [2008] extend this
approach to create novel models from parts of existing models: a
single sketch indicates both shape and placement of a part. Sketch-
based interaction is also used to synthesize novel images from a
sketch and additional keyword label [Chen et al. 2009] or sketch
alone [Eitz et al. 2011]. Lee et al. [2011] interactively synthesize a
shadow that helps users create better sketches.

3 How do people sketch for 3D retrieval?

We report on a large-scale experiment which tries to provide in-
sight into the following problem: how would an average user of a
3D retrieval system sketch the query? Most related studies we are
aware of gather input from artists [Cole et al. 2008] or contain a
significantly smaller number of sketches [Funkhouser et al. 2003].

3.1 Methodology

We ask participants to create an input query sketch given the name
of a category only (e.g. “airplane”), without providing an example
rendering. We emphasize that the sketch should be clearly recog-
nizable for other humans. We perform the experiment on Amazon
Mechanical Turk and provide participants with a web-based draw-
ing tool that supports the usual undo/redo/erase functionality. This
setup is designed to closely resemble how novel users would use a
retrieval system.

We ask for all categories that are defined in the Princeton Shape
Benchmark (PSB) [Shilane et al. 2004] and make sure that we
gather sketches for all models in the PSB (i.e. 1,914 sketches).
There is no direct association between sketches and models but
rather between sketch category and model category. We later ex-
ploit this association to define a benchmark for shape retrieval.

Inverted

Index

Quantization Visual

Vocabulary
Quantization

Querying Indexing

Online Query
by sketching

User sketch Local Descriptors Database Local Descriptors Line Renderings 3D Model

Offline Indexing
for all objects in the DB

Figure 3: Overview of our 3D shape search engine. The offline shape indexing and online querying stages differ only in the way we
generate input feature lines: automatic line rendering from 3D shapes (right) or hand-sketched by users (left).

3.2 Analysis of sketches

The majority of sketches makes use of more complex lines than just
simple silhouettes and virtually no sketch consists of simple closed
boundary curves, see e.g. the sketches in Fig. 2. This clearly moti-
vates developing systems that support arbitrarily complex sketches
such as the one presented in the following sections. Also, as ex-
pected, sketches show strong abstraction, local and global deforma-
tions with respect to the real shape, as well as perspective errors. We
can confirm the result from Funkhouser et al. [2003]: users mostly
sketch objects from a simple side or frontal view. Simple objects
such as e.g. a table however often tend to be drawn in perspective
(82.6% in our experiments), although typically with significant per-
spective error.

3.3 Benchmarking

Since each sketch is associated with one category from the PSB,
benchmarking a sketch-based system now becomes analogous to
benchmarking an example-based system using the PSB. For a query
sketch from the experiments, we count the number of retrieved
models belonging to the same category as the sketch. We use this
data to compute precision and recall (as well as any other metric).
This is a standard procedure in information retrieval and enables an
objective comparison of retrieval engines. Since we use exactly the
classification from the PSB, we can directly use all evaluation tools
that come with the PSB.

Train/test dataset The PSB defines a split into training/test
dataset (907/907 models) and we accordingly split the benchmark
sketch dataset into a training/test dataset (907/907 sketches). In the
remainder of this paper we use the training dataset when optimizing
system parameters, while evaluating on the test dataset.

Overall, the sketch dataset we gathered defines a general and chal-
lenging benchmark for SBSR systems which we hope will help
make research results in this field more comparable and thus en-
courage further research. We provide the whole dataset as a free
resource.

4 Bag-of-features shape retrieval

We build our retrieval engine upon a bag-of-features (BoF)
model [Squire et al. 1999; Sivic and Zisserman 2003], which has
become the method of choice for affine invariant image retrieval.
The basic idea of this approach is to compare images based on a
histogram of features. This requires several steps:

1. Select the location and size of features in the images.

2. Transform the pixel set of the feature into a (usually) smaller
dimensional feature vector.

3. Find the closest match of this vector in a set of predetermined
clusters.

4. For the whole image, count the occurrences of cluster
matches.

The histogram of cluster matches generates a signature for the im-
age. Compared to the full sketch this signature is low dimensional
and facilitates fast matching. The set of clusters is usually derived
by clustering the feature vectors found in the images of the data
base.

4.1 View-based matching

It is not immediately clear how to use this pipeline for the retrieval
of 3D objects based on queries sketched in 2D. Our main idea in
this regard is to generate a set of 2D sketch-like drawings from the
objects for each object in the data base. We argue that there are
several reasons to perform matching in 2D rather than trying to di-
rectly align a user sketch to the 3D shape: the input to the system
is 2D and contains large errors which might not even be physically
plausible in 3D. Additionally, most sketches depict shapes that are
not exactly part of the data base, so a perfect alignment of a view
to the sketch is impossible. Finally, there is experimental evidence
that this resembles how humans recognize 3D objects [Bülthoff and
Edelman 1992].

Matching in 2D turns the problem into a comparison of a single
query image to several two-dimensional projections per object in
the data base. This general approach still leaves several design
choices for the different steps: a) for an object, define the set of pro-
jection directions; b) for the projection, define a certain line draw-
ing style; c) for a line drawing, define the set of sampling locations
and d) for a drawing sample, define the feature transform. We note
that the first two items are only necessary in a preprocessing phase,
in which we generate the set of clusters from the data base. The
data base forms a finitely sized “visual vocabulary” V . This yields
a representation for each projection in the data base by a distribu-
tion of “visual words” vi ∈ V (see Fig. 3). In the query phase, we
compute a similar distribution for the input and compare it against
the elements of the data base.

In the following sections we describe several details of our search
engine. We lay out different choices for the design and make the fi-
nal decision on the best design choice later, based on an evaluation
against the sketches gathered in the experiment (Sec. 3). Our ma-
jor contribution, the feature transformation, is described in an extra
section.

c)a) b)

−1 0

1

−1
0

1
−1

0

1

0.4

0.5

0.6

0.7

Figure 4: Best-view selection: a) best view probability map pre-
dicted by the SVM model, b) predicted best view, c) user sketch

4.2 Selecting views

As we have no a priori knowledge about which viewpoint a user
chooses when sketching an object, it is vital that the underly-
ing retrieval system encodes all potential viewpoints. To reduce
the set of candidates to a feasible number, we follow existing ap-
proaches [Chen et al. 2003] and only consider views that result in
the complete model being rendered to screen. Specifically, we con-
sider view directions towards the barycenter of the 3D shape which
reduces their definition to points on a sphere. We randomly choose
a camera up-vector for each viewpoint. Consequently, nearby view-
points have different orientations assigned to them. This approxi-
mates a globally rotation-invariant indexing of the shapes. We eval-
uate two possible strategies for selecting the viewpoints:

Uniformly distributed views We generate d uniformly dis-
tributed directions on the unit sphere using k-means clustering.
Starting from a highly tessellated triangle mesh of a unit sphere
M = {V ,T }, with V a set of vertices and T a set of triangles,
we select a set S of d random seed vertices among V and per-
form Lloyd relaxations iteratively. After convergence, we return
the resulting Voronoi cell centers as the view directions vi. We use
d ∈ {7, 22, 52, 102, 202}. The number of samples d is an impor-
tant parameter – we determine its optimal value in Sec. 6.

Perceptually best views While a uniform sampling does guar-
antee that we sample all possible viewpoints, it is intuitively clear
that humans do not draw them with equal probability – when
sketching a cow, we would probably rather choose a side-view than
a viewpoint from the bottom. We ask if we can exploit this intuition
computationally: can we learn a model of viewpoint preference for
sketch-based shape retrieval? We would then only use those views
to represent a 3D model that are likely to be sketched by humans.
Compared to a set of densely sampled viewpoints, our hope is to
achieve both faster and better retrieval results: 1) less views would
be needed to represent a shape, this could potentially speed up the
search. 2) We would learn a visual vocabulary only from views
that are likely to be sketched by users – this could lead to a higher
quality visual vocabulary only containing elements that actually get
sketched.

Recent work on viewpoint selection shows that human view pref-
erence can be highly correlated with several simple measures, such
as silhouette length and projected area [Dutagaci et al. 2010; Sec-
ord et al. 2011]. We follow those approaches and make use of the
models in the training set of the PSB for all of which we manually
define both a best as well as a worst viewpoint. We extract the fol-
lowing three image based measures for each best and worst view in
this training set: a) silhouette length in image space, relative to im-
age area b) projected area relative to image area and c) smoothness
of depth distribution over the model.

a) b) c) d)

Figure 5: Comparison of different line rendering approaches: (a)
silhouettes (SH), (b) Canny lines from depth image (CFD), (c) oc-
cluding contours (OC) and (d) and Suggestive Contours (SC)

For a given view, direct linear combinations of these values does
not provide a meaningful score, so we use a non-linear classifica-
tion. More precisely, we learn a “best view classifier” from the
training set using support vector machines (SVM) with radial-basis
function kernels [Schölkopf and Smola 2002]. We use 5-fold cross-
validation to determine best SVM model parameters before the ac-
tual training step. This results in a general model of viewpoint pref-
erence which we employ to predict good viewpoints for the meshes
in the “test” set of the PSB: we densely sample uniform view di-
rections (using the k-means method) and for each view direction vi
predict its probability pi = p(vi) of being a best view. This re-
sults in a smooth scalar field over the sphere Fig. 4a) and we select
best views as local maxima (determined over the one-ring neigh-
borhood) with pi > 0.5. We visualize such a prediction in Fig. 4.

4.3 Line rendering

We use the generated uniform/predicted view directions vi as input
for view-dependent line drawing algorithms and render the views
using the following line types: 1) silhouettes, depicting the 2D
closed boundary of the rendering, 2) occluding silhouettes, depict-
ing all points on the mesh where with normals orthogonal to the
view direction, 3) Suggestive Contours [DeCarlo et al. 2003] and
4) Canny lines [Canny 1986] from the depth image. We illustrate
those styles for a given model in Fig. 5.

4.4 Sampling local features

We encode each view image as a bag of many small local image
patches transformed into an appropriate feature space (see Fig. 7 for
an illustration). As the local features do not carry any spatial infor-
mation, this representation is commonly called a “bag-of-features”.
We generate 32 × 32 = 1,024 key-points evenly distributed over
the image by sampling on a regular grid.

4.5 Representation

We generate a visual vocabulary using k-means clustering [Lloyd
1982]. As the training data, we randomly sample one million local
features from all models and views in order to cover a wide vari-
ety of possible local features. The set of resulting cluster centroids
C = {cj} forms the visual vocabulary where each entry cj (visual
word) represents the local features in cluster j. The size of the visual
vocabulary |C|, i.e. the number of clusters, is an important parame-
ter that strongly influences retrieval performance and we determine
its optimal value in Sec. 6.

We represent each view as histogram of visual word frequency. We
quantize all local features xi from a given sketch against the visual
vocabulary, representing them as the index qij of their closest visual
word:

qij = argmin
j

‖xi − cj‖ . (1)

We now define the entries hj of the final histogram of visual word

representation h that encodes a view as:

hj = |{qij}| . (2)

Each dimension j in the feature vector corresponds to a visual word
and encodes the number of those words appearing in a sketch. This
representation is typically very sparse, as the number of distinct fea-
tures occuring in a given sketch is usually much lower than the size
of the vocabulary. We store the resulting histogram in an inverted
index datastructure [Witten et al. 1999] in order to achieve quick
lookups during the query stage.

4.6 Online Querying

At runtime, users draw a query sketch and submit it to the retrieval
pipeline. We perform the following steps on the query sketch: we
first extract local descriptors, quantize them against the visual vo-
cabulary and finally represent the sketch as a (sparse) histogram of
visual word occurrences (those steps are identical to how views are
represented in the offline indexing stage, see Fig. 3).

Tf-idf weighting function The entries hj of a histogram do not
necessarily need to be raw word counts – and it is indeed com-
mon to represent hj as a function of the “importance” of the jth

word. We use the tf-idf model (term frequency-inverse document
frequency) [Witten et al. 1999] to define importance of a visual
word. The idea is that a word is important if it appears often in a
sketch (high term frequency) but at the same time less distinctive if
is a common word in the collection (inverse document frequency).
We follow Sivic et al. [2003] and use the following tf-idf function
to compute term weights: hj = (hj/

∑

i
hi) log(N/fj) where N

denotes the total number of views in the collection and fj the fre-
quency of visual word j in the whole collection. We have also
experimented with simpler, computationally less expensive defi-
nitions, such as the constant function (which amounts to simply
counting the number of words that occur in both documents) but
found this formulation to achieve better retrieval results.

Similarity metric We employ a vector space model to define sim-
ilarity between two visual word occurance histograms [Witten et al.
1999]. Let h and h̄ be two histograms of visual words (representing
two images). We define their similarity as

s(h, h̄) = 〈h, h̄〉/‖h‖‖h̄‖. (3)

Intuitively, two images are considered similar, if their histograms
(seen as high-dimensional vectors) point into the same direction.
Note that the histograms are normalized – this is important in order
not to favor histograms with higher word counts.

Retrieving models Given a histogram h computed from a user
sketch, we retrieve similar models in two steps: first, we find sim-
ilar views, querying the inverted index. This operation accounts to
computing Eqn. (3) between h and the views in the collection. This
is fast, as only those views in the index need to be checked that share
visual words with h. The result is a set of best-matching views and
we return the set of models in the order of their corresponding best
matching views.

5 GALIF: Gabor local line-based feature

Our search relies on local image descriptors that encode image con-
tent within a small local region of a sketch. To balance accuracy
and efficiency, local image regions are commonly represented as
descriptors, encoding only the essential information in a region.

−25 25

−25

0

25

0 0.125

−0
.12

5

0

a) b)

y

x u

v

Figure 6: Gabor filter: a) spatial domain, b) frequency domain.
Parameters: σx = 5, σy = 10, ω0 = 0.1,Θ = π/4

Successful representations often capitalize on the distribution of
the value of interest, such as the SIFT and SURF descriptor [Lowe
2004; Bay et al. 2006]. Another popular approach for designing
a descriptor is to perform a change of basis, such that the original
data can be faithfully represented using only a sparse set of basis
elements. The Fourier basis as well as the Wavelet basis [Jacobs
et al. 1995] are likely the most commonly used basis transforma-
tions. These transformations are not optimal for our type of data,
i.e. elongated lines on a constant background. The Curvelet basis
is the maximally sparse representation for such data [Candès and
Donoho 1999] and, consequently, we design our descriptor based
on ideas taken from this transformation. In the context of feature
representation, we relax the requirement of the transformation be-
ing a basis (we never want to reconstruct the sketch from its de-
scriptor). We thus approximate ideas from the Curvelet transform
– using filters that respond only to image elements with given fre-
quency and orientation – to yield our new feature space transform
based on Gabor filters.

5.1 Gabor filter

A Gabor filter in the frequency domain is defined as:

g(u, v) = exp
(

−2π2 ((uΘ − ω0)
2σ2

x + v2Θσ
2
y

))

(4)

where (uΘ, vΘ) = RΘ (u, v)T is the standard coordinate system
rotated by angle Θ. A Gabor filter can be tuned according to several
parameters:

ω0 : peak response frequency
Θ : filter orientation
σx : frequency bandwidth
σy : angular bandwidth

We visualize such a filter with its corresponding parameters
in Fig. 6. Note that in the frequency domain the filter simply is
a Gaussian, see Fig. 6a and Eqn. (4). Multiplication with the sketch
in the frequency domain “masks” all content that does not posess
the right frequency and orientation: the filter responds only to a
subset of the lines in a sketch.

5.2 Orientation-selective filter bank

To compute our feature space transform, we define a filter bank
of Gabor functions gi with k different orientations (and all other
parameters fixed). We then convolve the sketch with the Gabor
functions from the filter bank to yield a set of filter response images

Ri = ‖idft(gi ∗ dft(I))‖ (5)

where I is the input sketch, ∗ denotes point-wise multiplication and
idft and dft denote the inverse/forward discrete Fourier transform
(see Fig. 7a,b for a visualization).

~

~

c) averaginga) filter bank applied to sketch d)b) response

#tiles

Figure 7: GALIF feature extraction pipeline: a) we convolve the
input sketch I with a filter bank of differently oriented Gabor filters
gi to yield b) response images Ri. The average responses c) within
cells of a local patch form d) a local feature vector F .

Note that σy determines the amount of overlap between filters gi

– depending on the number of orientations in the filter bank. We
do not manually fix this value but instead optimize it in the next
section such that we achieve optimal retrieval results. Given the
number of orientations k we define the Θ’s used for the filterbank
as Θ ∈ {0, π/k, . . . , (k − 1)π/k}.

5.3 Local GALIF feature definition

Given a keypoint coordinate in image space we consider a regular
decomposition of the response images’ area around this coordinate
into n× n cells Cst. We call this area a local image patch and call
n the “number of tiles” (see Fig. 7b,c).

We say (x, y) ∈ Cst if the pixel with coordinates x and y is con-
tained in the cell with index (s, t). To achieve invariance of image
size, we define the area covered by the local patch (we call this fea-
ture size) relative to image area: a feature size of 0.075 means that
the local patch covers 7.5% of the image area.

We now define our local feature F as a k×n×n feature vector. In
each dimension, F stores the average Gabor filter response within
a cell Cst for orientation i:

F (s, t, i) =
∑

(x,y)∈Cst

Ri(x, y). (6)

When inserting a value into F , we perform bilinear interpolation in
the spatial domain.

We discard features that do not contain sketch lines and finally nor-
malize such that ‖F ‖2 = 1. We visualize the complete local fea-
ture extraction pipeline in Fig. 7.

6 Optimizing retrieval-system parameters

The parameter-space for the proposed pipeline (as well as for other
similar systems) has many dimensions, including: local feature
size, visual vocabulary size, number of view directions sampled for
each model, line types used to render the views as well as the pa-
rameters underlying the Gabor filter bank employed in the feature
transform. However, the wrong choice for just a single parameter
can significantly impact overall performance. While experienced
researchers often make surprisingly good guesses about ‘best’ pa-
rameter values, it remains impossible to optimize the combination
of parameters by hand.

In the following section, we explain a simple iterative visualization
strategy to evaluate and optimize the retrieval pipeline. We perform
the complete optimization on the train dataset split. To measure

system performance at a parameter combination, we use the frac-
tion of 1-nearest neighbors belonging to the same class as the query
sketch, averaged over all sketches in the benchmark dataset (i.e. a
measure of 1 would be a perfect result). In other words, we average
the success of the retrieval compared to the human data (Sec. 3).
This is supposed to make the retrieval perform close to what hu-
mans expect. However, the optimization approach outlined below
is clearly independent of this measure.

6.1 Optimization strategy

We advocate a human guided visual gradient descent strategy. The
idea is to color-code the performance resulting from varying two
parameters, while keeping all other parameters fixed (see Fig. 8).
This color code allows us to pick good combinations of the two
parameters. Then these parameters are fixed and others are varied.
This goes on until no further improvement is visible. In the follow-
ing, we use this strategy to optimize not only our system but also all
competitors. It turns out that some of the parameters given for these
systems in the respective publication are not optimal, showing that
parameter optimization is important, yet far from trivial.

6.2 Local feature parameters

To evaluate the influence of the local GALIF feature transform
(Sec. 5) on retrieval performance we fix the remaining extrinsic re-
trieval system parameters to vocabulary size = 1000, num views =
102 and line type = Suggestive Contours.

Bandwidth and peak-frequency To make evaluation results in-
variant to the size of a sketch, we first define linewidth = σx/w
where w denotes the side-length of a sketch (in pixels) and λ =
σx/σy . We evaluate over those parameters instead of σx,y directly.
As expected the GALIF descriptor is sensitive to the correct choice
of those parameters: line drawings naturally contain mostly high-
frequency content and the descriptor’s performance increases with
peak frequency ω0. The optimal setting for linewidth and λ is
coupled to the choice of the ω0 of the Gabor filter (see Fig. 8a–
d). The optimal combination of parameter values turns out to be
linewidth = 0.02, λ = 0.3 and ω0 = 0.13.

Number of orientational filters We analyze using 1, 2, 4, 8 and
16 orientations. Using less than 4 orientations results in signifi-
cantly reduced retrieval performance (see Fig. 8f). In that case the
descriptor is no longer discriminative enough – it can only encode
vertical and horizontal lines. When using more than four orienta-
tions, retrieval performance starts to drop slightly – at the additional
cost of a much higher–dimensional descriptor. We offer the follow-
ing explanation: a high number of orientations makes the feature
transform sensitive to small deviations in orientation of lines – this
may be undesirable because of human inaccuracy in drawing. Over-
all, using 4 orientations yields the best performing feature in our
experiments.

Number of tiles We evaluate using 1, 2, 4, and 8 tiles to subdi-
vide a local image patch (note: 2 tiles means the local image area
is subdivided into 2 × 2 cells). Using only 1 tile results in poor
performance. Each local feature is then encoded using only a sin-
gle dimension per orientation – not enough to yield a discriminative
feature vector. Overall, we achieve best retrieval performance when
using 4 tiles. Note that the dimensionality of the descriptor grows
quadratically with the number of tiles and indeed, using 8 tiles re-
sults in reduced retrieval performance.

li
n

ew
id

th

.05 0.1 0.2 0.3 0.5 1
.005

.008

.013

.02

.03

.05

.05 0.1 0.2 0.3 0.5 1 .05 0.1 0.2 0.3 0.5 1 .05 0.1 0.2 0.3 0.5 1

feature size

o
ri

en
ta

ti
o

n
s

 tiles=4

.01 .05 .1 .125 .15 .2 .25 .3 .4 .5
1

2

4

8

16

tiles per dimension

b
in

s
p

er
 t

il
e

diffusion tensor

1 2 4 8 12 16
1

2

4

8

12

18

number of views

v
o

ca
b

u
la

ry
 s

iz
e

lines: suggestive cont.

7 22 52 102 202
50

100

500

1000

2500

5000

10000

coefficients

ci
rc

u
la

r
fu

n
ct

io
n

s

spherical harmonics

2 4 8 16 32 64
2

4

8

16

32

64

a) b) c) d)

e) f) g) h)

.3

.2

.1

0

.3

.2

.1

0

Figure 8: a)–d) evaluation of GALIF parameters defining the shape of the underlying Gabor filter. e)–f) evaluation of extrinsic system
parameters using fixed intrinsic parameters. g) evaluation of optimal parameters for Diffusion Tensor and h) Spherical Harmonics descriptor.

Local feature size We find that – compared to approaches work-
ing with natural images – we achieve optimal results when using
relatively large local feature sizes: performance is optimal between
feature size 0.1 and 0.3, see Fig. 8f for the visualization. We achieve
overall highest performance for feature size 0.2. Using a small fea-
ture size ≤ 0.05 significantly reduces performance, as the infor-
mation in a single feature is no longer discriminative and typically
encodes only single line segments.

6.3 Retrieval system parameters

We now fix descriptor intrinsic parameters to best values deter-
mined in Sec. 6.2 and optimize the remaining system parameters.

Vocabulary size When using 1,000 visual words or more, we
achieve good retrieval performance, see Fig. 8e. Using more words
generally leads to better performance but there is a tradeoff to be
considered: using a larger vocabulary makes computing a descrip-
tor more expensive in two ways: a) it requires more time as we need
to quantize against a larger vocabulary – this can be undesirable for
an interactive system. And b) the dimensionality of the descriptor
becomes higher – this is typically not so much of an issue as long as
the descriptor is sparse. We find that a good compromise between
speed and performance is achieved for a vocabulary size of 2,500
visual words.

Number of sampled views Our analysis shows that the sam-
pling of view directions should be dense enough to capture enough
data about the model – using only 7 views per model severely
reduces retrieval performance. An optimal sampling is reached
for around 100 uniformly distributed view directions, see Fig. 8e.
When using more directions performance begins to saturate. Our
perceptual best view selection generates an average of 14.4 views
per model, achieving similar results to using 22 regularly sampled
views, see Fig. 9b.

Line types Our evaluation of line types used to render views
shows that occluding contours and suggestive contours perform bet-
ter than outlines. Interestingly, the additional information contained
in suggestive contours does not provide a significant boost com-
pared to using occluding contours only.

Overall, we can report that the following parameters result in a sys-
tem with a good performance/speed ratio: vocabulary size: 2.500,
number of views: 100, line-type: suggestive contours. For those
settings, our performance measure (fraction of correct 1-nearest
neighbors) is 0.288.

6.4 Optimizing existing approaches

Our parameter optimization strategy as well as the benchmark are
very general: we demonstrate this by optimizing parameters for two
existing sketch-based shape retrieval systems. Yoon et al. [2010]
propose a global descriptor based on the diffusion tensor. Their de-
scriptor is governed by two parameters: 1) number of histogram
bins and 2) number of tiles. They propose using a single tile with
18 histogram bins to encode a view. This is not ideal as visual-
ized in Fig. 8g. Our optimization finds a more favorable parame-
ter combination with significantly higher retrieval performance (12
tiles with 4 bins each, resulting in a 12×12×4-dimensional descrip-
tor). We also analyzed the spherical harmonics descriptor proposed
by Funkhouser et al. [2003], which is defined by two parameters:
number of circular functions and number of coefficients. Our eval-
uation shows that this descriptor performs optimally when using 8
functions and 16 coefficients – very close to the original parameters
16× 32 (see Fig. 8h).

7 Results

In this section we compare our proposed system (using optimal pa-
rameters as determined in Sec. 6) to previous work and analyze its
properties – such as partial matching. We perform all evaluations
on the test dataset (see Sec. 3).

a) Comparison methods b) GALIF: view generation

0 0.2 0.4 0.6 0.8 1
recall

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

recall

p
re

ci
si

o
n

Random
SIFT
Sph. Harm.
Dist.field
Diff. Tens.
SIFT Grid
GALIF

7
best view
22
52
102
202

Figure 9: Detailed evaluation of retrieval performance on test
dataset (higher curves are better): a) comparison with previous
work using optimized system parameters; b) GALIF descriptor: in-
fluence of view generation methods.

7.1 Comparison to other systems

We compare our approach to three other leading sketch-based re-
trieval systems. We use standard precision/recall plots to visualize
our results, see Fig. 9a,b. For each system we compute precision
recall/values averaged over all 907 sketches from the test dataset.
To make the comparison as fair as possible, we use the best param-
eters for each approach as determined in Sec. 6. Additionally, we
evaluate performance of the popular image descriptor SIFT [Lowe
2004] on sketches. We use two variants: a) the complete scale-
space feature detection and extraction pipeline (SIFT) and a single-
scale grid sampled approach (SIFT Grid), using exactly the same
sampling parameters and feature size as for the GALIF descriptor.

Our proposed system clearly outperforms all existing approaches,
see Fig. 9a. We visualize the high quality of our results in Fig. 10
as well as the accompanying video. Note that some existing sys-
tems cannot handle interior lines in sketches [Chen et al. 2003]
and thus cannot be evaluated against the real-world sketches in our
benchmark. We believe this is not a limitation of the benchmark,
but rather an indication that modern retrieval systems should not be
artificially limited to closed boundary curves as input.

Notably, using the SIFT scale-space keypoint detection to compute
features results in poor retrieval performance (see Fig. 9): on aver-
age only few keypoints are detected, resulting in an imprecise repre-
sentation of a sketch by its histogram. However, several optimized
parameters of the GALIF descriptor turn out to have a connection
to the SIFT descriptor: both use four tiles to subdivide a local patch.
The optimal parameter of 4 orientations also lets us draw an inter-
esting connection: binary sketches contain only information about
the orientation of lines, while photographs (for which the SIFT de-
scriptor has been designed) contain directional information. In that
sense the optimal angular resolution for our descriptor turns out to
be identical to the 8 directions used in the SIFT descriptor.

7.2 Partial matching

As we cannot expect users to sketch all of the lines appearing in a
computer-generated line-drawing, a retrieval system should be able
to reliably retrieve a model from only a subset of its representative
lines (partial matching). Our system naturally supports this without
using computationally expensive sliding window approaches. The
GALIF feature transform encodes the distribution of visual words
in a sketch – and this is invariant to the position of the individ-
ual features in a sketch. The similarity measure in Eqn. (3) essen-
tially computes a weighted count of the number of features that are
shared across two sketches: if one sketch contains only a subset

of the strokes contained in the second sketch, the two histograms
are similar in the areas encoding the shared strokes and the sys-
tem returns a partial match. We demonstrate this partial matching
behavior in Fig. 10 as well as in the accompanying video.

7.3 Interactive application

We run our retrieval engine in a graphical user interface: users
sketch a shape, hit the search button, and the display shows a col-
lection of matching models. The system’s retrieval speed (using all
1,914 models from the PSB) is currently at only a few milliseconds
for performing the search, meaning the system could accommodate
a significantly larger data base.

7.4 Limitations

Our approach depends on the quality of the representation that it
uses to generate line art – poor models pose a significant problem
for line rendering techniques that depend on derivates on the model.
Many of the models in the PSB are not connected, i.e. they are
polygon soups. Our evaluation, however, also shows that resorting
to Canny lines on the depth map, which gives good results on any
polygonal model, results in retrieval performance that is reasonably
close to that of more sophisticated lines types. However, we ex-
pect the gap between Canny lines and, e.g., suggestive contours to
become larger with increased quality of the underlying models.

Matching is based on geometric similarity, while humans might ex-
pect a more semantic behavior of the system. We tend to quickly
recognize the semantic category (cow, airplane) that a sketch de-
picts – if the retrieved models do not fall into this category, we
would quickly dismiss those results as poor – although geometri-
cally the matches might actually be quite good. This behavior is
also encoded in the benchmark we use: only matches within the
same category are counted, a geometrically identical match (and in
this sense very good match) from a different category is counted as
a negative result.

8 Conclusions

To our knowledge, we are the first to collect a significant num-
ber of sketches for the evaluation of shape retrieval performance.
Our dataset is based on the freely available and widely accepted set
of models from the Princeton Shape Benchmark. This makes our
benchmark easily applicable in any sketch-based shape retrieval
project. We make the set of benchmark sketches available as a free
resource and hope that this helps making comparisons between ap-
proaches easier as well as more reliable.

Our dataset shows that artificially limiting the input to closed
boundary curves [Chen et al. 2003] is, quite simply, not how hu-
mans would like to draw for shape retrieval. Although our evalu-
ation shows that rendering additional computer generated lines re-
sults only in a slight improvement of retrieval performance, it is
important that a system actually technically supports interior lines.

Although the proposed approach achieves significantly better per-
formance than any of the previous approaches we evaluated, a brief
look into the sketches we have collected suggests that sketch-based
shape retrieval for realistic inputs is still a very hard problem. The
main technical ingredients of our approach, bag-of-features and the
new descriptor for line-art renderings, relate to the variance and de-
ficiencies in this type of input. The underlying feature transform
is based on Gabor filters – as is the global GIST descriptor [Oliva
and Torralba 2001] successfully employed in image retrieval. One
of the main differences is that we do not fix the filter bank parame-
ters (as is the case for the GIST descriptor) but rather learn optimal

p
ar

ti
al

 m
at

ch
in

g
st

an
d

ar
d

 r
et

ri
ev

al
 r

es
u

lt
s

a) b)

c) d)

e) f)

g) h)

query 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

m
at

ch
in

g
 i

n
te

ri
o

r
li

n
es

Figure 10: Examples of sketch-based query results using our system. For each sketch (top left of a cell), we show the top 19 results with a
color indicating their rank (blue being the highest, see a)). The “chair” example (g) illustrates partial matching (i.e., tables are retrieved).
The “man” example (f) exhibits failure cases, with the highest ranked objects not matching the desired object. Note that many of the remaining
sketches are perfect matches, though. Finally, we show an abstract query in h) that matches interior lines of the retrieved umbrellas.

parameter values suitable for sketches. This strategy is general and
we are interested in seeing its applications in other domains as well.

We have not discussed the user interface we are using as it is not yet
aiding the search interaction. There is clearly room for improve-
ment, such as optimizing the layout of the results or learning from
individual users or the user community as a whole. Different users
might sketch different types of lines which we could exploit to im-
prove retrieval results.

Despite these possible ways of improving sketch-based shape re-
trieval, we agree with many researchers that rather than using one
search mode in isolation, combining text-queries and context-based
shape search with sketch-based search could be a potentially fruit-
ful direction for further research.

Acknowledgements We thank all participants of our experi-
ments for their sketches, the anonymous reviewers for their con-
structive comments and James Hays for his help with Amazon Me-
chanical Turk. This work has been supported in part by the ERC-
2010-StG 259550 XSHAPE grant, the REVERIE E.U. project, the
3DLife N.o.E. and the iSpace&Time ANR project.

References

BAY, H., TUYTELAARS, T., AND GOOL, L. J. V. 2006. SURF:
Speeded up robust features. In ECCV, 404–417.

BÜLTHOFF, H., AND EDELMAN, S. 1992. Psychophysical sup-
port for a two-dimensional view interpolation theory of object
recognition. Proc. National Academy of Sciences 89, 1, 60–64.

CANDÈS, E. J., AND DONOHO, D. L. 1999. Curvelets – a surpris-
ingly effective nonadaptive representation for objects with edges.
In Int’l. Conf. Curves and Surfaces, 105–120.

CANNY, J. 1986. A computational approach to edge detection.
IEEE TPAMI 8, 6, 679–698.

CHEN, D.-Y., TIAN, X.-P., SHEN, Y.-T., AND OUHYOUNG, M.
2003. On visual similarity based 3d model retrieval. Comput.
Graph. Forum (Proc. Eurographics) 22, 3, 223–232.

CHEN, T., CHENG, M., TAN, P., SHAMIR, A., AND HU, S. 2009.
Sketch2Photo: internet image montage. ACM TOG (Proc. SIG-
GRAPH ASIA) 28, 5, 124:1–124:10.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S.,
FINKELSTEIN, A., FUNKHOUSER, T., AND RUSINKIEWICZ,
S. 2008. Where do people draw lines? ACM TOG (Proc. SIG-
GRAPH) 27, 3, 88:1–88:11.

DARAS, P., AND AXENOPOULOS, A. 2010. A 3D shape retrieval
framework supporting multimodal queries. IJCV 89, 2, 229–247.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND

SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM TOG (Proc. SIGGRAPH) 22, 3, 848–855.

DUTAGACI, H., CHEUNG, C. P., AND GODIL, A. 2010. A bench-
mark for best view selection of 3D objects. In Proc. ACM work-
shop on 3D object retrieval, 45–50.

EITZ, M., RICHTER, R., HILDEBRAND, K., BOUBEKEUR, T.,
AND ALEXA, M. 2011. Photosketcher: interactive sketch-based
image synthesis. IEEE CG&A 31, 6, 56–66.

FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDER-
MAN, A., DOBKIN, D., AND JACOBS, D. 2003. A search en-
gine for 3D models. ACM TOG 22, 1, 83–105.

HOU, S., AND RAMANI, K. 2006. Sketch-based 3D engineering
part class browsing and retrieval. In Sketch-Based Interfaces and
Modeling, 131–138.

JACOBS, C. E., FINKELSTEIN, A., AND SALESIN, D. H. 1995.
Fast multiresolution image querying. In Proc. SIGGRAPH 95,
277–286.

LEE, J., AND FUNKHOUSER, T. 2008. Sketch-based search and
composition of 3D models. In Sketch-Based Interfaces and Mod-
eling, 97–104.

LEE, Y., ZITNICK, C., AND COHEN, M. 2011. ShadowDraw:
real-time user guidance for freehand drawing. ACM TOG (Proc.
SIGGRAPH) 30, 4, 27:1–27:10.

LLOYD, S. P. 1982. Least squares quantization in PCM. IEEE
Trans. Information Theory 28, 2, 129–137.

LÖFFLER, J. 2000. Content-based retrieval of 3D models in dis-
tributed web databases by visual shape information. In Int’l.
Conf. Information Visualization, 82–87.

LOWE, D. 2004. Distinctive image features from scale-invariant
keypoints. IJCV 60, 2, 91–110.

OLIVA, A., AND TORRALBA, A. 2001. Modeling the shape of the
scene: A holistic representation of the spatial envelope. IJCV 42,
3, 145–175.

PU, J., LOU, K., AND RAMANI, K. 2005. A 2D sketch-based user
interface for 3D CAD model retrieval. Computer-Aided Design
and Applications 2, 6, 717–725.

SCHÖLKOPF, B., AND SMOLA, A. 2002. Learning with Kernels.
The MIT Press.

SECORD, A., LU, J., FINKELSTEIN, A., SINGH, M., AND

NEALEN, A. 2011. Perceptual models of viewpoint preference.
ACM TOG 30, 5, 109:1–109:12.

SHAO, T., XU, W., YIN, K., WANG, J., ZHOU, K., AND GUO,
B. 2011. Discriminative sketch-based 3D model retrieval via
robust shape matching. Computer Graphics Forum (Proc. Pacific
Graphics) 30, 7, 2011–2020.

SHILANE, P., MIN, P., KAZHDAN, M., AND FUNKHOUSER, T.
2004. The Princeton Shape Benchmark. In Proc. Shape Model-
ing International, 167–178.

SHIN, H., AND IGARASHI, T. 2007. Magic canvas: interactive
design of a 3-D scene prototype from freehand sketches. In Proc.
Graphics Interface, 63–70.

SIVIC, J., AND ZISSERMAN, A. 2003. Video Google: a text re-
trieval approach to object matching in videos. In ICCV, 1470–
1477.

SQUIRE, D., MUELLER, W., MUELLER, H., AND RAKI, J. 1999.
Content-based query of image databases. In Scand. Conf. on
Image Analysis, 143–149.

TANGELDER, J., AND VELTKAMP, R. 2008. A survey of con-
tent based 3D shape retrieval methods. Multimedia Tools and
Applications 39, 441–471.

WITTEN, I., MOFFAT, A., AND BELL, T. 1999. Managing giga-
bytes: compressing and indexing documents and images. Mor-
gan Kaufmann.

YOON, S., SCHERER, M., SCHRECK, T., AND KUIJPER, A. 2010.
Sketch-based 3d model retrieval using diffusion tensor fields of
suggestive contours. In Int’l. Conf. Multimedia, 193–200.

