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Sketching is a natural input modality that
has received increased interest in the com-

puter graphics and human–computer interaction com-
munities. The emergence of hardware such as tablet
PCs and handheld PDAs provides easy means for cap-
turing pen input. These devices combine a display, pen
tracker, and computing device, making it possible to
capture and process sketches online, as they are drawn.
Online recognition has two main advantages. First, it
enables interpreting and displaying pen input as it is

entered—for example, an engineer
drawing a circuit diagram receives
system feedback by observing the
ink changing color in real time, indi-
cating which circuit components
are recognized. Second, an online
sketching system provides access to
stroke-ordering information as well
as the end product of the drawing
process. When we refer to temporal
patterns in this article, we mean this
stroke-ordering information.

In certain domains, temporal
stroke orderings used when sketch-
ing objects contain predictable pat-
terns that a system can use for object
recognition.1 We call these stroke-

level patterns because they capture the probability of
seeing a sequence of strokes with certain properties. For
example, when people draw stick figures, one frequent-
ly seen stroke-level pattern is a sequence of a circular
stroke, a vertical line, and two pairs of positively and
negatively sloped lines, corresponding to the figure’s
head, body, arms, and legs.

Another temporal pattern in online sketches is an
object-level pattern, which captures the probability of
seeing a certain sequence of objects being drawn. Con-
sider the domain of Unified Modeling Language class

diagrams, drawn by software designers using rectan-
gles to indicate classes and various arrows to indicate
relations among classes, such as inheritance, general-
ization, and association. In this domain, when a design-
er draws a new class (indicated by a rectangle), it’s
natural to expect that the new object will soon be con-
nected with an arrow to one or more of the objects
drawn earlier. We describe this as an object-level pat-
tern, indicating that drawing a class is followed by draw-
ing some variety of arrow. The kind of arrow to expect
can depend on the kind of class drawn. A final class, for
example, can’t be extended, which limits the kind of
arrow that we can expect next.

In domains like the Unified Modeling Language,
which has a graphical grammar of sorts, it’s plausible to
imagine writing down the grammar and using this to
guide a UML-diagram recognition system. But few
domains have patterns that are as well understood as
those for UML diagrams. And even if experts could iden-
tify such patterns, incorporating them into a recogni-
tion system would be a laborious task at best,
considering all the ways that various objects can com-
bine. A better way of incorporating object-level tempo-
ral patterns in a recognition framework would be to
learn them, along with stroke-level patterns, from data.

In this article, we present our sketch-recognition
framework, which uses data to automatically learn the
object orderings that commonly occur when people
sketch and then use the orderings for sketch recogni-
tion. The key features that make this framework novel
include learning object-level patterns from data, han-
dling objects comprising multiple strokes (multistroke

objects) and objects that share strokes (multiobject

strokes), and supporting continuous observable fea-
tures. We also present an efficient graphical model
implementation of our approach and report that a spe-
cialized inference algorithm known as the Lauritzen-
Jensen stable conditional Gaussian belief propagation
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should be used to avoid numerical instabilities in recog-
nition. We also report results from experiments that help
us establish a baseline for the recognition level achiev-
able using temporal information alone. Moreover, we
offer temporal information as a potential source of sup-
port to shape-based sketch recognizers.

Problem description
Just as approaches to sketch recognition vary, ter-

minology as well as the problem definition itself also
differ.

Terminology
By a sketch, we mean messy, informal, freehand

drawings. Specifically, we are interested in recognizing
sketches that use a fixed graphical vocabulary of sym-
bols that, in turn, can be represented with structural
descriptions.1-4 Figure 1, for example, uses the standard
vocabulary of graphical symbols from the electronic cir-
cuits domain. The graphical symbols that make up the
domain are called objects (for example, resistors and
transistors). Objects that comprise multiple strokes are
called multistroke objects. Strokes that span multiple
objects are called multiobject strokes.

We formally define a sketch � � S1,S2, � SN as a
sequence of strokes captured using a digitizer.1 A stroke
Si is a set of time-stamped points sampled between pen-
down and pen-up events during sketching. Strokes are
collected with an ink-collection application using the
Tablet PC SDK, running on an Acer C110 with a 10.4-
inch screen at 1,024 � 768 resolution.

Each stroke is preprocessed using the toolkit
described in Sezgin et al.,5 converting the sketch S1:N to
a time-ordered sequence of geometric primitives (line
and arc segments) P1:T. (We use the Matlab notation
begin:end, for example, 1:4 � 1, 2, 3, 4.) As is the case
for edge detection in computer vision, the purpose of
primitive extraction is to obtain a representation that’s
more expressive and manageable than a collection of
pixels or points. Because a single stroke may result in
more than one primitive, the total number of primitives
is usually larger than the number of strokes.

We define sketch recognition as the segmentation and
classification of a sketch. Segmentation is the task of
grouping together primitives constituting the same
object. Classification is the task of determining which
object each group of primitives represents, such as a
stick figure or a rectangle. Segmentation produces K
groups G � G1,G2, � GK, and classification gives us the
labels for the groups L � L1, L2, � LK. A simplifying
assumption in most sketch-recognition systems is that
a stroke can be part of only one object. Our definition of
segmentation in terms of primitive groupings is more
general than a definition based on stroke groupings and
supports multiobject strokes by allowing a stroke to be
part of multiple objects (for example, drawing a box
and an arrow or a resistor and two wires in a single
stroke).

We refer to the sequence of features � � O1, O2, �,
OT obtained from the primitives as observations. 
is the sequence of observations corresponding to a
group of primitives Gi, and L(Gi) is the class label

assigned to that group. Finally, represents the
stroke-level temporal model corresponding to the label
L(Gi) , and �obj refers to our model for object-level tem-
poral patterns.

Problem formulation
Given a sequence of time-ordered primitives obtained

from a sketch, our goal is to find a segmentation and clas-
sification of the primitives that maximizes the joint like-
lihood of stroke-level patterns and object-level patterns.

We formulate the problem starting with the stroke-
level model. If all we had were the stroke-level patterns,
then the recognition task would require finding a seg-
mentation and classification of the primitives that max-
imizes the likelihood of the stroke-level patterns. In
other words, over all possible ways in which we can
group the primitives, �, and all possible ways in which
we can label these groups, �(G), the stroke-level model
aims to find the grouping G � � and the labeling L �

�(G) that maximizes the joint likelihood of the stroke-
level observable features for each group Gi, given
the stroke-level model corresponding to its label 
( ). This amounts to finding the solution that max-
imizes the likelihood expression:

(1)

To obtain the expression corresponding to the stroke-
level and object-level patterns, we multiply Equation 1
by a likelihood term corresponding to the likelihood of
the label sequence L1, L2, �, LK, given our model for
object-level patterns (�obj). This gives us the following
expression, the solution to which is the segmentation
and labeling of the input sketch:

(2)

Approach
We can maximize the expression in Equation 2 over

the set of all groupings and their labelings (� and
�(G)). As the vision- and sketch-recognition literature
documents, exhaustive search of this space is computa-
tionally intractable.

Because we’re modeling sequential patterns, we
assume that in our target domains both stroke- and
object-level patterns can be modeled as products of first-
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1 A hand-drawn circuit diagram.



order Markov processes. This will let us efficiently com-
pute the maximum likelihood estimates to learn the
parameters of our stroke- and object-level models, and
it will enable efficient recognition. Our definition of effi-
ciency encompasses the CPU time spent when our algo-
rithm runs on realistic problems as well as the
theoretical bounds on its algorithmic complexity. As
we’ll discuss in a moment, our algorithm takes a few sec-
onds to interpret moderate-sized sketches, and the time
complexity of inference in our dynamic Bayesian net-
work-based representation scales linearly with respect
to the problem size.

The model
We represent our model of temporal patterns using

DBNs. Bayesian networks encode the joint probability
of a set of variables Z� {Z1, �, Zn}, where the network’s
graphical structure encodes the conditional dependen-
cies among the variables. DBNs extend Bayesian net-
works that model the joint distribution of a set of
variables over time by representing the conditional
dependencies between the variables using a pair of
Bayesian networks (B1, B�). The network B1 defines the
prior for the Zi values at time t � 1, and B� defines how
variables at time t � 1 relate to each other and to those
from time t. Bayesian networks and DBNs have visual
representations in the form of graphs, hence they’re
called graphical models. The rest of our discussion
assumes you are familiar with DBNs. (For a more thor-
ough discussion and a pointer to an excellent review,
see Murphy and Paskin’s work.)6

The input. The input to our model is the observa-
tion sequence � �O1:T, obtained by computing features
from corresponding primitives � � P1:T. Working with
primitives, rather than strokes, lets us handle multiob-
ject strokes, which is an essential feature in certain
domains but is sometimes unsupported for reasons of
efficiency or architectural limitations.2 By breaking
strokes into primitives and having a model that allows
primitives obtained from a single stroke to be assigned
to different objects, we allow multiple objects to share a
stroke (but not a primitive).

In sketch recognition, we deal with data that is most
naturally described using geometric features such as the
shape of a stroke segment, the length and orientation
of line segments, and the radii of circles. Some of these
features are categorical—for example, a stroke seg-
ment’s shape can be arc, line, and so on—and are best
represented using discrete variables. Other features
such as length and orientation are real-valued quantities
and should be represented as such. Therefore, we sup-
port both discrete and real-valued (continuous) obser-
vations. In addition to letting us have a richer set of
features, supporting real-valued features makes it pos-
sible to avoid discretization issues, such as choosing the
optimal discretization parameters (for example, num-
ber of bins and bin sizes).

The stroke-level model. For the sake of clarity of
presentation, we present our model bottom-up, starting
with the stroke-level model. For each object class, we
need a stroke-level model. The stroke-level model com-
putes the degree of agreement between a particular
observation sequence and those sequences typically
observed while drawing a particular class of objects.
The stroke-level models answer questions like What is
the likelihood of seeing the observation sequence 
obtained from a group of primitives Gi under the rectan-
gle model, or more formally, What is ?
This question corresponds to the likelihood term

in Equation 1 and the innermost term in
Equation 2.

Figure 2 shows the DBN fragment corresponding to
our stroke-level model. The observable node OBS at
time t represents the features extracted from primitive
Pt. As we noted, we encode the stroke-level patterns
using a first-order Markov process. The discrete node
STR in Figure 2 captures the dynamics of this Markov
process. The M variable is a discrete mixture variable
and lets us represent the observations using mixtures of
Gaussians. Each STR node is connected to the one in the
next time slice, reflecting our choice of modeling stroke-
level patterns as products of a Markov process.

As a simple example, consider the hypothetical sce-
nario in Figure 3. The user draws NPN transistors using
exactly two orderings, each appearing equally frequent-
ly. In this case, the stroke-level model with single mix-
tures (	M	 � 1) might learn that starting in the initial
state, with probability p�1.0, we observe a vertical line.
Then, we either move to a new state with p � 0.5 and
observe a positively sloped line, or, with p � 0.5, we
move to another state and observe a negatively sloped
line. In this respect, the stroke-level model acts exactly
like a regular hidden Markov model (HMM). During
training, we estimate parameters of the STR node on
the basis of the patterns in the training data provided
through the OBS variable. The training process can
adjust the model parameters for a given training data in
many ways, and we rarely learn models that exactly
match our intuition about the underlying drawing
orders, as was the case in this example.

The combined model. Our combined model can
be described as a DBN or, in terms of its dual represen-
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2 The dynamic Bayesian network representing the

model for capturing stroke-level patterns: (a) initial

frame  and (b) repeating frame. This fragment has a

dual representation as a hidden Markov model with

continuous observations and 	M	 mixtures.
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tation, a hierarchical HMM with continuous observables
modeled using mixtures of Gaussians. We describe it as
a DBN because DBNs generalize HHMMs, and the DBN
representation is more efficient.

We create the combined model by augmenting the
stroke-level model with two nodes, OBJt and ENDt (see
Figure 4). The OBJt node is a multivalued, discrete vari-
able that represents our belief about which object prim-
itive Pt is a part of. Its cardinality is the same as the
number of classes we can recognize. The value of ENDt

indicates our belief that the user has just completed
drawing object OBJt by drawing the primitive Pt.

The combined model defines a joint distribution over
the variables from the stroke-level model, the sequence
of object hypotheses OBJ1:T, as well as hypotheses on
where each object begins and ends (END1:T). The joint
probability over OBJ1:T corresponds to P(L1, �, LK	�obj),
the first term in Equation 2. Combined with the stroke-
level likelihood term from Equation 1, the
combined model lets us compute the most probable val-
ues of OBJ1:T and END1:T, which gives us the optimal seg-
mentation and labeling of the input sketch.

The OBJ node’s value in each time slice is conditioned
on the END and OBJ variable values from the previous
slice. This encodes the observation that our belief about
the value of OBJt�1 is based on the values of OBJt and
ENDt. The justification for this dependence is that we
would expect the OBJ node’s value to change only if the
user has just finished an object—that is, ENDt � true—
in which case the next object we would expect to see
would depend on what object was just completed. The
two new interslice arcs introduced into our model, OBJt

� OBJt�1 and ENDt � OBJt�1, cross only a single slice
boundary, thus our model remains first-order Markov-
ian, enabling efficient training and recognition.

In summary, the OBJ node keeps track of the class for
the objects drawn over time, and the joint distribution
of the OBJ nodes over time gives us P(L1, �, LK	�obj), the
first term in Equation 2. In the combined model, the
observations’ distribution is based on the OBJ node’s
value given by P(OBSt	OBJt, STRt, Mt). The OBJ node
determines the choice of which stroke-level process the
system activates, because STRt�1 is conditioned on STRt,
ENDt, and OBJt�1.

Implementation issues
One should address two issues in implementing the

model we’ve described; both relate to the choice of
which inference algorithm to use.

As we mentioned, our model has a dual representa-
tion as an HHMM. Unfortunately, the original infer-
ence algorithm for HHMMs is complicated and has
O(T3) time complexity (where T is the length of the
observation sequence).6 In our case, T is the total num-
ber of primitives in a sketch, and this makes the model
impractical for situations that require real-time feed-
back. By contrast, inference in the particular DBN that
we use takes linear time, which in turn forms the basis
of our system’s efficiency.6 It’s therefore essential to
use the DBN representation, or convert any HHMM-
based representation to a DBN prior to inference and
learning.

A major issue that arose during implementation was
the numerical instabilities that occur during training
because of the use of continuous observations. Bayesian
networks that include continuous and discrete variables
(mixed networks) usually represent the continuous vari-
ables as Gaussians or mixtures of Gaussians. The con-
ventional belief propagation algorithm used for
inference in these networks is the Lauritzen algorithm.
Unfortunately, this algorithm is susceptible to numeri-
cal underflow. Although the machine learning literature
has documented the numerical instability, the instabil-
ity isn’t well known because it occurs rarely in practice.
The problem appears in the form of singular matrices
during inference, and it is hard to pinpoint the source
of error. To avoid this numerical instability, we must use
a specialized algorithm known as the Lauritzen-Jensen
stable conditional Gaussian belief propagation.7

Training. The goal of training is to estimate the
parameters of the conditional probability distribution
functions for each node in our DBN (B1, B�), given a col-
lection of labeled sketches as training data. We use para-
meter tying to ensure that the probability distribution
P(A	Parents(A)) relating a node A and its parents is the
same for each node A in B1 and B�.3

During training, we know what class each primitive
belongs to, and we know when objects begin and end, so
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3 A hypothetical scenario. The user draws NPN transistors in only two

ways.
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4 The dynamic Bayesian network representing our model.
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the values of OBJ and END are observable and are sup-
plied during training. To summarize, for each labeled
sketch, we use the values OBJ1:T, END1:T, and OBS1:T to
estimate the model parameters.

Recognition. The input to recognition is OBS1:T.
During recognition, our system computes the values of
OBJ1:T and END1:T that maximize the likelihood of the
observations OBS1:T.

We do this using the stable conditional Gaussian
belief propagation algorithm. Interpretation of com-
plete sketches comparable to that in Figure 1 takes less
than 2 to 3 seconds on a 2-GHz Pentium 4 machine.

Results
To see whether modeling object-level patterns

improves over modeling only stroke-level patterns, we
tested our system using sketches from the electronic cir-
cuit diagrams domain. Although we found that many
other domains contain predictable temporal patterns
(including UML diagrams, finite-state diagrams, mili-
tary course of action, and emoticons1), we chose to focus
on the electronic circuit diagrams domain because it
represents a group of domains that can be characterized
as object–connector diagrams (such as organizational
charts, flowcharts, and UML diagrams). This domain
also illustrates our model’s ability to deal with multiob-
ject strokes (for example, stroke 7 in Figure 5b) and
objects with varying numbers of components (for exam-
ple, resistors with varying numbers of humps).

Data collection
We collected circuit diagrams from undergraduate

students who had recently taken the Microelectronic
Circuits and Devices course at the Massachusetts Insti-
tute of Technology and were familiar with the textbook
used in the class. A total of eight participants contributed
circuit diagrams. All except participant 7 were right-

handed. We asked the participants to draw circuits
selected from their course textbook using a sufficiently
expressive set of electronic circuit components. (The
components were NPN transistors, resistors, capacitors,
batteries, and wires, so 	OBJ	 � 5.)

During data collection, we first showed participants
diagrams of circuits that we wanted them to draw. We
gave each participant time to study the circuits until he
or she understood how they worked, then we asked the
participants to explain the circuits verbally, to confirm
their understanding.

We next removed the textbook diagram and asked
them to draw the circuit using a tablet PC, allowing them
to consult the original circuit diagram if needed. Figure
1 is an example of a participant’s drawing.

To train our model, we created labeled training data
by manually annotating 10 sketches per participant.

Generating the observation sequence
Both training and classification require converting a

sketch to an observation sequence O1:T. Using an early
sketch-processing toolkit,5 we first preprocess each sketch
to obtain a sequence of primitives P1:T (in our case simply
using line segments is sufficient because our domain has
no objects with curved strokes). Note that the primitive
extraction step is prone to error and does not always pro-
duce what a human would expect—that is, it might miss
corners or break straight-looking lines unnecessarily. For
each primitive Pi, we obtain an observation vector Ot rep-
resented as a five-tuple (lt, 
lt, �t, 
�t, sgnt) where

■ lt is the length of Pi,
■ 
lt is relative length (lt/lt�1,1 for t � 1),
■ �t is the angle with respect to the horizontal axis,
■ 
�t is the measure of relative angle between Pi and 

Pi�1, and
■ sgnt is the direction that the stroke turns when 

moving from Pi�1 to Pi.
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5  A Bayesian network is created by unfolding (B1, B�) during recognition. (a) A circuit fragment. (b) A primitive

extraction for stroke 7, which is also a multiobject stroke. (c) The corresponding fragment of the unfolded net-

work. Expected values of OBJ7:13 and END7:13 are also shown. For OBJ7:13, the values {1, 2} represent wire and resis-

tor. For END7:13, {T, F} represent true and false.

1
2

3

4 5

6

7

S7 P7:13

(a) (b)

t = 7

1

T

t = 8

2

T

t = 9

2

T

t = 10

2

T

t = 11

2

T

t = 12

2

T

t = 13

1

T

(c)



The value of 
�t is given by the magnitude of the cross
product u �v of vectors u, v, which are length-normal-
ized versions of Pi and Pi�1 pointing in the direction of
pen movement along each primitive. The turn direction
(sgnt) is the only discrete feature and is set to 0 for neg-
ative values of u�v and 1 for positive values or t�1. The
use of absolute length is based on our observation that
for a given device and user, absolute length is a reliable
feature with high discriminative power. Furthermore,
once the system learns the corresponding Gaussian mix-
tures, the mixtures can easily be scaled to work with data
collected using a different resolution device. The use of
absolute angle is based on our observation that compo-
nents in circuit diagrams mainly appear in two canoni-
cal orientations. We prefer learning a few canonical
orientations (with the consequent limitations) rather
than not being able to use this informative feature to
gain orientation invariance. Finally, we prefer using
stroke-based edge features. For future work, we plan to
study how image-based features such as shape contexts
or SIFT (scale invariant feature transform) features
would fare.

Recognition results
As Figure 6 shows, drawing styles show significant

variation across users. A naive attempt to build general
models to use with new users trained on data from other
users would necessarily result in less accurate results.
Therefore, to get an accurate measurement of how much
recognition is possible using temporal information
alone, we trained personalized models for each user.
(For details on approaches that don’t use temporal fea-
tures, see the “Related Work in Sketch Recognition”
sidebar on page 36.) An interesting question is whether
any subpopulations show a useful degree of uniformity
so that we can use data from the subpopulation to train
a model for a novel user. Proper treatment of this issue
can be quite involved. The only attempt at exploring this
idea so far has been in the area of low-level ink process-
ing, which uses clustering methods for learning sub-
groups of users to build corner-detection methods
adaptive to novel users.8

For each user, we ran a series of hold-one-out exper-
iments by getting the recognition rates for each sketch
using a model trained on the remaining sketches. For
each sketch, we also trained a baseline system that mod-
eled only stroke-level patterns (no object-level patterns).
We obtained the baseline system by setting P(OBJt �

1	OBJt, ENDt) to be uniform (1/	OBJ	) if ENDt� true. For
ENDt � false, we set it to 1 for OBJt � 1 � OBJt, and 0 oth-
erwise. The baseline has the same network topology and
the same junction tree, hence, inference for the base-
line method has the same computational com-
plexity as our method. In both models, we
used the values 	STR	 � 6 and 	M	 � 3.

Quantitative results. Table 1 shows the
average correct recognition rates for the base-
line model and our multiscale model on sketch-
es collected from the eight participants (b,m).
As the table shows, the improvement in
absolute terms ranges from 2.1 to 6.2 percent.

The table also shows the average and maximum reduc-
tion values in the error rates in terms of percentages (
err

and max
) for each user. On average, modeling object-
level patterns always improves performance, allowing up
to 65 percent of misrecognition errors to be corrected.

A paired t-test comparing the average correct recog-
nition rates for each user finds the increase to be statis-
tically significant for p�0.05 and 7 degrees of freedom.
We believe the reported decrease in the error rates
would substantially improve users’ satisfaction with the
recognition system in actual use.

Note that the primitive extraction step is prone to
error. We have not tested the sensitivity of our approach
with respect to the errors made at the primitive extrac-
tion step. However, we didn’t correct any of the errors
that the primitive extraction step made. Both training
and classification were subject to these errors, and our
results reflect the errors made at the primitive extrac-
tion step.

Qualitative results. Exploring the kinds of errors
avoided by modeling object-level patterns is instructive.
Consider the amplifier circuit in Figure 7a (on the next
page). The figure also shows the stroke ordering for the
fragment of the circuit diagram that interests us. Figures
7b and 7c show the two interpretations of this circuit.

Figure 7b shows the interpretation obtained by run-
ning the baseline method, which encounters four
recognition errors. The capacitor C2 is misrecognized
as wires, most likely because of the hook hanging off
one of the strokes. The NPN transistor Q2 is misrecog-
nized because the stroke indicating the current direc-
tion is noisy. The vertical part of this transistor
(segment 11) and the wire connected to the emitter
(segment 12) are grouped together and labeled as a
capacitor. Inspection of the sketch reveals that these
two strokes have roughly the same length and are
sketched one after the other (shown by the numbers
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6 Examples of transistors drawn by different users

show structural variation. Each column shows a differ-

ent user’s sketches. Note the difference in routes when

drawing the emitter and the current direction.

Table 1. Average correct recognition rates for two models.

Participant ID 
1 2 3 4 5 6 7 8 

b (baseline model) 83.2 86.5 85.2 73.8 87.1 90.7 79.1 85.0  
m (our multiscale model) 89.4 89.4 87.3 77.4 89.8 93.0 84.6 88.2  

err 36.9 21.4 14.1 13.7 20.9 24.7 18.6 21.3  
max
 65.0 45 31.2 15.0 35.5 40.0 30.7 54.5  



in Figure 7a). This easily leads to
these strokes being mislabeled as a
capacitor—an example of the limi-
tations of our order-based recogni-
tion, which we will describe in a
moment. Finally, part of the resis-
tor R1 is misrecognized.

Figure 7c shows that our model
fixed two of these errors. Our model
has learned that the chance of tran-
sistors immediately following resis-
tors and resistors immediately fol-
lowing capacitors, with no wires in
between, is small. So, these interpretations are penalized.
As a result, the system avoids the two misrecognitions.

Inspecting the conditional probability table
P(OBJt�1	OBJt, ENDt) reveals the kinds of object-level
patterns that our models learn. For the eight partici-
pants in our study, all the models learned (not surpris-
ingly) that, most of the time, circuit components are
preceded and followed by wires.

A more interesting observation comes from looking
at what happens when a wire doesn’t follow an object.
In these cases, we see that components that frequently
appear together in conceptually meaningful circuit frag-
ments have a higher probability of being drawn consec-
utively. For example, resistors appear in series when
drawing voltage dividers, hence when a resistor is not
immediately followed by a wire temporally, it’s more
likely to be followed by a resistor than by anything else.
It’s conceivable that a circuit-design expert might pre-
dict the existence of such patterns and try to incorpo-
rate them in the design of a circuit-recognition system,
but this would be a laborious task and require precision
in balancing biases for different kinds of patterns. Our
model learns and uses such patterns automatically in a
mathematically sound framework.

Discussion
Our experiments also helped us identify a limitation

of relying on temporal patterns alone. Our approach
doesn’t incorporate any spatial or geometric constraints
beyond those used to encode stroke sequences. As a
result, recognition is based strictly on temporal patterns
and not on shapes. Therefore, our system can incorrect-
ly classify a sequence of strokes that has the right tem-
poral character but the wrong shape. For example,
inspection of the circuit in Figure 7a reveals that strokes
11 and 12 were drawn one after the other, they are par-
allel, and they have roughly the same length. As a result
the system misclassified them as capacitors, even
though the strokes are offset from one another. We can
argue, then, that augmenting the feature set to include
relative positions of consecutive primitives will fix the
error in this specific case. But, incorporating shape infor-
mation requires modeling complex long-term depen-
dencies (constraints) between primitives arbitrarily
apart in time, such as those described by Alvarado and
Davis.2 This is beyond the reach of our first-order Mar-
kovian model.

Our evaluation also revealed a surprising drawing
convention employed while drawing transistors.
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The baseline model has four misrecognitions, two of which are

fixed using knowledge of object-level patterns.



Although the participants completed each circuit com-
ponent before starting a new one, four of them some-
times interspersed wires during the course of drawing
transistors. By interspersing, we refer to the situation
where the user starts drawing one object but draws one
or more other objects before the first is completed (for
example, wires 3 and 6 in Figure 8 on the next page).
Because our model assumes the users complete each
object before moving on to the next, interspersed draw-
ing causes misrecognitions.

In our case, interspersings happened only while draw-
ing transistors.6 To measure the effects of interspersing
on correct recognition rates, we selected a control group
of 10 circuits containing two to four transistors with no
interspersings and a test group that contained versions
of these sketches with interspersings. We obtained the
interspersed version of each sketch by moving one of
the wires preceding or following a transistor backward
or forward in time. The way we set up our control and
test sets ensures that we measure the misrecognition
effects due to interspersing only. 

Table 2 summarizes the recognition results obtained
for the control and test sets carried out in a leave-one-
out cross-validation setup. In both cases, the training
used circuits with no interspersings, consistent with our
model’s assumptions. As the results in Table 2 indicate,
violation of our “one object at a time” assumption always
introduces new recognition errors. Even when the num-
ber of misclassifications is normalized by the number of
interspersings, a transistor-wire interspersing causes 1-4
incorrect classifications per interspersing. In the “Future
work” section, we explain how to address this issue by
modeling interspersed drawing behavior explicitly.

Future work
A promising direction to explore would be develop-

ing and evaluating a complete pen-based interface to a
computer-aided circuit design tool, using our system as
the recognition engine. This would let us quantify the
subjective utility of recognition and evaluate user reac-
tions in a real design setting. Issues to investigate include
the editing method (modeless versus modal) and the
display of the recognition results (delayed versus imme-
diate feedback) and their effect on the drawing behav-
ior (for example, Do users still intersperse objects?).
Similar experiments can be carried out for other
domains, such as UML diagrams, Web page design, and
mechanical engineering.

We are also developing ways to modify our model so
that it handles the interspersed drawing issue. The idea
is to make the fact that users can intersperse certain
types of objects an explicit part of the DBN model. We
can do this by extending the state space of each time
slice with a new variable that tracks whether the user
is interspersing any objects, and, if so, what objects are
being interspersed. Early results show that it’s possi-
ble to extend the state space of our model using DBNs’
parsimonious representation property and obtain a
model where both training and inference remains
tractable.9

The motivation for our work was to identify the kinds
of temporal patterns present in online sketches and to
present an approach that can perform recognition based
on such patterns. We have illustrated that sketches con-
tain a fair amount of rich temporal patterns that can be
used for recognition. However, we don’t expect tempo-
ral patterns to be used alone. Ultimately, we envision 
a unified recognition architecture that combines the 
efficient segmentation and recognition features of tem-
poral approaches with the rich constraints and repre-
sentational power of shape-based models.

Our choice of modeling the sketching process as a
first-order Markov process doesn’t allow us to exploit
spatial or geometric constraints between arbitrary com-
ponents of a shape. A naive attempt to incorporate such
constraints using higher-order Markov processes is
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Table 2. Misrecognized primitives per interspersing.

Sketch ID
Parameters 1 2 3 4 5 6 7 8 9 10 µ

Total primitives in each sketch 90 85 104 101 92 100 87 105 80 98 94.2
Added interspersings 2 2 4 4 3 3 2 2 2 4 2.8
Missed in the control set 5 5 2 1 4 2 5 8 9 16 5.7
Missed in the test set 7 9 15 12 12 12 13 13 11 19 12.3
Absolute difference* 2 4 13 11 8 10 8 5 2 3 6.6
Primitives missed per interspersing 1 2 3.25 2.75 2.67 3.33 4 2.5 1 0.75 2.33

* The number of primitives that our system misses because it cannot handle interspersings.



impractical because our model’s state space increases
exponentially with the process order. A better approach
would be to explore ways of incorporating shape infor-
mation by connecting external recognizers that use spa-
tial or structural information into our model using a
mechanism known as virtual evidence nodes in the
graphical models machine-learning community. Anoth-
er approach would be to learn a composite function of
spatial and temporal information using a dynamic pro-
gramming framework.9 This work would be a first step
toward combining temporal and spatial/structural
information for sketch recognition. ■
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Related Work in Sketch Recognition
A large body of work in sketch recognition discusses

approaches that don’t use temporal features. Most of these
approaches, which complement ours, use algorithms based
on structural and syntactic methods. Structural pattern
recognition methods (also known as model- or template-
based methods) formulate the recognition problem on the
basis of objects’ implicit or explicit representations in terms of
their structure (such as components, subcomponents, and
their relationships). Examples include the work of Alvarado
and Davis1 and of Shilman et al.2 The main drawback of such
methods is their high computational requirements that make
them unsuitable for real-time recognition of realistic sketches.
These models also require experts to specify domain
knowledge or manually input structural descriptions of the
objects in the domain. Further complicating this requirement
is the fact that not everyone draws objects the same. For
example, Figure 6 in the text shows how transistors drawn
by four participants were structurally different. Thus, in a
structural-recognition setting, the expert might have to
create different object descriptions for different users. Our
system learns each variation from examples.

Other nontemporal recognition algorithms include
Gennari et al.’s work, which requires an expert to enter
domain information.3 Our system doesn’t require expert
knowledge. Shilman and Viola describe a spatial
recognition and grouping method for text and graphics.4

They make some assumptions about the objects in the
domain to keep the search tractable (for example, objects
in their domain have no more than eight strokes or the
strokes constituting an object are within a certain distance).
These assumptions seem to work for flowchart-like
drawings, where the connectors and objects are sufficiently
separated from one another. However, the practicality of
these algorithms has yet to be demonstrated in general for
domains where objects vary in size and shape or where
assumptions on the object size and scale might not hold.

The handwriting recognition community has come up
with numerous methods for recognizing single-stroke or
segmented-pen input using hidden Markov models
(HMMs). These systems take advantage of a vast number of
robust preprocessing and segmentation methods to
simplify the problem to an isolated recognition problem.

Several systems have used HMM or hierarchical HMM-
based frameworks to recognize pen input. In the sketch
recognition community, Anderson, Bailey, and Skubic’s
work describes an HMM-based symbol recognizer that uses

chain-code-like features to recognize isolated symbols.5 Our
work doesn’t assume segmented input and builds a joint
model for complete sketches.

Our previous work describes an HMM-based sketch
recognition system that does segmentation and recognition
by combining outputs of individual HMMs using dynamic
programming.6 This method is a weaker version of our
baseline method in that it doesn’t support continuous
features. Its two-layer HMM and dynamic-programming
recognition method suffers from the O(T3) complexity, just
like hierarchical HMMs.

Simhon and Dudek present a sketch interpretation and
curve refinement system that uses an HHMM.7 This work
and ours share the same motivation. They assume that the
parameters of the object-level process, which they refer to as
the scene level, is supplied by the user using a semantic graph
representation. We learn the parameters of the stroke-level and
object-level patterns from data and use the more efficient DBN
representation to avoid the HHMMs’ O(T3) complexity. We
also support multistroke objects, and our use of real-valued
continuous observations allow using a rich set of features.
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