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Compared to 2D textures, solid textures can represent not only the bounding surfaces, but

also their interiors. Existing solid texture synthesis methods pay little attention to the gen-

eration of conforming textures that capture geometric structures or reflect the artists’

design intentions. In this paper, we propose a novel approach to synthesizing solid textures

using 2D exemplars. The generated textures locally agree with a tensor field derived from

user sketching curves. We use a deterministic approach and only a small portion of the

voxels needs to be synthesized on demand. Correction is fundamental in deterministic tex-

ture synthesis. We propose a history windows representation, which is general enough to

unifiedly represent various previous correction schemes, and a dual grid scheme based on

it to significantly reduce the dependent voxels while still producing high quality results.

Experiments demonstrate that our method produces significantly improved solid textures

with a small amount of user interaction.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Textures play an essential role in current rendering

techniques. Conceptually speaking, a texture is a function

represented by a regular array of discrete samples, which

defines some rendering attribute (e.g. color) on a surface.

In addition to the sampled data, there must also exist a

mapping between the texture’s sampling space and the

surface of the object which is to be textured. Most research

on texture synthesis to date has been based on two-dimen-

sional textures. However, 2D textures require complex

mapping and suffer nearly unavoidable distortion when

applied to objects in 3D space. Solid textures, which are

sampled in three dimensions, offer an attractive alternative

to 2D textures. Since the texture values are sampled on a

3D grid, they can be mapped to 3D geometry without the

need for extra parametrization. Based on the similarity

with physical solid objects, solid textures also allow the

objects to undergo physical operations. Consistent textures

are produced from the whole volume instead of only the

bounding surface.

Consistency with significant geometric structures or

features is crucial if textures are to reveal rather than ob-

scure the shape of the model [30]. It is also widely known

that texture synthesis over surfaces and texture mapping

can benefit from controllable, well designed vector fields

[23,28,31,5]. However, solid texture synthesis methods

developed so far have paid little attention to the alignment

of textures with the general tensor field or with the overall

shape of objects. This is not particularly noticeable if the

textures are isotropic, but for anisotropic textures, it is of-

ten desirable that textures follow natural or designed direc-

tion fields on the surface and in the interior. Furthermore,

many real objects contain their own internal 3D structures,

which should be reproduced if textures are synthesized on

such objects. For example, as shown in Fig. 1, a rattan fertil-

ity object typically follows its overall shape on the surface

and is consistently woven inside. To obtain realistic results
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in the virtual world, such structures should be reproduced

during solid texture synthesis process.

Similar to [10,2], our method synthesizes solid textures

from 2D exemplars, since they are much easier to obtain. In

order to synthesize solid textures that capture the overall

shape and internal structure of objects, we propose a novel

method with the following contributions.

First, we achieve significant improvement in appearance

and consistency by synthesizing solid textures from 2D

exemplars with non-trivial tensor fields. Synthesized solid

textures following significant features can often be more

impressive. To compactly reproduce real textured solids

by synthesis, exemplar images with particular orientation

(rather than canonical axes as previous methods do) of

the solid can often be much more representative. This flex-

ibility further allows artists to control the synthesized solid

textures and effectively express their design intentions.

Although automatic detection of guiding feature curves

are possible, we believe certain amount of user interaction

is in fact a more flexible solution as user controlled design

may follow other artistic consideration (see the example

in Fig. 14). Our method generates user-guided solid tex-

tures by constructing smooth 3D tensor fields based on

interactive user sketching and then synthesizing solid tex-

tures following the sketch derived tensor field.

Second, based on deterministic parallel synthesis para-

digm [2,14], we propose a novel algorithm to significantly

improve the efficiency through a general history windows

representation combined with a dual grid based correction

scheme. Compared to two-dimensional image textures, so-

lid textures can often be overwhelming to compute and

store. In contrast to traditional solid textures, those follow-

ing 3D tensor fields cannot be produced by synthesizing in

a cube and repeatedly translating the cube to cover the

whole space, as the tensor field will not usually be consis-

tent between translated cubes. To solve this problem, we

also use a synthesis-on-demand approach to synthesize

only the visible portion of overall voxels. This does require

that the synthesis process should be deterministic. How-

ever, compared to 2D texture synthesis, the determinism

will introduce much more computation and storage over-

head in 3D texture synthesis. Some common techniques

such as subpass will also introduce significantly more

overhead than its 2D counterpart. In addition, for more

structured, anisotropic exemplars as used in this work, a

larger neighborhood and/or more passes (subpasses) of

synthesis are needed to produce high quality results. Large

numbers of dependent voxels need to be synthesized

which makes it not only expensive to compute but also

prohibitive to store on commodity PCs using previous

methods. As demonstrated later by both complexity analy-

sis and experiments, our proposed approach significantly

reduces the number of voxels needed to be synthesized

while preserving the visual quality of the synthesized

results, leading to lower storage costs and much more

efficient computation.

Fig. 1. Sketch guided solid texture synthesis on the ‘fertility’ model. Compared with the results with a trivial field (b and e), using a few user sketched

curves (a), produced solid textures (c and f) are well aligned with the overall shape. Interior structures of (c and f) are revealed in (d and g) (h and i).
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1.1. Related work

Texture synthesis has been an active research direction

in computer graphics for many years. A complete survey of

texture synthesis algorithms is beyond the scope of the pa-

per. Please refer to Wei et al. [26] for an excellent recent

survey of example based texture synthesis, and Pietroni

[20] for a thorough and up-to-date survey of solid texture

synthesis. Here we briefly review most relevant research

works.

1.1.1. Example based image texture synthesis

Most previous research work in texture synthesis fo-

cuses on image textures. Various example based methods

have been proposed using pixel-based synthesis

[4,27,1,9] or patch-based synthesis [3,13]. Further

improvements have been made in recent years, such as

iterative texture optimization in [12] for high quality syn-

thesis and parallel, deterministic synthesis [14] which al-

lows windows from an infinite texture image to be

synthesized deterministically. This idea is particularly use-

ful since computing and storing solid textures is much

more expensive. Structured textures are challenging to

fully reproduce. Improvements can be made by using fea-

ture matching and alignment based on structural similarity

[29] or converting the image to appearance space to cap-

ture more essential structures [15].

1.1.2. Image texture synthesis with guidance of direction fields

Direct texture synthesis over surfaces reduces the arti-

facts of texture mapping. Direction fields are often used

to guide the synthesis process, especially for anisotropic

textures. Praun et al. [21] texture surfaces by repeatedly

pasting patches and using alpha blending to hide the

seams. Various planar texture synthesis methods have

been extended to surfaces with appropriately constructed

neighborhoods [23,28,31,11]. Recently [30] further empha-

sizes aligning synthesized textures with surface features

and promotes feature-to-feature correspondence.

1.1.3. Solid texture synthesis

Early works of solid texture synthesis focus on proce-

dural approaches [18,19], i.e. using rules to simulate solid

textures. This requires very little storage to store the rules,

but is restricted in expressibility and unintuitive to control.

To address such issues, most recent methods use exem-

plars to guide the synthesis. Early work in [6,7] estimates

parametric models from 2D exemplar images. Wei [25]

first extends non-parametric 2D texture synthesis algo-

rithms to synthesize solid textures. An improved algorithm

is proposed in [10] using both texture optimization [12]

and histogram matching [8]. A more efficient GPU-based

implementation was proposed in [2] to synthesize and

store pixels when necessary, using a deterministic ap-

proach. All of the methods discussed so far assume that so-

lid textures are well aligned with world coordinate system,

which limits their ability to capture arbitrary geometric

structures and design intentions. The idea of vector repre-

sentation has been introduced recently [24], as a way to

improve storage compactness and provide nice features

such as resolution independence.

Lapped textures have been extended to synthesize 3D

volumetric textures [22], however, they require 3D volu-

metric exemplars instead of 2D image exemplars as input.

Although 3D exemplars can be first synthesized from 2D

exemplars, such precomputation leads to unnecessary

higher dimension in local neighborhood matching thus

slows down the computation. Seams between patches can-

not be fully hidden; this becomes more noticeable for

structured textures as used in the paper. Owada et al.

[17] propose a system for interactive volume painting,

which also utilizes user sketches and geometry to guide

the volume synthesis process. Their focus however, is on

the user interface, while the synthesis method is simple

and does not reproduce structured textures.

The work in [16] uses techniques similar to solid tex-

ture synthesis for motion synthesis. Due to the different

nature of the problem, their work focuses on synthesizing

motion vectors based on 3D vector fields and uses a much

coarse grid. To the best of our knowledge, this is the first

work to synthesize tensor field guided solid textures from

2D exemplars (in a Lazy manner). Novel algorithms are

proposed to address the practical difficulties in this more

flexible formulation.

The overall algorithm is presented in Section 2 followed

by detailed discussions of key technical components: 3D

tensor field generation in Section 3, solid texture synthesis

w.r.t. tensor fields in Section 4 and efficient deterministic

synthesis in Section 5. Experimental results are presented

in Section 6, and finally conclusions and future work are gi-

ven in Section 7.

2. Overview

The overall algorithm pipeline is presented in Fig. 2. We

first construct a smooth 3D tensor field both on the surface

and in the interior of the model. An intuitive sketching

interface is provided to allow users to incrementally draw

sketching curves and tensor fields agreeing with such

curves in the least-squares sense are computed using har-

monic interpolation of quaternions. This process is suffi-

ciently efficient to provide interactive feedback.

Following the well-known algorithm structure [14], our

synthesis process is carried out in a multi-resolution 3D

pyramid with L levels using a deterministic approach. We

start from a coarse grid in the base level which is first ini-

tialized. Two operations, namely upsampling and correc-

tion, are applied to obtain the synthesis results in the

next finer level.

We adapt the concept of ‘triple’ in [2] and briefly de-

scribe some notations. A coordinate triple for some voxel

refers to a triple of coordinates in three 2D exemplar

images Ixy, Iyz and Izx corresponding to the planes xy, yz,

zx where x, y, z agree with local tensor field. Assume N is

the template size in the current level, for an arbitrary coor-

dinate triple, three intersecting N � N neighborhoods are

determined. Pairwise intersections of such neighborhoods

result in three intersected crossbars. Not all the coordinate

triples are proper. Candidate triples refer to such ‘‘compat-

ible’’ coordinate triples with relatively consistent color

along the intersected crossbars (small matching errors)
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and spatially consistent with at least one neighboring pix-

el. For every pixel p in the input 2D exemplar, at most NT

best matched candidate triples are precomputed. NT = 12

is used for all the examples in the paper. For each pixel p

in the input 2D exemplar E, the first candidate triple of p

defines 3 interleaved N � N neighborhoods. One of the

intersected stick with length N is orthogonal with E, which

can be used to thicken E according to the stick to form a

candidate slab.

In the initialization stage, an initial coordinate triple is

assigned to each coarse level voxel. To compute from a

coarser level of the pyramid to a finer level, upsampling

interpolates for each voxel the coordinate triple in the finer

level from that of the coarser level. Correction is the key

step of the synthesis algorithm. The coordinate triple

(and color) at a voxel is updated, according to its local

neighborhood matched against the given exemplars. For

efficient implementation, the local coherence idea can be

utilized to obtain a relatively small set of possible candi-

dates, using the candidate triples from neighboring voxels.

To further improve the results, multiple correction passes

can be performed. A subpass correction scheme can also

be employed, which separates the whole volume into

blocks of s3 size, where s is the size in all the x, y and z

directions. s3 subpasses are performed in each correction

pass. In each subpass, 1
s3
of overall voxels with the same rel-

ative location in each block are updated. Later subpasses

can utilize newly corrected voxels from previous subpass-

es, accelerating the convergence. These techniques were

originally proposed in the settings of 2D texture synthesis

[14] and directly generalized for solid texture synthesis [2].

The correction output is locally deterministic; only those

voxels sufficiently close to the one being considered will

be relevant, making the algorithm highly parallel. This al-

lows synthesizing voxels on demand while keeping consis-

tency. In a departure from previous techniques, we employ

new strategies respecting the local tensor field in the major

steps of the synthesis process.

Correction is the most important step in the synthesis

process. High quality results can be obtained by perform-

ing multiple correction passes. Unlike the image texture

synthesis, a thin layer close to some given surface is often

requested for a solid texture to be synthesized. Therefore,

more correction passes or subpass scheme requires much

more voxels to be synthesized. We develop a new general

representation called history windows, by which different

correction schemes can be designed to better balance the

competing demands of computational complexity and out-

put quality. Based on the general representation, we design

a dual-grid correction scheme, which effectively restricts

the propagation of the dependent voxel set using ‘‘barri-

ers’’ and ensures synthesis quality using dual arrange-

ments of such barriers. A mask of dependent voxels

based on the correction scheme is computed and solid tex-

tures are synthesized only within the mask.

3. Smooth 3D tensor field generation

Our method allows synthesized solid textures to be

guided by a sparse set of user sketches. To control the syn-

thesis process in local regions, a smooth 3D tensor field is

first computed. The rotation component of the tensor field

at each point v contains three orthonormal vectors, form-

ing a right-hand local frame. Taking the trivial global frame

as a reference, the local tensor field at v can be denoted by

the rotation from the global frame to the local frame. The

rotation can be well represented by a unit quaternion

q(v). Unit quaternion q(w,x,y,z) has four components,

where w ¼ cosða
2
Þ. q represents the counterclockwise rota-

tion by angle a around the axis (x,y,z). Quaternion interpo-

lation has also been used in [32] for surface deformation

propagation.

We propose to use a sketch-based approach to interac-

tively design a smooth 3D tensor field for a given model.

The x, y and z directions of the local tensor field determines

the three sectional planes in space with consistent textures

as exemplar images.

In our interface, users are allowed to incrementally

draw a few guiding curves on the surface or in the interior

of the volume. Local frames on such curves are first deter-

mined. The 3D tensor field in the volume is then obtained

by interpolating the specified local frames in the least-

squares sense. This is very efficient since only a few sparse

linear systems need to be solved, allowing interactive feed-

back. An example is shown in Fig. 3. A smooth tensor field

is first computed based on a few sketch curves rendered in

yellow (a). The tensor field is then interactively updated

when new curves are drawn (rendered in red) (b). The field

is used in later synthesis stages to produce field aligned so-

lid textures (c and d).

For curves drawn on the surface, a local frame (without

orientation) can be obtained from the tangent direction,

outward normal and their cross product. If the curve is

drawn within the volume, a reference sectional surface

(e.g. a plane) is first specified and the curve is assumed

to lie on the reference surface whose normal is served in-

stead of the bounding surface normal. Various examples

Surface of 
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User Input 

Sketch

Field 
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Mask 
Calculation

Field Aligned Base 

Level Initialization 

2D Texture 
(Input)

Triple 
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Dual Grid 
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Texture 
Generation
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Upsampling

Interactive

Repeat L-1 times

Fig. 2. Algorithm pipeline.
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are shown in Fig. 12 where user sketches and correspond-

ing smooth tensor fields are presented. Since texture

exemplars may be different in different section planes,

users are also allowed to assign labels x, y and z to different

principal directions of the tensor field at one point of each

sketch curve and this assignment is propagated to the

whole curve.

When a new curve is drawn, the tensor field is adjusted

to take into account its effect. Based on the sketching order,

all the curves form a sequence C={C1,C2, . . . ,Cn}. As de-

scribed above, when Ci is sketched, we first estimate the lo-

cal frames along the curve (represented as unit

quaternions for efficiency). To smoothly interpolate the

tensor field, we interpolate the quaternions by solving

the following harmonic equations

Dqðv iÞ ¼
X

v j2Nðv iÞ
xði; jÞðqðv iÞ � qðv jÞÞ ¼ 0: ð1Þ

D is the Laplacian operator defined on the volumetric grid.

N(vi) is the set of voxels in the 1-ring neighborhood of a

voxel vi. The weight x(i, j) for voxel vj and vi can be chosen

simply as 1
di
, where di = kN(vi)k is the degree of vertex vi. In

practice, we solve Eq. (1) in the least-squares sense, taking

the guiding curves as soft constraints, i.e. minimizing the

following quadratic energy

kLQk2 þ
X

v2C0
w2kqðvÞ � �qðvÞk2; ð2Þ

whereQ denotes the vector composed of the quaternions of

all voxels, L is the Laplacian matrix, constituting connectiv-

ity and coefficients derived from Eq. (1). C0 includes voxels

on all the sketched curves. q 2 Q is the quaternion at a spe-

cific voxel and �qðvÞ is the local frame derived from sketches.

w is the weight that balances the relative importance of

smoothness and boundary constraints. w = 100 works well

in practice and is used for all the examples in the paper.

If the interpolated q is non-zero, we normalize it to

have unit length, thus corresponds to a valid rotation. In

case this becomes zero, singularities may appear. Such

occurrence is rare in practice and does not significantly af-

fect the synthesis results, as demonstrated with the results

in Fig. 10. An arbitrary neighboring direction is simply cho-

sen to replace such singularities.

In practice, a few initial sketch curves are often suffi-

cient to establish a smooth tensor field globally aligned

with user intentions. Users are allowed to specify a new

curve Ci for local refinement. Conceptually the current

tensor field will be rotated a bit such that one direction

qCi
out of the six possibilities in the tensor field namely

�q ¼ fqx;�qx;qy;�qy;qz;�qzg which leads to the minimal

alignment error with the tangent vector t along the curve

Ci will be identified and aligned with t using appropriate

rotation. Local frames obtained through rotation form part

of the boundary conditions as before. Unit quaternions are

efficient to represent tensor fields, but have an ambiguity

that q is the same as �q. We use a simple and effective

solution to this issue. For the first point on the first curve

C1, we arbitrarily choose q, e.g. with wP 0. We can deter-

mine q on the curve C1 based on continuity along the

curve. For points on later curves Ci, the sign of q can be

chosen based on the current tensor field ~q such that

kq� ~qk is minimized.

Most previous efforts on field design focus on vector

fields (typically over manifold surfaces). Takayama et al.

[22] proposed a sketch-based approach which first opti-

mizes Laplacian energies independently for each coordi-

nate component and orthogonalizes such directions only

when necessary. Since our synthesis algorithm always re-

quires orthogonal tensor fields, quaternion interpolation

is more efficient as only four independent linear systems

are involved (rather than nine) and no postprocessing is

needed to ensure orthogonality. Our interface is also differ-

ent from the depth field based approach and probably

more suitable for our scenario since the symmetric

assumption of textures does not exist in general in our

cases. To control solid texture synthesis, rotation fields

are often sufficient. Our method can be extended to use

more generalized tensor fields with varied scalings in

space. This can be implemented by specifying scalings at

a few sparse 3D positions by the user, and similarly esti-

mating the scaling at each point of the 3D space using har-

monic interpolation.

4. Solid texture synthesis

To synthesize solid textures guided by tensor fields, we

extend the deterministic synthesis approach to deal with

tensor fields in all the major steps of the algorithm. To

measure the similarity between two pixels, we use L1 dis-

tance between a vector comprising the red, green, and

blue1 components of the pixels. For exemplar image

Fig. 3. Sketch guided 3D tensor field generation. Smooth tensor fields are interactively obtained while users adding sketches (a and b). Solid textures are

consistently produced w.r.t. the field on the bounding surface (c) or in the interior on demand (d).

1 For interpretation of color in all figures, the reader is referred to the

web version of this article.
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textures with high regularity (e.g. bricks), a further feature

component is introduced, using high intensity to indicate

feature curves. Such feature curves in the input image may

be obtained automatically, or specified by the user [29].

4.1. Initialization

The synthesis process starts from a low level Lstart of the

3D volume pyramid. The initialization of Lstart is very

important, since a good initialization can better preserve

the structure of the input image and improve convergence

of the synthesis process.

Solid texture synthesis amounts to computing a triple

coordinate for each grid point. To obtain an initial guess,

we use the candidate slabs. First we tile candidate slabs

to cover the 3D space to get a volume texture V, so each

voxel v(i, j,k) (pixel coordinate) in V corresponds to a coor-

dinate triple denoted by T(v). Since we now have a tensor

field, for v in Lstart, with local tensor field qv, the warped

coordinate triple is Tð½q�1
v
v �Þ, where [�] means the closest

integer point. If the derivative of the local tensor field is

significantly large or the voxel v is far from the origin,

the initial solid texture obtained in this manner may be

highly distorted. We can divide Lstart to a few K � K � K

subparts (here K refers to pixel resolution, and K = 64 is

used for our experiments) and initialize each part respec-

tively. Although this may cause discontinuities between

different parts, as an initial value, it does provide a good

approximation to the synthesized volume and leads to im-

proved synthesis results, as shown in Fig. 4.

4.2. Upsampling

Due to the use of the local tensor field, simply upsam-

pling the coordinates from the parent level is not suitable.

As shown in Eq. (3), v(i, j,k) is a point in the synthesized le-

vel Ll, and its parent is vp
i
2

� �

;

j
2

j k

;

k
2

� �

� �

with texture coordi-

nate triple T(vp) and rotation q
vp
, then the coordinate triple

for the child v in level Ll is given as

TðvÞl ¼ TðvpÞl�1 þ q�1
vp
tv ; ð3Þ

where tv equals to the offset between v and its ‘‘upsam-

pled’’ parent, which is hl(i mod 2, j mod 2, k mod 2), and

the add operation between a triple T(Txy,Tyz,Tzx) and a vec-

tor in 3D d(dx,dy,dz) is defined as

T þ d ¼ ðTxy þ ðdx;dyÞ; Tyz þ ðdy;dzÞ; Tzx þ ðdz; dxÞÞ; ð4Þ

where Txy, Tyz and Tzx refer to the three 2D coordinates of

the coordinate triple T respectively (see Fig. 5a).

4.2.1. Gaussian image stack

Instead of using a Gaussian image pyramid, we employ

the Gaussian image stack [14] in our synthesis process. This

uses Gaussian filtering without downsampling to replace

the traditional Gaussian pyramid. This essentially allows

‘‘fractional sampling’’ in a Gaussian image pyramid,

improving the sampling accuracy. Let hl denote the regular

spacing of exemplar images in level l (l = 1,2, . . . ,L), hl = 2L�l.

4.3. Correction

Correction replaces the coordinate triple associated

with each voxel by one best matching its neighborhood.

For a voxel v, we gather the voxels in 3 N � N neighbor-

hoods, and use these neighborhoods to search the best

matching candidate. There are two main differences from

the previous method:

(1) The 3 N � N neighborhoods should be aligned with

the local tensor field, not the trivial N � N neighbor-

hoods in the global coordinate. For a voxel v with

local tensor field qv, the 3 N � N neighborhoods are:

Nxy ¼ fv þ q
v
� ðx; y; 0Þj � Nh 6 x; y 6 Nhg

Nyz ¼ fv þ q
v
� ð0; y; zÞj � Nh 6 y; z 6 Nhg

Nzx ¼ fv þ q
v
� ðx;0; zÞj � Nh 6 x; z 6 Nhg

where Nh ¼ N�1
2
. We use trilinear interpolation in coarse

levels and nearest neighbor in finer levels to approximate

Fig. 4. Distortions of the initial solid texture (a) can be greatly reduced by subpart initialization (b). This also leads to improved synthesis result from

(c) to (d).
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the color of voxels in the three neighborhoods. This better

balances performance and quality, since the quality is

more affected with coarse level synthesis while the com-

putational cost is mainly determined by the fine level syn-

thesis. The neighborhood w.r.t. local fields is shown in

Fig. 5b. For fine levels, the tensor field at the center voxel

is used to sample the local neighborhood. For coarse levels,

a numerical integration along the directions is used instead

to improve the sampling accuracy, similar in spirit to the

surface case in [11].

(2) In the searching phase, we first gather a set of candi-

date triples for each voxel. For some voxel v, consid-

ering the local tensor field qv, we denote Pxy(d),

Pyz(d), Pzx(d) the projection of a vector d on planes

xy, yz, zx of the local frame qv, respectively. Our can-

didate set SðvÞ is different from [2] and is composed

of

SðvÞ ¼ SxyðvÞ [ SyzðvÞ [ SxzðvÞ
SxyðvÞ ¼ fxyCkð½Txyðv þ dÞ � hlPxyðdÞ�Þjd ¼ ðdx; dy; dzÞg;

SyzðvÞ ¼ fyzCkð½Tyzðv þ dÞ � hlPyzðdÞ�Þjd ¼ ðdx; dy; dzÞg;

SzxðvÞ ¼ fzxCkð½Tzxðv þ dÞ � hlPzxðdÞ�Þjd ¼ ðdx; dy;dzÞg;

dx; dy; dz 2 f�1;0;1g; k ¼ 1;2; . . .

where k iterates over precomputed candidate triples at

each exemplar pixel, xyCk, yzCk, zxCk represent the kth candi-

date triple for a pixel in Ixy, Iyz, Izx, [�] refers to the closest

pixel, and Txy, Tyz, Tzx are three 2D coordinates of the cur-

rent coordinate triple at a voxel, as defined in Section 4.2.

In our implementation, we have found a reduced space

with d set to (dx,dy,0), (0,dy,dz), (dx,0,dz) for Sxy, Syz and

Szx respectively is sufficient to produce good results. All

the neighboring pixels in three image planes w.r.t. the local

tensor field are collected. We accelerate the searching

phase using a PCA projection to reduce the data to about

20 dimensions per plane, without significant degradation

of the output quality.

4.3.1. Correction subpass

We similarly use subpass scheme (with s3 = 8) for better

convergence. However, unlike in 2D case where only a

small amount of extra cost is needed, on-demand synthesis

for solid textures is significantly different since some

particular surfaces are often requested, which requires

synthesizing a thin layer around the surface. The thickness

of the layer is approximately proportional to the number of

subpasses, so is the computation overhead. Our dual-grid

correction scheme reduces the dependency chain further

than what was possible with the standard correction

scheme used in [2]. This issue and our solution will be ad-

dressed in detail in the next section.

5. Spatial determinism

Since we synthesize solid textures on demand, spatial

determinism is an important requirement. Determinism

can be achieved by synthesizing all the voxels in each pyr-

amid level that will influence the correction passes of the

desired part. This is not a problem for image texture syn-

thesis; for solid textures, however, the total number of syn-

thesized voxels grows quickly with increased parameters.

For level l in a total of L levels, relevant parameters include

the size of local neighborhood Nl, the number of correction

passes Pl and the number of subpasses s3l . We define the

impact distance of level l Ll as the largest distance of

dependent voxels away from the voxel in question, which

satisfies Ll ¼
PlNls

3
l

2
and the overall impact distance

L ¼ P

Ll ¼
P PlNls

3
l

2
. Although, in practice the interested part

of the solid is usually some 2D surfaces the total number

still grows quickly with increased parameters. This does

restrict us from using larger parameters to get high quality

results.

5.1. Observation and assumption

Using larger values of L, Nl, Pl and s3l can greatly improve

the quality, and the resulting texture can better preserve

global statistics as well as local similarity and continuity.

Notice that the overall appearance of the synthesized vol-

ume is mainly determined by the coarse level of the vol-

ume pyramid, while the correction passes in finer grid

can only improve the local continuity. So it is reasonable

to regard that the coordinate of a voxel in finer levels is

influenced only by a limited size of neighborhood, even if

more times of correction passes are performed. In fact, it

xy

z

pv v

xy
T

yz
T

zx
T

(a) (b)

Fig. 5. Illustrations for (a) upsampling w.r.t. local tensor field and (b) the local neighborhood.
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is not necessary to keep such a large dependent set as

in [2].

Based on this assumption, to fully control the size of the

dependent set, we propose a novel representation called

history windows. History windows describe the local

dependency for on-demand synthesis, and is used in the

correction passes. Previously used correction schemes,

including the correction pass and subpass schemes can

be treated as special cases of the new representation. This

also allows further flexible schemes to be designed, balanc-

ing between the computational cost and the quality of re-

sults, while keeping the desirable spatial determinism

property. We further propose a novel dual grid correction

scheme using this general representation which is very

efficient and achieves high quality synthesis for on-de-

mand solid texture synthesis.

5.2. History window

In the correction pass, as mentioned in Section 4, we use

3 N � N neighborhoods determined with the local tensor

field to search for a best matching candidate triple. We

associate every voxel with a history window which speci-

fies how to choose the color of voxels in the local neighbor-

hood. For simplicity, we will explain the history window in

2D case, while the extension to 3D is trivial.

5.2.1. 2D History window

We first introduce some notations. For a pixel p in the

synthesized pyramid, we use subscript to represent the

pyramid level l. Suppose we perform Pl correction passes

at every pyramid level, each pixel p has a sequence of

Pl + 1 versions. Thus pi
l refers to the pixel of p at level l after

the ith correction pass, p0
l means the upsampled pixel from

level l � 1 without any correction. We call i the version of

pi
l. In the ith correction pass for 2D texture synthesis, we

gather an N � N neighborhood for every pixel pi�1 to find

the most well matched neighborhood, then get the up-

dated pixel pi, that is, pixels of version i � 1 in pi�1’s neigh-

borhood are used in the correction pass. We use an N � N

window to record the version of pixels in pi�1’s neighbor-

hood, which is used in the ith correction pass. This N � N

window is called the history window of pi�1 and is denoted

as H(pi�1). Simple correction without subpass implies that

each element in H(pi�1) has the value i � 1; such H is also

used in the first subpass in the s2 = 4 subpasses. The history

windows of the 2nd, 3rd and 4th subpasses are illustrated

in Fig. 6a–c.

5.2.2. History window with 3D tensor field

In the 3D case, we use a D � D � D 3D window H3 to re-

cord the version of voxels in the D � D � D neighborhood.

As described in Section 4, the 3 N � N neighborhoods are

selected to align with the 3D tensor field, computed using

the nearest neighbor of the voxels in the pyramid volume.

The version of voxels used in the interpolation is deter-

mined by H3. D should be chosen larger than N, to deal with

local rotations. In practice we choose D ¼ N �
ffiffiffi

2
pl m

. This

guarantees that all the relevant neighborhood voxels are

covered in the history window.

5.3. Dual-grid correction

The history window is a general representation which

allows construction of arbitrarily complicated update

schemes. According to the observation in Section 5.1, a

voxel is highly related to voxels in its local neighborhood,

so we can safely set some barriers to limit the growth of

the dependent set. Again for simplicity, the basic idea is

first described in 2D case; all the techniques can be easily

extended to 3D space.

For some level l of the pyramid, we associate each pixel

p with a history window H(p). If a pixel q is in p’s N � N

neighborhood, the version for q in H(p) is denoted as H(p,

q). The size of the dependent set is proportional to Ps3 thus

grows quickly. By proper assignment of Hp, we can limit

the size of the dependent set under a constant value inde-

pendent of P and s. In our implementation, Hp is selected as

follows: we divide the whole image into several M �M

subparts, for every pixel q in p’s N � N neighborhood, if p

and q belong to the same subpart, then H(p,q) equals to

the latest version of q, otherwise H(p,q) equals to 0. We call

this scheme (primary) grid correction, as illustrated in

Fig. 6d and Fig. 7 (left).

This strategy can produce high quality results for voxels

near the center of each subpart, but there may exist some

artifacts (discontinuity) near the subpart boundaries. To

handle this problem, we introduce a dual-grid correction

scheme, which uses grid of the same dimension but re-

places each center of box with a vertex and each vertex

with a box centered at the vertex, as illustrated in Fig. 7

(right). For each level of synthesis with Nl passes, we first

perform Nl

2

l m

(primary) grid correction steps followed by
Nl

2

j k

passes of dual-grid correction. Note that the initial ver-

sion the dual-grid correction used is the final version by

the grid correction.

5.3.1. Subpass for grid correction

Using history windows, we can easily perform correc-

tion subpasses based on the current dual-grid correction

scheme. To simplify the description, we first introduce

intersection operator for history windows. Suppose H1(p)

and H2(p) are two history windows with the same size,

their intersection denoted by H = H1 \ H2 can be defined

as H(p,q) = min(H1(p,q), H2(p,q)). Thus the version value

in H is the minimum of the version values at the corre-

sponding position. It is clear that the size of dependent

set using H is no larger than that of using H1 or H2. Suppose

the history windows used in the two steps are Hg and Hdg

respectively. The history windows used for traditional sub-

passes are denoted as Hs, and are illustrated in Fig. 6 for 2D

case with s2 = 4. We can then use Hg \ Hs and Hdg \ Hs to

perform subpass in dual grid correction.

5.3.2. Complexity analysis

We use the impact distance described previously to

estimate the effects of dual-grid correction. Assume that

similar notations are used, except for that we use Pl and

P0
l to represent the number of grid and dual-grid correc-

tions, sl and s0 l to represent the number of grid and dual

grid subpasses. The impact distance for grid correction of

64 G.-X. Zhang et al. / Graphical Models 73 (2010) 57–71



level l satisfies Ll;1 ¼ min
PlNls

3
l

2
;Ml þ Nl

2

� �

, and that for dual-

grid correction has Ll;2 ¼ min
P0
l
Nls

03
l

2
;Ml þ Nl

2

� �

. The overall

impact distance L ¼ PðLl;1 þ Ll;2Þ. When M is significantly

large, the complexity is the same. If an appropriate M is

chosen, the complexity can be well bounded by the M

and N, significantly reducing the computational and stor-

age cost. We found that M = 10 � 15 shows good balance

between quality and performance.

6. Results

We demonstrate solid texture synthesis results for a

wide variety of models using our algorithm. Like many

algorithms for texture synthesis, some parameters need

to be chosen for the system to work, however, a fixed set

of parameters works reasonably well in most majority of

experiments. 2D exemplars used in these examples are gi-

ven in Fig. 16. The masks used to enhance feature matching

for textures in the second row are given in the third row. In

most examples, we synthesize four levels with the object

embedded in a volume whose edges are longer than those

of the bounding box to reduce boundary effects(the longest

edge of the volume is about 20–30% longer than that of the

bounding box) and discretized to about 800–1024 in its

longest dimension. A local neighborhood size N = 7 is used

for the coarsest level and N = 9 for other levels. For the

coarsest level, 3–5 correction passes are used without bar-

riers for high quality results with acceptable cost due to

the coarse grid. For other levels, dual-grid correction

scheme with 2 (primary and dual) passes of corrections

are usually performed at each level, and s3 = 8 subpasses

are usually applied to improve the synthesis quality. The

experiments were carried out on a desktop computer with

2 � Quad Core 2.27 GHz CPU. Since the tensor field is usu-

ally smooth, we found a grid with the shortest dimension

discretized to 20–30 is sufficient for our experiments.

And in coarser levels, the field is further smoothed and

downsampled to reduce discontinuity. The computation

of the field takes less than 1 s each time when a new curve

is drawn. This allows tensor fields to be modified interac-

tively by designers. The tensor field only takes a small

amount of memory to store. In the synthesis process, a

Fig. 6. History windows for different correction schemes. (a–c) history windows used in 2nd, 3rd and 4th subpasses for s2 = 4; (d) a constrained scheme

using version 0 to stop the growth of the dependent set.

Fig. 7. Left: grid correction with related history windows. Right: dual grid arrangement in red following primary grid in black for improved continuity.

Fig. 8. The dependent set (blue voxels) for synthesizing a triangular

object, N = 5,P = 3, s3 = 8, normal correction (left), and dual-grid correction

(right).
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simple trilinear interpolation is used to obtain the tensor

field at each voxel from eight corner points of the coarse

grid covering the voxel. This is simply applied to each com-

ponent of the quaternion followed by a normalization to

obtain unit quaternion. The synthesis process takes about

10–25 min. We cache synthesized solids for the two coar-

ser levels as well as those generated by the model surface.

Benefitting from the use of dual-grid correction, the syn-

thesis process for a new cut is usually 10–20 s, allowing

interactive operations to be performed on the synthesized

solids. These examples take longer time than the perfor-

mance reported in [2] because the following reasons. Our

exemplar textures are more structural and the human vi-

sual system tends to be more sensitive to well structured

images. To capture such structures, we use larger neigh-

borhood size and more correction passes. Fig. 9 shows

the results with N = 5 and other parameters unchanged.

Significantly degraded results are produced for either the

trivial or given tensor fields. The quality becomes even

poorer when non-trivial tensor fields are applied since

the initialization will be much worse. Furthermore, the

tensor field needs to be accessed and involved in various

computations, leading to longer per-voxel synthesis time.

Current implementation is CPU-based; since our algorithm

is highly parallel, we expect a GPU-based implementation

to potentially improve the performance significantly. Sim-

ilar to previous works, often a single exemplar image is

sufficient for synthesis purpose, as we have done for most

examples in the paper.

Fig. 8 demonstrates the effectiveness of the grid correc-

tion algorithm. Much fewer voxels are dependent when a

triangular object is to be synthesized. As analyzed theoret-

ically in Section 5.3, our method is effective in reducing the

number of dependent voxels and corrections. A detailed

comparison for a surface in Fig. 11 is listed in Table 1. Using

dual-grid correction, the dependent voxels are reduced by

about 80% and an over 4 times speedup is obtained. An-

other example is the vase in Fig. 12 listed in Table 2. For

the last two levels that need recomputation for different

slices, only about 1
5
voxels or comparisons are needed, indi-

cating a great saving of both time and memory, as the

number of voxels is proportional to the memory cost and

the number of comparisons is proportional to the correc-

tion time. Complicated examples similar to those pre-

sented in this paper may easily require more memory

than typically available in the computer (such as 4 GB)

without dual-grid correction. Although as a deterministic

algorithm, it is possible to partition the space and synthe-

size textures piece by piece, significant amount of dupli-

cated computation would be needed, leading to even

slower computation. Although our dual-grid correction

significantly reduces the memory and time cost (with the

same parameters), similar, visually pleasing results are

generally produced. An example is given in Fig. 11 where

(e) shows the close-up image of our method while (f) is

the result obtained without dual-grid correction, keeping

parameters unchanged.

An example of sketch guided solid texture synthesis is

shown in Fig. 1. A few sketches are drawn and used to pro-

duce a smooth 3D tensor field (a). Three orthonormal

directions are rendered in red, green and blue respectively.

Solid textures synthesized using a trivial field [10,2] are

shown in (b and e). Using the tensor field, results produced

with our method follow the overall shapes much better (c

and f). Due the deterministic nature, internal structures of

the produced solids can be synthesized on demand (d and

g). Our method can produce reasonable synthesized results

at tensor field singularities, as demonstrated in the wood

textured plate in Fig. 10. Another example in Fig. 11 syn-

thesizes zebra textures over a horse model. Our sketch

guided result looks much more realistic to mimic a zebra.

Even if this may not be an exact reproduce of real zebra,

this shows the possibility and effectiveness of controlling

the synthesized solids. It can be easily extended to synthe-

size different solid textures in different portions of the

volume.

More solid texture synthesis examples are given in

Fig. 12. The first row shows user sketches and correspond-

ing 3D tensor fields for ‘vase’, ‘dancer’ and ‘dinosaur’ mod-

els. Synthesized solid textures are shown in the second row

and internal structures are given in the third row. In these

examples, solid textures often look better if they follow

overall shapes or features of the objects. A particular exam-

ple is shown in the fourth row where different textures are

synthesized over solid ‘GM2010’ characters. By drawing

simple sketches, the synthesized textures follow and

Fig. 9. Synthesized solid textures using a small neighborhood size without (left) or with (right) the given tensor field.
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emphasize the shape of each character. In addition to

drawing curves on the surface, our sketching interface also

allows drawing curves on some reference surface within

the volume. An example is shown in Fig. 13 where the

overall shape of the bridge is well represented using a sin-

gle curve on a sectional plane inside the volume and the

resulting solid texture reasonably follows the geometry.

Solid textures may also follow artistically designed tensor

fields. Our sketch based interface makes it very efficient

and intuitive to put in the designers’ intentions and pro-

duce solid textures accordingly (Fig. 14).

Our method can be easily generalized to synthesize dif-

ferent solid textures in different space regions. An example

is given in Fig. 15. A few user sketches are drawn to capture

the directions along major branches, which are used to de-

rive a smooth tensor field, as shown in (a). We use two dif-

ferent texture exemplars: a tree bark texture is used to

synthesize solid textures in some space closer to the

boundary surface, and a wood texture is used to synthesize

the solid inside. Exemplar images and corresponding fea-

ture masks along with the synthesis result are shown in

(b), cutting through the volume reveals the internal struc-

tures, as shown in (c). This example demonstrates that it is

particularly important for solid textures to follow some

guiding directions for it to be realistic as real objects (such

as trees) often have their natural texture directions over

the whole solid. Image exemplars are relatively easy to ob-

tain. By synthesizing different space regions with different

exemplars, our method can produce more realistic solids.

6.1. Limitations

Our method has a few limitations. Similar to previous

methods [10,2], if the given 2D exemplars are incompatible

Table 1

Performance comparisons for a surface of the example in Fig. 11 with1 and without2 dual-grid correction (voxels including those from direct

upsampling).

Level Voxels1 Corrections1 Time (s)1 Voxels2 Corrections2 Time (s)2

3 1,510,190 1,588,346 17.2 12,011,476 11,334,457 114.8

4 2,484,514 2,171,045 20.4 12,851,888 9,567,335 90.8

Table 2

Performance comparisons for a surface of the vase example in Fig. 12 with1 and without2 dual-grid correction (voxels

including those from direct upsampling).

Level Voxels1 Comparisons1 Voxels2 Comparisons2

3 2,187,491 658,099,709 11,116,855 3,514,865,117

4 3,445,625 808,436,278 17,730,291 3,601,332,702

Fig. 10. Synthesized solid textures with singularity.

Fig. 11. A horse model with zebra textures. Significantly more realistic result (c) than trivial field (a) can be obtained with a few user sketches (b); internal

structures are shown in (d); (e) close-up of the result of our method; (f) the result without dual-grid correction (using the same parameters).
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in 3D space, synthesis results may not be satisfactory. In

most cases, the incoherence can be relieved by only con-

sider matching errors from two sectional planes instead

of three, or assigning a small weight to the third plane.

However, this is still an open problem in the general sense.

Our interpolated tensor field may have some singularities.

Fig. 12. Sketch-guided solid texture synthesis examples.
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In practice, however, singularities are very rare and do not

have significant impact on our synthesized results. It is still

open to future research how to fully control the singulari-

ties in the obtained tensor field. Our 2D exemplar based so-

lid texture synthesis assumes local isometric mapping

from the exemplar image to the corresponding sectional

surface (xy, yz or zx). It is not unusual this property con-

flicts with the given field (which can be arbitrary according

Fig. 14. Solid texture synthesis following user designs.

Fig. 15. Solid texture synthesis of a tree with user guidance, using multiple sets of exemplars.

Fig. 13. Sketch-guided solid texture synthesis over ‘bridge’ object using sketches inside the volume.
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to user sketches). In such cases, branching points in the

synthesized textures appear for the transition purpose.

Although this implies inevitable sacrifice of continuity, as

shown in Fig. 14 and other examples, such occurrences of

branching points may appear in real world (e.g. wood) as

well and still look reasonably realistic in most cases.

7. Conclusion and future work

We have presented a novel algorithm for sketch guided

solid texture synthesis from 2D exemplars. Smooth 3D ten-

sor fields are obtained by efficiently solving a few har-

monic equations w.r.t. the boundary conditions derived

from user sketches. Solid texture synthesis is achieved

through an on-demand approach where only relevant vox-

els are synthesized. Based on a new history window repre-

sentation, we propose a dual-grid correction scheme,

which keeps the quality of results while greatly reduces

the dependent set for on-demand synthesis.

As the main part of the algorithm is fully local and par-

allel, perhaps the most direct extension is an efficient GPU

implementation. We also intend to combine the optimiza-

tion based method (such as [10]) and our correction based

method, as the former has better continuity. The history

window is a general representation and further correction

schemes based on this can be studied in the future.
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