
Sketching and Streaming High-Dimensional

Vectors

by

Jelani Nelson

S.B., Massachusetts Institute of Technology (2005)
M.Eng., Massachusetts Institute of Technology (2006)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2011

Certified by. .
Erik D. Demaine

Professor
Thesis Supervisor

Certified by. .
Piotr Indyk

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

Sketching and Streaming High-Dimensional Vectors
by

Jelani Nelson

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

A sketch of a dataset is a small-space data structure supporting some prespecified set
of queries (and possibly updates) while consuming space substantially sublinear in
the space required to actually store all the data. Furthermore, it is often desirable,
or required by the application, that the sketch itself be computable by a small-space
algorithm given just one pass over the data, a so-called streaming algorithm. Sketching
and streaming have found numerous applications in network traffic monitoring, data
mining, trend detection, sensor networks, and databases.

In this thesis, I describe several new contributions in the area of sketching and
streaming algorithms.

• The first space-optimal streaming algorithm for the distinct elements problem.
Our algorithm also achieves O(1) update and reporting times.

• A streaming algorithm for Hamming norm estimation in the turnstile model
which achieves the best known space complexity.

• The first space-optimal algorithm for pth moment estimation in turnstile streams
for 0 < p < 2, with matching lower bounds, and another space-optimal algo-
rithm which also has a fast O(log2(1/ε) log log(1/ε)) update time for (1 ± ε)-
approximation.

• A general reduction from empirical entropy estimation in turnstile streams to
moment estimation, providing the only known near-optimal space-complexity
upper bound for this problem.

• A proof of the Johnson-Lindenstrauss lemma where every matrix in the support
of the embedding distribution is much sparser than previous known construc-
tions. In particular, to achieve distortion (1 ± ε) with probability 1 − δ, we
embed into optimal dimension O(ε−2 log(1/δ)) and such that every matrix in
the support of the distribution has O(ε−1 log(1/δ)) non-zero entries per column.

Thesis Supervisor: Erik D. Demaine
Title: Professor

Thesis Supervisor: Piotr Indyk
Title: Professor

2

Acknowledgments

Including my years as an undergraduate I have been at MIT for a full decade, and I
have come across many friends, colleagues, research advisors, and teachers who have
made the experience very enjoyable. For this, I am very grateful.

I thank my advisors Prof. Erik Demaine and Prof. Piotr Indyk for their guidance
in my PhD studies. I was primarily interested in external memory data structures
when I entered the program, an area within Erik’s research interests, and Erik was
very supportive while I explored questions in this realm. After taking a course on
sketching and streaming algorithms, my research interests migrated toward that area
at which point Piotr began giving me much guidance and became an unofficial (and
eventually official) co-advisor, and then even officemate if one considers the 6th floor
lounge to be an office. I have received a great amount of influence and guidance from
Erik and Piotr, and I am grateful to have been their student.

I would like to thank my coauthors: Tim Abbott, Miki Ajtai, Michael Bender,
Michael Burr, Timothy Chan, Erik Demaine, Marty Demaine, Ilias Diakonikolas,
Martin Farach-Colton, Vitaly Feldman, Jeremy Fineman, Yonatan Fogel, Nick Har-
vey, Avinatan Hassidim, John Hugg, Daniel Kane, Bradley Kuszmaul, Stefan Langer-
man, Raghu Meka, Krzysztof Onak, Ely Porat, Eynat Rafalin, Kathryn Seyboth,
David Woodruff, and Vincent Yeung. I have been fortunate to have enjoyed every
collaboration I have been a part of with these colleagues, and I have learned much
from them. I in particular collaborated quite frequently with Daniel and David, both
of whom I knew even before beginning my PhD studies, and it has been a pleasure
to work with them so often. I have learned a great deal by doing so.

While on the topic of learning from others, aside from advisors and coauthors I
have been fortunate to have been surrounded by several colleagues and friends who
I have learned a great deal from concerning theoretical computer science and other
relevant areas of mathematics, at MIT, at the IBM Almaden Research Center and
Microsoft Research New England during summer internships, at the Technion in the
summer prior to beginning my PhD, and elsewhere.

Last but not least, I would like to thank God and my parents for creating me and
enabling me to have an enjoyable life thus far.

3

In memory of my high school mathematics teacher José Enrique Carrillo.

4

Contents

1 Introduction 9
1.1 Notation and Preliminaries . 11
1.2 Distinct Elements . 12
1.3 Moment Estimation . 13
1.4 Entropy Estimation . 15
1.5 Johnson-Lindenstrauss Transforms 16

1.5.1 Sparse Johnson-Lindenstrauss Transforms 16
1.5.2 Derandomizing the Johnson-Lindenstrauss Transform 17

2 Distinct Elements 20
2.1 Balls and Bins with Limited Independence 22
2.2 F0 estimation algorithm . 24

2.2.1 RoughEstimator . 25
2.2.2 Full algorithm . 28
2.2.3 Handling small F0 . 32
2.2.4 Running time . 33

2.3 `0 estimation algorithm . 36
2.3.1 A Rough Estimator for `0 estimation 38

2.4 Further required proofs . 40
2.4.1 Various calculations for balls and bins 40
2.4.2 A compact lookup table for the natural logarithm 43

3 Moment Estimation 45
3.1 FT-Mollification . 46
3.2 Slow Moment Estimation in Optimal Space 49

3.2.1 Alterations for handling limited precision 60
3.2.2 Approximating the median of |Dp| 61

3.3 Fast Moment Estimation in Optimal Space 66
3.3.1 Estimating the contribution from heavy hitters 68
3.3.2 Estimating the contribution from light elements 75
3.3.3 The final algorithm: putting it all together 80
3.3.4 A derandomized geometric mean estimator variant 84
3.3.5 A heavy hitter algorithm for Fp 88

3.4 Lower Bounds . 90
3.5 The additive log log d in `p bounds 94

5

3.5.1 The upper bounds . 94
3.5.2 The lower bounds . 95

4 Entropy Estimation 96
4.1 Noisy Extrapolation . 97

4.1.1 Bounding the First Error Term 98
4.1.2 Bounding the Second Error Term 98

4.2 Additive Estimation Algorithm . 100
4.3 Multiplicative Estimation Algorithm 105
4.4 Lower Bound . 109

5 Johnson-Lindenstrauss Transforms 111
5.1 Sparse JL transforms . 111

5.1.1 A Warmup Proof of the JL Lemma 113
5.1.2 Code-Based Sparse JL Constructions 114
5.1.3 Random Hashing Sparse JL Constructions 116
5.1.4 Tightness of Analyses . 123

5.2 Numerical Linear Algebra Applications 127
5.2.1 Linear regression . 129
5.2.2 Low rank approximation . 129

5.3 A proof of the Hanson-Wright inequality 131
5.4 Derandomizing the JL lemma . 133

6 Conclusion 134

6

List of Figures

2-1 RoughEstimator pseudocode. With probability 1 − o(1), F̃0(t) =
Θ(F0(t)) at every point t in the stream for which F0(t) ≥ KRE. The
value ρ is .99 · (1− e−1/3). 25

2-2 F0 algorithm pseudocode. With probability 11/20, F̃0 = (1±O(ε))F0. 29
2-3 An algorithm skeleton for F0 estimation. 36

3-1 Indyk’s derandomized `p estimation algorithm pseudocode, 0 < p < 2,
assuming infinite precision. 50

3-2 LightEstimator, for estimating contribution from non-heavy hitters . . 76

4-1 Algorithm for additively approximating empirical entropy. 100

5-1 Three constructions to project a vector in Rd down to Rk. Figure (a)
is the DKS construction in [35], and the two constructions we give in
this work are represented in (b) and (c). The out-degree in each case
is s, the sparsity. 112

7

List of Tables

1.1 Catalog of problems studied in this thesis, and our contributions. . . 10
1.2 Comparison of our algorithm to previous algorithms on estimating the

number of distinct elements in a data stream. Update time not listed
for algorithms assuming random oracle. 12

1.3 Comparison of our contribution to previous works on Fp estimation in
data streams. 14

8

Chapter 1

Introduction

In 1975, Morris discovered the following surprising result: one can count up to m using
exponentially fewer than logm bits. For example, he showed how to approximately
count up to numbers as large as 130, 000 using 8-bit registers, with 95% confidence
that his returned estimate was within 24% of the true count. In general terms, the
method allows one to approximately count the number of items in a sequence of length
m using only O(log logm) bits, given only one pass over the sequence and such that
the estimated sequence length has small relative error with large probability. The
method was simple: maintain a value ν in memory which one imagines represents
log(1 + m), then after seeing a new item in the sequence, increment ν with proba-
bility exponentially small in ν. Morris’ algorithm was the first non-trivial low-space
streaming algorithm: an algorithm that computes a function of its input given only
one or a few passes over it. His method was published three years later in [93].

Two more surprising streaming algorithms were discovered soon afterward. In
1978, Munro and Paterson showed how to compute the median of an array of m
numbers by a two-pass deterministic streaming algorithm storing only O(

√
m logm)

numbers [95]. Then in 1983, Flajolet and Martin showed that given just one pass
over an array with elements in {1, . . . , d}, one can approximate the number of distinct
elements in the array with low relative error and with high probability, using only
O(log d) bits of space [49].

Beyond those discoveries, little attention was given to streaming algorithms until
1996, when Alon, Matias, and Szegedy tackled the problem of approximating the
frequency moments of a vector being updated in a stream [8]. By the late 1990s and
early 2000s, the popularity of the Internet made the need for space-efficient streaming
algorithms clear. Internet services such as search engines needed algorithms which
could, on-the-fly, make sense of massive amounts of data that were constantly being
collected. Furthermore, algorithms using memory proportional to the total amount
of data collected were infeasible. Major ISPs were also processing massive amounts
of network traffic at their routers and needed succinct ways to summarize traffic for
later processing.

In this thesis, we investigate several fundamental streaming problems and provide
solutions which are more space-efficient, and in some cases also more time-efficient,
than those previously known.

9

Problem Name Desired Output Our Contribution
distinct elements F0 = |{i : xi 6= 0}| optimal time and space
moment estimation Fp =

∑
i |xi|p optimal space, fast time

empirical entropy H = −
∑

i qi lg(qi) near-optimal space
estimation (qi = |xi|/(

∑
i |xi|)) in terms of ε

`2-dimensionality ‖y‖2 = (1± ε)‖x‖2 optimal target dimension,
reduction (with probability 1− δ) sparse embedding matrices

Table 1.1: Catalog of problems studied in this thesis, and our contributions.

To be a bit more formal, a sketch [19] is a small-space data structure which allows
some pre-specified set of queries and (possibly) updates. Often we seek sketches which
are much smaller, even exponentially so, than the information theoretic minimum
required to store all the data explicitly. A streaming algorithm is an algorithm which
can maintain a sketch of the data given only one or few passes over it, though we
will only be concerned with one-pass streaming algorithms. Furthermore, almost all
the algorithms we will describe (except for F0) produce linear sketches of data that
can be represented as a high-dimensional vector. That is, we consider the case where
the data is represented by some vector x ∈ Rd, where d is very large so that storing
x explicitly in memory is either undesirable or infeasible. Initially x starts as ~0, and
each update adds some (possibly negative) amount to a specified coordinate in x.
The sketch of x is obtained by some, possibly randomized, linear map x 7→ Sx. This
model of vector updates in streaming algorithms is known as the turnstile model [96],
and it arises naturally in several contexts. For example, in a stream of queries to a
search engine, xi can be the number of search queries containing the ith word in some
lexicon. Or in a stream of network traffic, xi may be the total number of bytes sent
to IP address i.

Aside from the above two scenarios, sketching and streaming algorithms in general
have numerous applications. A sketch naturally reduces the storage required to store
a dataset [19]. Furthermore, since a sketch requires little space it can be communi-
cated across machines efficiently. In the case of linear sketches, sketches at different
machines can then be added to obtain a sketch for the aggregate data, or subtracted
to obtain a sketch for the difference vector if one then wants to query some distance
measure. Even sketches stored at the same machine, but perhaps representing differ-
ent datasets or data collected over different time intervals, can be efficiently compared
to compute various similarity or distance measures.

In this thesis we study several problems, described in Table 1.1. For all these
problems, it was known from previous work [8] that one must settle for an algorithm
which is both randomized and approximate. That is, we are only guaranteed to
compute a (1 ± ε)-approximation to our desired function, and our estimate is only
guaranteed to be this good with probability 1− δ.

In Section 1.1 we give the preliminary definitions and notation that are used
consistently throughout the thesis. In the following sections we discuss prior work

10

and our contributions for each of the problems in Table 1.1.

1.1 Notation and Preliminaries

Throughout this thesis, x ∈ Rd represents a vector being updated in a data stream,
and y = Sx represents the linear sketch of x we maintain. Unless explicitly stated
otherwise, such as when discussing the distinct elements problem, we always assume
x is updated in the turnstile model. That is, there is a sequence of m updates
(i, v) ∈ [d] × {−M, . . . ,M} each causing the change xi ← xi + v. Sometimes we
discuss algorithms that operate in the strict turnstile model, which is the turnstile
model with the additional promise that ∀i xi ≥ 0 at the end of the stream. The
insertion-only model is that for which all updates (i, v) have v = 1.

In all our algorithms, we will want to compute some quantity with probability
1 − δ for some 0 < δ < 1/2 known up front to the algorithm. Unless explicitly
stated otherwise, when discussing all our algorithms we assume a constant error
probability δ = 1/3. For all the problems we consider other than `2-dimensionality
reduction, arbitrarily small δ can be achieved by running O(log(1/δ)) instances of
the algorithm in parallel with independent randomness then computing the median
estimate. All our algorithms also either only produce an approximate answer (when
computing a function), or incur some distortion (in our `2-dimensionality algorithm).
The distortion we incur is always written as 1±ε for some 0 < ε < 1/2; i.e. we produce
an embedding y of x such that ‖y‖2

2 ∈ [(1− ε)‖x‖2
2, (1 + ε)‖x‖2

2]. In problems where
our aim is to produce an estimate of some function f(x), we settle for computing a
value f̃ such that f̃ ∈ [(1− ε)f(x), (1 + ε)f(x)] for some 0 < ε < 1/2 known up front
to the algorithm.

When analyzing the efficiency of our algorithms, we measure space in bits. When
measuring running time, we measure the number of standard machine word operations
in the RAM model (arithmetic, bitwise operations, and bitshifts on machine words
each take constant time). We assume a word size of Ω(log dmM) so that x can be
indexed in constant time, and so that each |xi| fits in a word. In stating running times
we distinguish between update time, the time it takes to process an update (i, v) in
the stream, and reporting time, the time it takes to produce an estimate f̃ of f(x)
when queried.

We use 1E to denote the indicator random variable for event E . All logarithms are
base-2 unless otherwise stated, and we often use the notation A ≈ε B to mean that
|A− B| = O(ε). For a functions f : R→ R, we use f (`) to denote the `th derivative
of f (f (0) denotes f itself). We use [n] to denote {1, . . . , n}. When we say f = Õ(g),

we mean f = O(g · polylog(g)). Also, f = ˜Ω(g) means f = Ω(g/polylog(g)). Lastly,
we use f = Θ̃(g) to mean f = Õ(g) and f = Ω̃(g).

We frequently throughout this thesis hide dependence on d in upper and lower
bounds. In all discussions of upper and lower bounds in this thesis, other than in
Chapter 5, it may be assumed that d = O(m2) at the cost of an additive O(log log d)
in the space upper bound. Furthermore, Ω(log log d) is also a lower bound for several
problems discussed in this thesis; see Section 3.5 for details.

11

Reference Space Update Time Notes
[49] O(ε−2 log d) — Random oracle
[8] O(log d) O(log d) constant ε
[58] O(ε−2 log d) O(ε−2)
[13] O(ε−3 log d) O(ε−3)
[12] O(ε−2 log d) O(log(ε−1))
[12] O(ε−2 log log d ε−2poly(log(ε−1 log d))

+poly(log(ε−1 log d)) log d)
[12] O(ε−2(log(ε−1 log d) + log d)) O(ε−2(log(ε−1 log d)))
[41] O(ε−2 log log d+ log d) — Random oracle,

additive error
[44] O(ε−2 log d) — Random oracle
[15] O(ε−2 log d) O(log(ε−1))
[48] O(ε−2 log log d+ log d) — Random oracle,

additive error
This thesis O(ε−2 + log d) O(1) Optimal

Table 1.2: Comparison of our algorithm to previous algorithms on estimating the
number of distinct elements in a data stream. Update time not listed for algorithms
assuming random oracle.

1.2 Distinct Elements

In this problem, we are given a sequence of integers i1, . . . , im ∈ [d] and would like to
estimate the number of distinct integers. In turnstile model notation, every update

is of the form (i, 1) for i ∈ [d], and we would like to estimate F0
def
= |{i : xi 6= 0}|.

Estimating the number of distinct elements in a data stream is a fundamental problem
in network traffic monitoring, query optimization, data mining, and several other
database areas.

In network traffic monitoring, routers with limited memory track statistics such
as distinct destination IPs, requested URLs, and source-destination pairs on a link
[44]. Distinct elements estimation is also useful in detecting Denial of Service attacks
[6]. In such applications the data is too large to fit at once in main memory or too
massive to be stored, being a continuous flow of data packets. This makes small-space
algorithms necessary. Furthermore, the algorithm should process each stream update
(i.e., packet) quickly to keep up with network speeds. For example, [23] reported
packet header information being produced at .5GB per hour while estimating the
spread of the Code Red worm, for which they needed to estimate the number of
distinct Code Red sources passing through a link.

Another application is to data mining: for example, estimating the number of
distinct queries made to a search engine, or distinct users clicking on a link or visiting
a website. Distinct item estimation was also used in estimating connectivity properties
of the Internet graph [104].

Other applications include selecting a minimum-cost query plan [114], database
design [47], OLAP [102, 115], data integration [22, 37], and data warehousing [1].

The problem of space-efficient F0 estimation is well-studied, beginning with the

12

work of Flajolet and Martin [49], and continuing with a long line of research, [8, 12,
13, 15, 21, 31, 41, 44, 48, 57, 58, 69, 124].

Our Contribution: We settle both the space- and time-complexities of F0 estima-
tion by giving an algorithm using O(ε−2 + log d) space, with O(1) worst-case update
and reporting times. Our space upper bound matches known lower bounds [8, 69, 124]
up to a constant factor, and the O(1) update and reporting times are clearly optimal.
This contribution was obtained in joint work with Kane and Woodruff [79].

A detailed comparison of our results to those in previous work is given in Table 1.2.
There is a wide spectrum of time/space tradeoffs but the key points are that none of
the previous algorithms achieved our optimal O(ε−2 + log d) space, and the only ones
to achieve optimal O(1) update and/or reporting time had various restrictions, e.g.,
the assumption of access to a random oracle (that is, a truly random hash function)
and/or a small constant additive error in the estimate. The best previous algorithms
without any assumptions are due to Bar-Yossef et al. [12], who provide algorithms
with various tradeoffs (see Table 1.2).

We also give a new algorithm for estimating `0, also known as the Hamming norm
of a vector [32], with optimal running times and near-optimal space. We sometimes
refer to the Hamming norm of x as ‖x‖0. This problem is simply a generalization

of F0 estimation to turnstile streams; in particular, we define `0
def
= |{i : xi 6= 0}|.

While F0 estimation is useful for a single stream or for taking unions of streams if
there are no deletions, `0 estimation can be applied to a pair of streams to measure
the number of unequal item counts. This makes it more flexible than F0, and can be
used in applications such as maintaining ad-hoc communication networks amongst
cheap sensors [66]. It also has applications to data cleaning to find columns that
are mostly similar [37]. Even if the rows in the two columns are in different orders,
streaming algorithms for `0 can quickly identify similar columns. As with F0, `0

estimation is also useful for packet tracing and database auditing [32]. It was also
used for estimating distance to periodicity [43].

We give an `0 estimation algorithm with O(1) update and reporting times, using
a total of O(ε−2(log d)(log(1/ε) + log logmM)) bits of space, both of which improve
upon the previously best known algorithm of Ganguly [54], which had O(log(1/ε))
update time and required O(ε−2 log d logmM) space. Our update and reporting times
are optimal, and the space is optimal up to the log(1/ε) + log logmM term due to
known lower bounds [8, 78]. Furthermore, the algorithm of [54] only works in the
strict turnstile model.

1.3 Moment Estimation

In the moment estimation problem, we would like to compute a (1±ε)-approximation

to the value Fp
def
= ‖x‖pp =

∑d
i=1 |xi|p. For constant p bounded away from 0, up to

changing ε by a constant factor this problem is equivalent to (1 ± ε)-approximation
of the `p norm of x, i.e. ‖x‖p.

13

Reference Space Update Time Model Which p
[8] O(ε−2 logmM) O(ε−2) unrestricted updates p = 2
[29, 118] O(ε−2 logmM) O(1) unrestricted updates p = 2
[45] O(ε−2 logmM) O(ε−2) ≤ 2 updates per coordinate p = 1
[67, 87] O(ε−2 log d logmM) O(ε−2) unrestricted updates p ∈ (0, 2)
[78] O(ε−2 logmM) O(ε−2) unrestricted updates p ∈ (0, 2)
[55] ε−2−p · polylog(mM) polylog(mM) unrestricted updates p ∈ (0, 2)

[97] O(ε−2 logmM log(1/ε)) O(log2mM) ≤ 2 updates per coordinate p = 1

This thesis O(ε−2 logmM) Õ(log2(1/ε)) unrestricted updates p ∈ (0, 2)

Table 1.3: Comparison of our contribution to previous works on Fp estimation in data
streams.

It is known that not all `p norms can be efficiently approximated in a data stream.
In particular, [11, 27] show that polynomial space in d,m is required for p > 2, whereas
space polylogarithmic in these parameters is achievable for 0 < p ≤ 2 [8, 67].1 In
this thesis, we focus on this feasible regime for p. We remark that streaming approx-
imations to `p in this range area interesting for several reasons. `1 estimation is used
as a subroutine for dynamic earthmover distance approximation [66], approximate
linear regression and best rank-k approximation of a matrix (with respect to the `1

norm) [46], cascaded norm estimation of a matrix [71], and network traffic monitor-
ing [45]. Estimation of the `2-norm is useful for database query optimization [7] and
network traffic anomaly detection [83]. Both `1 and `2 estimation subroutines are
used in approximate histogram maintenance [59]. Norm estimation for fractional p
was shown useful for mining tabular data in [33] (p = 0.5 and p = 0.25 were specifi-
cally suggested), and we use `p estimation for fractional p near 1 as a subroutine for
estimating empirical entropy in Chapter 4, which in turn is again useful for network
traffic anomaly detection (see [63] and the references therein). Also, `p estimation for
all 0 < p ≤ 2 is used as a subroutine for weighted sampling in turnstile streams [92].

Previously known upper bounds for moment estimation are listed in Table 1.3.
All space bounds listed hide an additive O(log log d) term. The works listed with the
restriction of “≤ 2 updates per coordinate” operate in the turnstile model given the
guarantee that each coordinate is updated at most twice: at most once positively,
and at most once negatively. In terms of lower bounds, [8] showed a lower bound of
Ω(log min{d,m}), and [124] showed an Ω(1/ε2) lower bound.

Our Contributions: In Chapter 3 we resolve the space complexity of `p estima-
tion for 0 < p ≤ 2 up to constant factors. In particular, the space complexity is
Θ(ε−2 log(mM) + log log d) bits, as long as this bound is at most min{d,m}. For
p strictly less than 2, our upper bound is new, and our lower bound is new for all
0 < p ≤ 2. We also show that this optimal space bound is achievable by an algorithm
with update time only O(log2(1/ε) log log(1/ε)). These contributions were obtained
in joint works with Kane and Woodruff [78], Woodruff [98], and Kane, Porat, and

1When 0 < p < 1, `p is not a norm since it does not satisfy the triangle inequality, though it is
still a well-defined function.

14

Woodruff [77].

Our space-optimal upper bound is given in Section 3.2, with the lower bound given
in Section 3.4. The space-optimal upper bound which also has fast update time is
given in Section 3.3. Subsequent to our work, our lower bound was further improved
to take success probability into account: Jayram and Woodruff [72] showed that
success probability 1 − δ requires space Ω(ε−2 log(mM) log(1/δ)), which is optimal
since one can output the median estimate of O(log(1/δ)) parallel instantiations of our
algorithm.

1.4 Entropy Estimation

In this problem we would like to estimate H
def
= −

∑d
i=1 qi ln qi, where qi

def
= xi/‖x‖1.

That is, we consider the empirical probability distribution defined by x and would
like to estimate its entropy. The primary motivation for empirical entropy estimation
is for applications in computer networking, such as network anomaly detection. Let
us consider a concrete example. One form of malicious activity on the internet is dis-
tributed denial of service attacks (DDoS attacks), in which a large number of machines
overwhelm a target server by flooding it with a large number of packets, rendering
it unable to attend to legitimate traffic. Thus when a DDoS attack is underway, if
one takes x to be indexed by destination IP, then x becomes much more concentrated
than usual. This causes the entropy of the empirical distribution defined by x to drop.
See Lakhina et al. [85] and Xu et al. [126] for more discussion of empirical entropy
estimation in data streams in the context of network anomaly detection.

The first algorithms for approximating entropy in the streaming model are due to
Guha et al. [60]; they achieved O((ε−2+log d) log2 d) space in the insertion-only model,
assuming that the stream is randomly ordered. Chakrabarti, Do Ba and Muthukrish-
nan [26] then gave an algorithm for worst-case ordered insertion-only streams using
O(ε−2 log2m log d) space, but required two passes over the input. The algorithm of
Chakrabarti, Cormode and McGregor [25] uses O(ε−2 log2m) space to give a multi-
plicative 1 ± ε approximation in insertion-only streams. In contrast, the algorithm
of Bhuvanagiri and Ganguly [16] operates in the most general turnstile model but
requires roughly Õ(ε−3 log3mM) space.

Our Contribution: We give a general reduction from entropy estimation to mo-
ment estimation which works in the turnstile model. Plugging in our optimal moment
estimation algorithms then yields an entropy estimation algorithm using Õ(ε−2) ·
polylog(mM) space. This is the first turnstile entropy estimation algorithm which
gives nearly-optimal dependence on ε, as there is an Ω̃(ε−2) lower bound even when
negative updates are not allowed [25]. This contribution was obtained in joint work
with Harvey and Onak [63].

15

1.5 Johnson-Lindenstrauss Transforms

The randomized Johnson-Lindenstrauss lemma states:

Lemma 1 (JL Lemma [73]). For any integer d > 0, and any 0 < ε, δ < 1/2, there
exists a probability distribution D on Rk×d for k = Θ(ε−2 log(1/δ)) such that for any
x ∈ Rd with ‖x‖2 = 1, PrS∼D[|‖Sx‖2

2 − 1| > ε] < δ.

Definition 2. We call any distribution D satisfying the JL lemma a JL-distribution.
If S is a family of matrices such that the uniform distribution over S is a JL-
distribution, then we call S a JL-family.

Proofs of the JL lemma can be found in [2, 9, 18, 36, 50, 68, 73, 75, 89]. The value
of k in the JL lemma is known to be optimal [72] (also see a later proof in [75].

The JL lemma is a key ingredient in the JL flattening theorem, which states that
any n points in Euclidean space can be embedded into O(ε−2 log n) dimensions so
that all pairwise Euclidean distances are preserved up to 1 ± ε. The JL lemma is
a fundamental tool for speeding up solutions to many high-dimensional problems:
closest pair, nearest neighbor, diameter, minimum spanning tree, etc. It also speeds
up some clustering and string processing algorithms, and can further be used to
reduce the amount of storage required to store a dataset, e.g. in streaming algorithms.
Recently it has also found applications in approximate numerical algebra problems
such as linear regression and low-rank approximation [30, 113]. See [65, 119] for
discussions of these and other applications.

1.5.1 Sparse Johnson-Lindenstrauss Transforms

Standard proofs of the JL lemma take a distribution over dense matrices (e.g. i.i.d.
Gaussian or Bernoulli entries), and thus performing the embedding näıvely takes
O(k · ‖x‖0) time where x has ‖x‖0 non-zero entries. Several works have devised other
distributions which give faster embedding times [3, 4, 5, 64, 82, 121]. The two best of
these which are incomparable are [4], which requires O(d log k+ k2+γ) time to embed
into optimal dimension k = O(ε−2 log(1/δ)) for any γ > 0, and [5, 82], which require
O(d log d) time to embed into suboptimal dimension k = O(ε−2 log(1/δ) log4 d). All
these methods however require Ω(min{d, k · ‖x‖0}) time to embed any vector, even if
‖x‖0 = 1. This feature is particularly unfortunate in streaming applications, where a
vector x receives coordinate-wise updates of the form x← x+ v · ei in a data stream,
so that to maintain some linear embedding Sx of x we should repeatedly calculate
Sei during updates. Since ‖ei‖0 = 1, these approaches do not improve upon the
O(k · ‖ei‖0) embedding time coming from dense matrix-vector multiplication.

Even aside from streaming applications, several practical situations give rise to
vectors with ‖x‖0 � d. For example, a common similarity measure for comparing text
documents in data mining and information retrieval is cosine similarity [105], which is
approximately preserved under any JL embedding. Here, a document is represented
as a bag of words with the dimensionality d being the size of the lexicon, and we
usually would not expect any single document to contain anywhere near d distinct

16

words (i.e., we expect sparse vectors). In networking applications, if xi,j counts bytes
sent from source i to destination j in some time interval, then d is the total number
of IP pairs, whereas most pairs of IPs do not communicate with each other.

One way to speed up embedding time in the JL lemma for sparse vectors is to
devise a distribution over sparse embedding matrices. This was first investigated in
[2], which gave a JL distribution where only one third of the entries of each matrix
in its support was non-zero, without increasing the number of rows k from dense
constructions even by a constant factor. Later, the works [29, 118] gave a distribution
over matrices with only O(log(1/δ)) non-zero entries per column, but the algorithm
for estimating ‖x‖2 given the linear sketch then relied on a median calculation, and
thus these schemes did not provide an embedding into `2. In several applications,
such as nearest-neighbor search [68] and some approximate numerical linear algebra
problems [30, 113], an embedding into a normed space or even `2 itself is required, and
thus median estimators cannot be used. Recently Dasgupta, Kumar, and Sarlós [35],
building upon work in [122], gave a JL distribution over matrices where each column
has at most s = Õ(ε−1 log3(1/δ)) non-zero entries, thus speeding up the embedding
time to O(s · ‖x‖0). This “DKS construction” requires O(ds log k) bits of random
seed to sample a matrix from their distribution. The work of [35] left open two main
directions: (1) understand the sparsity parameter s that can be achieved in a JL
distribution, and (2) devise a sparse JL transform distribution which requires few
random bits to sample from, for streaming applications where storing a long random
seed requires prohibitively large memory.

The work [75] made progress on both these questions by showing Õ(ε−1 log2(1/δ))
sparsity was achievable by giving an alternative analysis of the scheme of [35] which
also only required O(log(1/(εδ)) log d) seed length. The work of [18] later gave a
tighter analysis under the assumption ε < 1/ log2(1/δ), improving the sparsity and
seed length further by log(1/ε) and log log(1/δ) factors in this case. In this thesis (in
Section 5.1.4) we show that the DKS scheme requires s = Ω̃(ε−1 log2(1/δ)), and thus
a departure from their construction is required to obtain better sparsity.

Our Contribution: In Section 5.1 we give two new constructions achieving sparsity
s = Θ(ε−1 log(1/δ)) for `2 embedding into optimal dimension k = O(ε−2 log(1/δ)).
This is the first sparsity bound which is always asymptotically smaller than k, regard-
less of how ε and δ are related. One of our distributions requires O(log(1/δ) log d)
uniform random bits to sample from. This contribution was obtained in joint work
with Kane [76].

1.5.2 Derandomizing the Johnson-Lindenstrauss Transform

Another question related to the Johnson-Lindenstrauss transform is that of deran-
domizing it; that is, devising a JL-distribution D over linear mappings such that one
can efficiently sample a random mapping from D using few uniformly random bits.
If the distribution is the uniform distribution over some set of linear mappings, i.e.
a JL family, then it is clear that one needs Ω(log(1/δ) + log d/k) random bits. That
is, the set size must be at least max{1/δ, d/k}. The JL family size must be at least

17

1/δ to achieve a non-zero error probability which is at most δ, and it must be at least
d/k since otherwise the intersection of the kernels of all the linear mappings in the
set would be non-empty.

Existentially it is known that there exists a JL-distribution which can be sampled
using O(log(d/δ)) bits. This is because derandomizing the JL lemma is connected
to pseudorandom generators (PRGs) against degree-2 polynomial threshold functions
(PTFs) over the hypercube [38, 90]. A degree-t PTF is a function f : {−1, 1}d →
{−1, 1} which can be represented as the sign of a degree-t d-variate polynomial. A
PRG that δ-fools degree-t PTFs is a function F : {−1, 1}s → {−1, 1}d such that for
any degree-t PTF f ,

|Ez∈Us [f(F (z))]− Ex∈Ud [f(x)]| < δ,

where Um is the uniform distribution on {−1, 1}m.
Note that the conclusion of the JL lemma can be rewritten as

ES[I[1−ε,1+ε](‖Sx‖2
2)] ≥ 1− δ,

where I[a,b] is the indicator function of the interval [a, b], and furthermore S can be

taken to have random ±1/
√
k entries [2]. Noting that I[a,b](z) = (sign(z−a)−sign(z−

b))/2 and using linearity of expectation, we see that any PRG which δ-fools sign(p(x))
for degree-t polynomials p must also δ-fool I[a,b](p(x)). Now, for fixed x, ‖Sx‖2

2 is a
degree-2 polynomial over the boolean hypercube in the variables Si,j and thus a PRG
which δ-fools degree-2 PTFs also gives a JL family with the same seed length2. It was
shown via the probabilistic method that there exist PRGs for degree-2 PTFs with
seed length O(log(1/δ) + log d) (see Section B of the full version of [90] for a proof).

Our Contribution: In Section 5.4, we give a JL-distribution which can be sam-
pled from using a uniform random seed of length s = O(log d + log(1/ε) log(1/δ) +
log(1/δ) log log(1/δ)). Furthermore, given the seed and a vector x ∈ Rd, one can
compute the embedding in dO(1) time. This contribution was obtained in joint work
with Kane and Meka [74].

Regarding previous works, the `2-streaming algorithm of Alon, Matias, and Szegedy
[8] implies a JL family with seed length O(log d) and with k = O(1/(ε2δ)). Clarkson
and Woodruff [30] showed that a scaled random Bernoulli matrix with Ω(log(1/δ))-
wise independent entries gives a JL distribution. Their work thus implies seed length
O(log(1/δ) log d) with optimal target dimension k. Karnin, Rabani, and Shpilka [81]
gave a family with seed length (1 + o(1)) log d+O(log2(1/(εδ))) with optimal k.

Other derandomizations of the JL lemma include the works [42] and [117]. A
common application of the JL lemma is the case where there are n vectors y1, . . . , yn ∈
Rd and one wants to find a matrix S ∈ Rk×d to preserve ‖yi − yj‖2 to within relative
error ε simultaneously for all i, j. In this case, one can set δ = 1/n2 and apply

2By “seed”, we mean the string of uniform random bits that is fed into the PRG.

18

Lemma 1, then perform a union bound over all i, j pairs. The works of [42, 117]
do not give JL families, but rather give deterministic algorithms for finding such a
matrix S in the case that the vectors y1, . . . , yn are known up front.

19

Chapter 2

Distinct Elements

In this chapter, we describe our algorithms for F0 and `0 estimation in data streams.
We would like to (1± ε)-approximate

F0, `0
def
= |{i : xi 6= 0}|.

The difference between `0 and F0 estimation is in the update model. In the case of F0

estimation, every update in the data stream adds 1 to some coordinate in x, whereas
`0 estimation implies the turnstile model, which can have negative updates.

Our algorithms build upon several techniques given in previous works, with added
twists to achieve our desired bounds. In for example [12], it was observed that if one
somehow knows ahead of time a value R = Θ(F0), refining to (1± ε)-approximation
becomes easier. For example, [12] suggested a “balls and bins” approach to estimat-
ing F0 given such an R. The key intuition is that when hashing A balls randomly
into K bins, the number of bins hit by at least one ball is highly concentrated about
its expectation, and treating this expectation as a function of A then inverting pro-
vides a good approximation to A with high probability for A = Θ(K). Then if one
subsamples each index in [d] with probability 2− log(R/K) and only processes the sub-
stream consisting of subsampled indices, in expectation the number of distinct items
surviving is Θ(K), at which point the balls-and-bins approach can be simulated by
hashing indices (the “balls”) into entries of a bitvector (the “bins”).

Following the above scheme, an estimate of F0 can be obtained by running a
constant-factor approximation in parallel to obtain such an R at the end of the stream,
and meanwhile performing the above scheme for geometrically increasing guesses of
R, one of which must be correct to within a constant factor. Thus, the bits tracked
can be viewed as a bitmatrix: rows corresponding to log d levels of subsampling, and
columns corresponding to entries in the bitvector. At the end of the stream, upon
knowing R, the estimate from the appropriate level of subsampling is used. Such a
scheme with K = Θ(1/ε2) works, and gives O(ε−2 log d) space since there are log d
levels of subsampling.

It was then first observed in [41] that in fact an estimator can be obtained with-
out maintaining the full bitmatrix above. Specifically, for each column [41] gives
an estimator that for each column only required keeping track of the deepest row

20

with its bit set to 1. This allowed the algorithm to collapse the bitmatrix above to
O(ε−2 log log d) bits. Though, their analysis of their estimator required access to a
purely random hash function.

Our F0 algorithm is inspired by the above two algorithms of [12, 41]. We give
a subroutine RoughEstimator using O(log d) space which, with high probability,
provides a constant-factor approximation to F0 at all times in the stream simulta-
neously. Previous subroutines gave a constant factor approximation to F0 at any
particular point in the stream with probability 1 − δ using O(log d log(1/δ)) space;
a good approximation at all times then required setting δ = 1/m to apply a union
bound, thus requiringO(log d logm) space. The next observation is that ifR = Θ(F0),
the largest row index with a 1 bit for any given column is heavily concentrated around
the value log(F0/K). Thus, if we bitpack the K counters and store their offsets from
log(R/K), we expect to only use O(K) space for all counters combined. Whenever
R changes, we update all our offsets.

There are of course obvious obstacles in obtaining worst-case O(1) running times,
such as the occasional need to decrement all K counters (when R increases), or
to locate the starting position of a counter in a bitpacked array when reading and
writing entries. For the former, we use an approach inspired by the technique of
deamortization of global rebuilding (see [101, Ch. 5]), and for the latter we use a
“variable-bit-length array” data structure [17]. Furthermore, we analyze our algo-
rithm without assuming a truly random hash function, and show that a combination
of fast r-wise independent hash functions [116] and uniform hashing [103] suffice to
have sufficient concentration in all probabilistic events we consider.

Our `0 estimation algorithm also uses subsampling and a balls-and-bins approach,
but needs a different subroutine for obtaining the value R, and for representing the
bitmatrix. Specifically, if one maintains each bit as a counter and tests for the counter
being non-zero, frequencies of opposite sign may cancel to produce 0 and give false
negatives. We instead store the dot product of frequencies in each counter with a
random vector over a suitably large finite field. We remark that Ganguly’s algorithm
[54] is also based on a balls-and-bins approach, but on viewing the number of bins
hit by exactly one ball (and not at least one ball), and the source of his algorithm’s
higher complexity stems from implementing this different viewpoint.

Notation: In this section, we use Hr(S, T) to denote any r-wise independent hash
family mapping S onto T . We use lsb(x) to denote the least significant bit of x
when written in binary (0-indexed). For a function f of the stream, e.g. F0, we let
f(t) denote f after only processing the first t updates in the data stream. Thus for
example, F0(t) is the number of distinct items amongst the first t in the stream.

Bibliographic remark: The algorithms described in this chapter were developed
jointly with Kane and Woodruff [79].

21

2.1 Balls and Bins with Limited Independence

In the analysis of the correctness of our algorithms, we require some understanding of
the balls and bins random process with limited independence. We note that [12] also
required a similar analysis, but was only concerned with approximately preserving
the expectation under bounded independence whereas we are also concerned with
approximately preserving the variance. Specifically, consider throwing a set of A
balls into K bins at random and wishing to understand the random variable X being
the number of bins receiving at least one ball. This balls-and-bins random process
can be modeled by choosing a random hash function h ∈ HA([A], [K]), i.e., h acts
fully independently on the A balls, and letting X = |i ∈ [K] : h−1(i) 6= ∅|. When
analyzing our F0 algorithm, we require an understanding of how X behaves when
h ∈ Hk([A], [K]) for k � A.

Henceforth, we let Xi denote the indicator random variable for the event that
at least one ball lands in bin i under a truly random hash function h, so that X =∑K

i=1 Xi.
The following fact is standard. For completeness’ sake, we provide a proof in

Section 2.4.1.

Fact 3. Var[X] = K (K − 1)
(
1− 2

K

)A
+K

(
1− 1

K

)A −K2
(
1− 1

K

)2A
, and E[X] =

K
(

1−
(
1− 1

K

)A)
The proof of the following lemma can also be found in Section 2.4.1.

Lemma 4. If 1 ≤ A ≤ K/20, then Var[X] < 4A2/K.

We now state a lemma that r-wise independence for small r suffices to preserve
E[X] to within 1 ± ε, and to preserve Var[X] to within an additive ε2. We note
that item (1) in the following lemma was already shown in [12, Lemma 1] but with
a stated requirement of r = Ω(log(1/ε)), though their proof actually seems to only
require r = Ω(log(1/ε)/ log log(1/ε)). Our proof of item (1) also only requires this r,
but we require dependence on K in our proof of item (2).

Lemma 5. There exists some constant ε0 such that the following holds for ε ≤ ε0.
Let A balls be mapped into K bins using a random h ∈ H2(r+1)([A], [K]), where r =
c log(K/ε)/ log log(K/ε) for a sufficiently large constant c > 0. Suppose 1 ≤ A ≤ K.
For i ∈ [K], let X ′i be an indicator variable which is 1 if and only if there exists at
least one ball mapped to bin i by h. Let X ′ =

∑K
i=1X

′
i. Then the following hold:

(1). |E[X ′]− E[X]| ≤ εE[X]

(2). Var[X ′]−Var[X] ≤ ε2

Proof. Let Ai be the random variable number counting the number of balls in bin i
when picking h ∈ H2(r+1)([A], [K]). Define the function:

fr(n) =
r∑
i=0

(−1)i
(
n

i

)

22

We note that fr(0) = 1, fr(n) = 0 for 1 ≤ n ≤ r and |fr(n)| ≤
(
n
r+1

)
otherwise. Let

f(n) = 1 if n = 0 and 0 otherwise. We now approximate Xi as 1− fr(Ai). We note
that this value is determined entirely by r-wise independence of h. We note that this
is also

1− f(Ai)±O
((

Ai
r + 1

))
= Xi ±O

((
Ai
r + 1

))
.

The same expression holds for the X ′i, and thus both E[X ′i] and E[Xi] are sand-
wiched inside an interval of size bounded by twice the expected error. To bound the
expected error we can use (r + 1)-independence. We have that the expected value of(
Ai
r+1

)
is
(
A
r+1

)
ways of choosing r+1 of the balls times the product of the probabilities

that each ball is in bin i. This is(
A

r + 1

)
K−(r+1) ≤

(
eA

K(r + 1)

)r+1

≤ A

K
·
(

e

r + 1

)r+1

,

with the last inequality using that A ≤ K. Thus, |E[Xi] − E[X ′i]| ≤ ε2A/K for
r = c log(1/ε)/ log log(1/ε) for sufficiently large constant c. In this case |E[X] −
E[X ′]| ≤ ε2A ≤ εE[X] for ε smaller than some constant since E[X] = Ω(A) for
A ≤ K.

We now analyze Var[X ′]. We approximate XiXj as (1−fr(Ai))(1−fr(Aj)). This
is determined by 2r-independence of h and is equal to(

1− f(Ai)±O
((

Ai
r + 1

)))(
1− f(Aj)±O

((
Aj
r + 1

)))
= XiXj ±O

((
Ai
r + 1

)
+

(
Aj
r + 1

)
+

(
Ai
r + 1

)(
Aj
r + 1

))
We can now analyze the error using 2(r+ 1)-wise independence. The expectation

of each term in the error is calculated as before, except for products of the form(
Ai
r + 1

)(
Aj
r + 1

)
.

The expected value of this is(
A

r + 1, r + 1

)
K−2(r+1) ≤

(
A

r + 1

)2

K−2(r+1) ≤
(

eA

K(r + 1)

)2(r+1)

.

Thus, for r = c′ log(K/ε)/ log log(K/ε) for sufficiently large c′ > 0, each summand in
the error above is bounded by ε3/(6K2), in which case |E[XiXj]−E[XiXj]| ≤ ε3/K2.

23

We can also make c′ sufficiently large so that |E[X]−E[X ′]| ≤ ε3/K2. Now, we have

Var[X ′]−Var[X] ≤ |(E[X]− E[X ′])

+ 2
∑
i<j

(E[XiXj]− E[X ′iX
′
j])− (E2[X]− E2[X ′])|

≤ |E[X]− E[X ′]|+K(K − 1)

× ·max
i<j
|E[XiXj]− E[X ′iX

′
j]|+ |E2[X]− E2[X ′]|

≤ ε3/K2 + ε3 + E2[X](2ε3/K2 + (ε3/K2)2)

≤ 5ε3

which is at most ε2 for ε sufficiently small. �

We now give a consequence of the above lemma.

Lemma 6. There exists a constant ε0 such that the following holds. Let X ′ be as in
Lemma 5, and also assume 1 ≤ A ≤ K/20 with K = 1/ε2 and ε ≤ ε0. Then

Pr[|X ′ − E[X]| ≤ 8εE[X]] ≥ 4/5

.
Proof. Observe that

E[X] ≥ (1/ε2)

(
1−

(
1− Aε2 +

(
A

2

)
ε4

))
= (1/ε2)

(
Aε2 −

(
A

2

)
ε4

)
≥ (39/40)A,

since A ≤ 1/(20ε2).
By Lemma 5 we have E[X ′] ≥ (1 − ε)E[X] > (9/10)A, and additionally using

Lemma 4 we have that Var[X ′] ≤ Var[X] + ε2 ≤ 5ε2A2. Set ε′ = 7ε. Applying
Chebyshev’s inequality,

Pr[|X ′ − E[X ′]| ≥ (10/11)ε′E[X ′]] ≤ Var[X ′]/((10/11)2(ε′)2E2[X ′])

≤ 5 · A2ε2/((10/11)2(ε′)2(9/10)2A2)

< (13/2)ε2/(10ε′/11)2

< 1/5

Thus, with probability at least 1/5, by the triangle inequality and Lemma 5 we
have |X ′ − E[X]| ≤ |X ′ − E[X ′]|+ |E[X ′]− E[X]| ≤ 8εE[X]. �

2.2 F0 estimation algorithm

In this section we describe our F0 estimation algorithm. Our algorithm requires, in
part, a constant-factor approximation to F0 at every point in the stream in which F0 is

24

1. Set KRE = max{8, log(d)/ log log(d)}.

2. Initialize 3KRE counters Cj1 , . . . , C
j
KRE

to −1 for j ∈ [3].

3. Pick random hj1 ∈ H2([d], [0, d− 1]), hj2 ∈ H2([d], [KRE
3]),

hj3 ∈ H2KRE
([KRE

3], [KRE]) for j ∈ [3].

4. Update(i): For each j ∈ [3], set Cj
hj3(hj2(i))

← max

{
Cj
hj3(hj2(i))

, lsb(hj1(i))

}
.

5. Estimator: For integer ` ≥ 0, define T j` = |{i : Cji ≥ `}|.

For the largest ` = `∗ with T j` ≥ ρKRE, set F̃ j0 = 2`
∗
KRE.

If no such ` exists, F̃ j0 = −1.

Output F̃0 = median{F̃ 1
0 , F̃

2
0 , F̃

3
0 }.

Figure 2-1: RoughEstimator pseudocode. With probability 1 − o(1), F̃0(t) =
Θ(F0(t)) at every point t in the stream for which F0(t) ≥ KRE. The value ρ is
.99 · (1− e−1/3).

sufficiently large. We describe a subroutine RoughEstimator in Section 2.2.1 which
provides this, using O(log d) space, then we give our full algorithm in Section 2.2.2.

We remark that the algorithm we give in Section 2.2.2 is space-optimal, but is
not described in a way that achieves O(1) worst-case update and reporting times.
In Section 2.2.4, we describe modifications to achieve optimal running times while
preserving space-optimality.

We note that several previous algorithms could give a constant-factor approxima-
tion to F0 with success probability 2/3 using O(log d) space. To understand why our
guarantees from RoughEstimator are different, one should pay particular atten-
tion to the quantifiers. In previous algorithms, it was guaranteed that there exists
a constant c > 0 such that at any particular point t in the stream, with probabil-
ity at least 1 − δ the output F̃0(t) is in [F0(t), cF0(t)], with the space used being

O(log d log(1/δ)). To then guarantee F̃0(t) ∈ [F0(t), cF0(t)] for all t ∈ [m] with prob-
ability 2/3, one should set δ = 1/(3m) to then union bound over all t, giving an overall
space bound of O(log d logm). Meanwhile, in our subroutine RoughEstimator, we

ensure that with probability 2/3, F̃0(t) ∈ [F0(t), cF0(t)] for all t ∈ [m] simultaneously,
and the overall space used is O(log d).

2.2.1 RoughEstimator

We now show that RoughEstimator (Figure 2-1) with probability 1 − o(1) (as
d→∞) outputs a constant-factor approximation to F0(t) for every t in which F0(t)

25

is sufficiently large. That is, if our estimate of F0(t) is F̃0(t),

Pr[∀t ∈ [m] s.t. F0 ≥ KRE, F̃0(t) = Θ(F0(t))] = 1− o(1),

where KRE is as in Figure 2-1.

Theorem 7. With probability 1−o(1), the output F̃0 of RoughEstimator satisfies

F0(t) ≤ F̃0(t) ≤ 8F0(t) for every t ∈ [m] with F0(t) ≥ KRE simultaneously. The space
used is O(log d).

Proof. We first analyze space. The counters in total take O(KRE log log d) =
O(log d) bits. The hash functions hj1, h

j
2 each take O(log d) bits. The hash functions

hj3 take O(KRE log(KRE)) = O(log d) bits.
We now analyze correctness.

Lemma 8. For any fixed point t in the stream with F0(t) ≥ KRE, and fixed j ∈ [3],

with probability 1−O(1/KRE) we have F0(t) ≤ F̃ j
0 (t) ≤ 4F0(t).

Proof. The algorithm RoughEstimator of Figure 2-1 can be seen as taking the
median output of three instantiations of a subroutine, where each subroutine has
KRE counters C1, . . . , CKRE

, hash functions h1, h2, h3, and defined quantities T`(t) =
|{i : Ci(t) ≥ `}|, where Ci(t) is the state of counter Ci at time t. We show that this

subroutine outputs a value F̃0(t) ∈ [F0(t), 4F0(t)] with probability 1−O(1/KRE).
Define I`(t) ⊆ I(t) as the set of i ∈ I(t) with lsb(h1(i)) ≥ `. Note |I`(t)| is a

random variable, and

E[|I`(t)|] =
F0(t)

2`
, Var[|I`(t)|] =

F0(t)

2`
− F0(t)

22`
≤ E[|I`(t)|],

with the latter using 2-wise independence of h1. Then by Chebyshev’s inequality,

Pr

[∣∣∣∣|I`(t)| − F0(t)

2`

∣∣∣∣ ≥ q · F0(t)

2`

]
≤ 1

q2 · E[|I`(t)|]
. (2.1)

Since F0(t) ≥ KRE, there exists an `′ ∈ [0, log d] such that KRE/2 ≤ E[|I`′(t)|] <
KRE. We condition on the event E that KRE/3 ≤ I`′(t) ≤ 4KRE/3, and note

Pr[E] = 1−O(1/KRE)

by Eq. (2.1). We also condition on the event E ′ that for all `′′ > `′ + 1, I`′′(t) ≤
7KRE/24. Applying Eq. (2.1) with ` = `′ + 2 and using that I`+1(t) ⊆ I`(t),

Pr[E ′] ≥ 1−O(1/KRE).

We now define two more events. The first is the event E ′′ that T`′(t) ≥ ρKRE. The
second is the event E ′′′ that T`′′(t) < ρKRE for all `′′ > `′ + 1. Note that if E ′′ ∧ E ′′′
holds, then F0(t) ≤ F̃0(t) ≤ 4F0(t). We now show that these events hold with large
probability.

26

Define the event A that the indices in I`′(t) are perfectly hashed under h2, and
the event A′ that the indices in I`′+2(t) are perfectly hashed under h2. Then

Pr[A | E] ≥ 1−O(1/KRE).

and similarly for Pr[A′ | E ′].
Note that, conditioned on E ∧ A, T`′(t) is distributed exactly as the number of

non-empty bins when throwing |I`′(t)| balls uniformly at random into KRE bins. This
is because, conditioned on E ∧ A, there are no collisions of members of I`′(t) under
h2, and the independence of h3 is larger than |I`′(t)|. Thus,

E[T`′(t) | E ∧ A] =

(
1−

(
1− 1

KRE

)|I`′ (t)|)
KRE.

The same argument applies for the conditional expectation E[T`′′(t)‖ E ′ ∧ A′] for
`′′ > `′ + 1. Call these conditional expectations E`. Then since (1 − 1/n)/e ≤
(1− 1/n)n ≤ 1/e for all real n ≥ 1 (see for example Proposition B.3 of [94]), we have
that E`/KRE lies in the interval(1− e−

|I`(t)|
KRE

)
,

1− e−
|I`(t)|
KRE

(
1− 1

KRE

) |I`(t)|
KRE


Thus for `′′ > `′ + 1,

E`′′ ≤

(
1− e−7/24

(
1− 1

KRE

)7/24
)
KRE, and E`′ ≥

(
1− e−1/3

)
KRE.

A calculation shows that E`′′ < .99E`′ since KRE ≥ 8.
By negative dependence in the balls and bins random process (see [40]), the Cher-

noff bound applies to T`(t) and thus

Pr [|T`′(t)− E`′| ≥ εE`′ | E ∧ A] ≤ 2e−ε
2E`′/3

for any ε > 0, and thus by taking ε a small enough constant,

Pr[E ′′ | E ∧ A] ≥ 1− e−Ω(KRE).

We also have, for `′′ > `′ + 1,

Pr[E ′′′ | E ′ ∧ A′] = 1−Pr [T`′′(t) ≥ ρKRE | E ′ ∧ A′] ≥ 1− e−Ω(KRE).

27

Thus, overall,

Pr[E ′′ ∧ E ′′′] ≥ Pr[E ′′ ∧ E ′′′ ∧ E ∧ E ′ ∧ A ∧A′]
≥ Pr[E ′′ ∧ E ∧ A] + Pr[E ′′′ ∧ E ′ ∧ A′]− 1

= Pr[E ′′ | E ∧ A] ·Pr[A | E] ·Pr[E]

+Pr[E ′′′ | E ′ ∧ A′] ·Pr[A′ | E ′] ·Pr[E ′]− 1

≥ 1−O(1/KRE)

�

Now, note that for any t ∈ [m], if F̃ j
0 (t) is a 4-approximation to F0(t) for at least

two values of j, then F̃0(t) ∈ [F0(t), 4F0(t)]. Thus by Lemma 8, F̃0(t) ∈ [F0(t), 4F0(t)]
with probability 1−O(1/KRE

2). Let t` be the first time in the stream when F0(t`) = 2`

(if no such time exists, let t` = ∞). Then by a union bound, our estimate of F̃0(t`)
is in [F0(t`), 4F0(t`)] at all t` for ` ∈ [0, log d] with probability 1−O((log d)/KRE

2) =

1− o(1). Now, observe that our estimates F̃0(t) can only ever increase with t. Thus,
if our estimate is in [F0(t`), 4F0(t`)] at all points t`, then it is in [F0(t), 8F0(t)] for all
t ∈ [m]. This concludes our proof. �

2.2.2 Full algorithm

In this section we analyze our main algorithm, described in Figure 2-2, which (1 ±
O(ε))-approximates F0 with 11/20 probability. We again point out that the imple-
mentation described in Figure 2-2 is not our final algorithm which achieves O(1)
update and reporting times; the final optimal algorithm is a modification of Figure 2-
2, described in Section 2.2.4. We assume throughout that F0 ≥ K/32 and deal with
the case of small F0 in Section 2.2.3. The space used is O(ε−2 + log d) bits. Note
that the 11/20 can be boosted to 1 − δ for arbitrary δ > 0 by running O(log(1/δ))
instantiations of our algorithm in parallel and returning the median estimate of F0.
Also, the O(ε) term in the error guarantee can be made ε by running the algorithm
with ε′ = ε/C for a sufficiently large constant C. Throughout this section we without
loss of generality assume d is larger than some constant d0, and 1/ε2 ≥ C log d for a
constant C of our choice, and is a power of 2. If one desires a (1± ε)-approximation
for ε > 1/

√
C log d, we simply run our algorithm with ε = 1/

√
C log d, which worsens

our promised space bound by at most a constant factor.
The algorithm of Figure 2-2 works as follows. We maintain K = 1/ε2 counters

C1, . . . , CK as well as three values A, b, est. Each index is hashed to some level between
0 and log d, based on the least significant bit of its hashed value, and is also hashed
to one of the counters. Each counter maintains the deepest level of an item that was
hashed to it. Up until this point, this information being kept is identical as in the
LogLog [41] and HyperLogLog [48] algorithms (though our analysis will not require
that the hash functions be truly random). The value A keeps track of the amount of
storage required to store all the Ci, and our algorithm fails if this value ever becomes
much larger than a constant times K (which we show does not happen with large
probability). The value est is such that 2est is a Θ(1)-approximation to F0 at all times

28

1. Set K = 1/ε2.

2. Initialize K counters C1, . . . , CK to −1.

3. Pick random h1 ∈ H2([d], [0, d − 1]), h2 ∈ H2([d], [K3]), h3 ∈ Hr([K3], [K]) for
r = Ω(log(1/ε)/ log log(1/ε)).

4. Initialize A, b, est = 0.

5. Run an instantiation RE of RoughEstimator.

6. Update(i): Set x← max{Ch3(h2(i)), lsb(h1(i))− b}.

Set A← A−
⌈
log(2 + Ch3(h2(i)))

⌉
+ dlog(2 + x)e.

If A > 3K, Output FAIL.

Set Ch3(h2(i)) ← x. Also feed i to RE.

Let R be the output of RE.

if R > 2est:

(a) est← log(R), bnew ← max{0, est− log(K/32)}.
(b) For each j ∈ [K], set Cj ← max{−1, Cj + b− bnew}

(c) b← bnew, A←
∑K

j=1 dlog(Cj + 2)e.

7. Estimator: Define T = |{j : Cj ≥ 0}|. Output F̃0 = 2b · ln(1− T
K)

ln(1− 1
K)

.

Figure 2-2: F0 algorithm pseudocode. With probability 11/20, F̃0 = (1±O(ε))F0.

29

and is obtained via RoughEstimator, and b is such that we expect F0(t)/2b to be
Θ(K) at all points in the stream. Each Ci then actually holds the offset (from b)
of the deepest level of an item that was hashed to it; if no item of level b or deeper
hashed to Ci, then Ci stores −1. Furthermore, the counters are bitpacked so that
Ci only requires O(1 + log(Ci)) bits of storage (Section 2.2.4 states a known data
structure which allows the bitpacked Ci to be stored in a way that supports efficient
reads and writes).

Theorem 9. The algorithm of Figure 2-2 uses O(ε−2 + log d) space.

Proof. The hash functions h1, h2 each require O(log d) bits to store. The hash
function h3 takes O(k log(K)) = O(log2(1/ε)) bits. The value b takes O(log log d)
bits. The value A never exceeds the total number of bits to store all counters, which
is O(ε−2 log d), and thus A can be represented in O(log(1/ε) + log log d) bits. The
counters Cj never in total consume more than O(1/ε2) bits by construction, since we
output FAIL if they ever would. �

Theorem 10. The algorithm of Figure 2-2 outputs a value which is (1 ± O(ε))F0

with probability at least 11/20 as long as F0 ≥ K/32.

Proof. Let F̃RE
0 (t) be the estimate of F0 offered by RE at time t. Throughout this

proof we condition on the event E that F0(t) ≤ F̃RE
0 (t) ≤ 8F0(t) for all t ∈ [m], which

occurs with probability 1− o(1) by Theorem 7.
We first show that the algorithm does not output FAIL with large probability. Note

A is always
∑K

i=1 dlog(Ci + 2)e, and we must thus show that with large probability
this quantity is at most 3K at all points in the stream. Let A(t) be the value of
A at time t (before running steps (a)-(c)), and similarly define Cj(t). We condition
on the randomness used by RE, which is independent from the remaining parts of
the algorithm. Let t1, . . . , t`−1 be the points in the stream where the output of RE
changes, i.e F̃RE

0 (tj − 1) 6= F̃RE
0 (tj) for all j ∈ [` − 1], and define t` = m. We note

that A(t) takes on its maximum value for t = tj for some j ∈ [`], and thus it suffices
to show that A(tj) ≤ 3K for all j ∈ [`]. We furthermore note that ` ≤ log d+ 3 since

F̃RE
0 (t) is weakly increasing, only increases in powers of 2, and is always between 1

and 8F0 ≤ 8d given that E occurs. Now,

A(t) ≤ K +
K∑
i=1

log(Ci(t) + 2) ≤ K +K · log

(∑K
i=1Ci(t)

K
+ 2

)

with the last inequality using concavity of the logarithm and Jensen’s inequality. It
thus suffices to show that, with large probability,

∑K
i=1Ci(tj) ≤ 2K for all j ∈ [`].

Fix some t = tj for j ∈ [`]. For i ∈ I(t), let Xi(t) be the random variable

max{−1, lsb(h1(i))− b}, and let X(t) =
∑

i∈I(t) Xi(t). Note
∑K

i=1 Ci(t) ≤ X(t), and

thus it suffices to lower bound Pr[X(t) ≤ 2K].
We have that Xi(t) equals s with probability 1/2b+s+1 for 0 ≤ s < log(d) − b,

equals log(d)− b with probability 1/d, and equals −1 with the remaining probability

30

mass. Thus

E[X(t)] ≤ F0(t) ·

1/d+

log(d)−b−1∑
s=0

2−(b+s+1)

 = F0(t)/2b.

Furthermore, by choice of h1 theXi(t) are pairwise independent, and thus Var[X(t)] ≤
E[X(t)] since Var[Xi(t)] ≤ E[Xi(t)]. Then by Chebyshev’s inequality,

Pr[X(t) > 2K] <
F0(t)

2b · (2K − F0(t)/2b)2

Conditioned on E , K/256 ≤ F0(t)/2b ≤ K/32, implying the above probability
is at most 1/(32K). Then by a union bound over all tj for j ∈ [`], we have that
X(t) ≤ 2K for all j ∈ [`] with probability at least 1 − `/(32K) ≥ 1 − 1/32 by our
assumed upper bound on ε, implying we output FAIL with probability at most 1/32.

We now show that the output from Step 7 in Figure 2-2 is (1 ± O(ε))F0 with
probability 11/16. Let A be the algorithm in Figure 2-2, and let A′ be the same
algorithm, but without the third line in the update rule (i.e., A′ never outputs FAIL).

We first show that the output F̃0 of A′ is (1 ± O(ε))F0 with probability 5/8. Let
Ib be the set of indices i ∈ I such that lsb(i) ≥ b. Then E[|Ib|] = F0/2

b, and
Var[|Ib|] ≤ E[|Ib|], with the last inequality in part using pairwise independence of h1.
We note that conditioned on E , we have

K/256 ≤ E[|Ib|] ≤ K/32

Let E ′ be the event that K/300 ≤ |Ib| ≤ K/20. Then by Chebyshev’s inequality,

Pr[E ′ | E] ≥ 1−O(1/K) = 1− o(1).

Also, if we let E ′′ be the event that Ib is perfectly hashed under h2, then pairwise
independence of h2 gives

Pr[E ′′ | E ′] ≥ 1−O(1/K) = 1− o(1).

Now, conditioned on E ′ ∧ E ′′, we have that T is a random variable counting the
number of bins hit by at least one ball under a r-wise independent hash function,
where there are B = |Ib| balls, K bins, and r = Ω(log(K/ε)/ log log(K/ε)). Then by
Lemma 6, T = (1± 8ε)(1− (1− 1/K)B)K with 4/5 probability, in which case

ln(1− T/K) = ln((1− 1/K)B ± 8ε(1− (1− 1/K)B))

Conditioned on E ′, (1 − 1/K)B = Θ(1), and thus the above is ln((1 ± O(ε))(1 −
1/K)B) = B ln(1− 1/K)±O(ε) since ln(1 + x) = O(|x|) for |x| < 1/2, and thus

F̃0 = B · 2b ±O(ε · 2bK). (2.2)

31

Conditioned on E , we have that 2b ≤ 256F0/K, and thus the error term in Eq. (2.2)
is O(εF0). Also, E[B] = F0/2

b, which is at least K/256 conditioned on E . Thus by
pairwise independence of h1, Chebyshev’s inequality implies

Pr
[
|B − E[B]| ≥ c/

√
K
]
≤ E[B]

(c2/K) · E[B]2
≤
(

16

c

)2

since Var[B] ≤ E[B], which we can make an arbitrarily small constant by setting
c to be a large constant. Note that 1/

√
K is just ε, and thus we have that B =

(1±O(ε))F0/2
b with arbitrarily large constant probability.

Putting everything together, we have that, conditioned on E ∧ E ′ ∧ E ′′, F̃0 =
(1 ± O(ε))F0 with probability at least 4/5 − δ for any constant δ > 0 of our choice,
e.g. δ = 1/5. Since Pr[E ∧ E ′ ∧ E ′′] ≥ 1− o(1), we thus have

Pr[F̃0 = (1±O(ε))F0] ≥ 3/5− o(1).

Note our algorithm in Figure 2-2 succeeds as long as (1) we do not output FAIL,

and (2) F̃0 = (1 ± O(ε))F0, and thus overall we succeed with probability at least
1− 2/5− o(1)− 1/32 > 11/20. �

2.2.3 Handling small F0

In Section 2.2.2, we assumed that F0 = Ω(K) for K = 1/ε2 (specifically, F0 ≥ K/32).
In this subsection, we show how to deal with the case that F0 is small, by running a
similar (but simpler) algorithm to that of Figure 2-2 in parallel.

We can apply Lemma 6 as was done in the proof of Theorem 10. We maintain
K ′ = 2K bits B1, . . . , BK′ in parallel, initialized to 0. When seeing an index i in
the stream, in addition to carrying out Step 6 of Figure 2-2, we also set Bh3(h2(i))

to 1 (h3 can be taken to have range K ′ = 2K, and its evaluation can be taken
modulo K when used in Figure 2-2 to have a size-K range). Let t0 be the smallest
t ∈ [m] with F0(t) = K ′/64, and t1 be the smallest t ∈ [m] with F0(t) = K ′/32
(if no such ti exist, set them to ∞). Define TB(t) = |{i : Bi(t) = 1}|, and define

F̃B
0 (t) = ln(1−TB(t)/K ′)/ ln(1−1/K ′). Then by similar calculations as in Theorem 10

and a union bound over t0, t1, Pr[F̃B
0 (ti) = (1±O(ε))F0(ti) for i ∈ {0, 1}] is at least

1− 2 · (1/5)− o(1) = 3/5− o(1). Noting that F̃B
0 (t) monotonically increases with t,

we can do the following: for t with F̃B
0 (t) ≥ K ′/32 = K/16, we output the estimator

from Figure 2-2; else, we output F̃B
0 (t). We summarize this section with the following

theorem.

Theorem 11. Let η > 0 be any fixed constant, and ε > 0 be given. There is a
subroutine requiring O(ε−2 + log d) space which with probability 1 − η satisfies the
property that there is some t′ ∈ [m] satisfying: (1) for any fixed t < t′, (1±O(ε))F0 is
output, and (2) for any t ≥ t′ the subroutine outputs LARGE, and we are guaranteed
F0(t) ≥ 1/(16ε2).’

32

2.2.4 Running time

In this subsection we discuss an implementation of our F0 algorithm in Figure 2-2
with O(1) update and reporting times. We first state a few theorems from previous
works.

Theorem 12 (Brodnik [20], Fredman and Willard [52]). The least and most signifi-
cant bits of an integer fitting in a machine word can be computed in constant time.

The next two theorems give hash families which have strong independence prop-
erties while only requiring O(1) evaluation time (recall that the r-wise independent
hash functions of Carter and Wegman require Θ(r) evaluation time).

Theorem 13 (Pagh and Pagh [103, Theorem 1.1]). Let S ⊆ U = [u] be a set of
z > 1 elements, and let V = [v], with 1 < v ≤ u. Suppose the machine word size
is Ω(log u). For any constant c > 0 there is word RAM algorithm that, using time
log z logO(1) v and O(log z + log log u) bits of space, selects a family H of functions
from U to V (independent of S) such that:

1. With probability 1−O(1/zc), H is z-wise independent when restricted to S.

2. Any h ∈ H can be represented by a RAM data structure using O(z log(v)) bits
of space, and h can be evaluated in constant time after an initialization step
taking O(z) time.

The following is a corollary of Theorem 2.16 in [116].

Theorem 14 (Siegel [116]). Let U = [u] and V = [v] with u = vc for some constant
c ≥ 1, where the machine word size is Ω(log v). Suppose one wants an r(v)-wise
independent hash family H of functions mapping U to V for k(v) = vo(1). For any
constant ε > 0 there is a randomized procedure for constructing such an H which
succeeds with probability 1 − 1/vε, taking vε bits of space. A random h ∈ H can be
selected using vε bits of random seed, and h can be evaluated in O(1) time.

We now describe a fast version of RoughEstimator.

Lemma 15. RoughEstimator can be implemented with O(1) worst-case update
and reporting times, at the expense of only giving a 16-approximation to F0(t) for
every t ∈ [m] with F0(t) ≥ KRE, for KRE as in Figure 2-1.

Proof. We first discuss update time. We replace each hj3 with a random function
from the hash family H of Theorem 13 with z = 2KRE, u = KRE

3, v = KRE. The
constant c in Item 1 of Theorem 13 is chosen to be 1, so that each hj3 is uniform on any
given subset of z items of [u] with probability 1−O(1/KRE). Note that the proof of
correctness of RoughEstimator (Theorem 7) only relied on the hj3 being uniform on
some unknown set of 4KRE/3 < 2KRE indices with probability 1−O(1/KRE) (namely,
those indices in Ir′(t)). The space required to store any h ∈ H is z log v = O(log d),
which does not increase our space bound for RoughEstimator. Updates then

33

require computing a least significant bit, and computing the hj1, h
j
2, h

j
3, all taking

constant time.
For reporting time, in addition to the information maintained in Figure 2-1, we also

maintain three sets of counters Aj0, A
j
1, A

j
2, A

j
3, A

j
4 for j ∈ [3]. For a fixed j, the Aji store

T j`+i for an ` we now specify. Roughly speaking, for the values of t where F0(t) ≥ KRE,
` will be such that, conditioned on RoughEstimator working correctly, 2` will
always be in [F0(t)/2, 8F0(t)]. We then alter the estimator of RoughEstimator to
being 2`+1.

Note that, due to Theorem 11, the output of RoughEstimator does not figure
into our final F0 estimator until F0(t) ≥ (1−O(ε))/(32ε2), and thus the output of the
algorithm is irrelevant before this time. We start off with ` = log(1/(32ε2)). Note that
Aj0, A

j
1, A

j
2, A

j
3, A

j
4 can be maintained in constant time during updates. At some point

t1, the estimator from Section 2.2.3 will declare that F0(t1) = (1 ± O(ε))/(32ε2),
at which point we are assured F0(t1) ≥ 1/(64ε2) ≥ log d (assuming ε is smaller
than some constant, and assuming that 1/ε2 ≥ 64 log d). Similarly, we also have
F0(t1) ≤ 1/(16ε2) ≤ 4 log d. Thus, by our choice of ` and conditioned on the event
that RoughEstimator of Figure 2-1 succeeds (i.e., outputs a value in [F0(t), 8F0(t)]
for all t with F0(t) ≥ KRE), we can determine the median across the j of the largest `∗

such that T j` ≥ ρKRE from the Aji and set `(t1) = `∗ so that 2`(t1) is in [F0(t1), 8F0(t1)].
Our argument henceforth is inductive: conditioned on the output of RoughEs-

timator from Figure 2-1 being correct (always in [F0(t), 8F0(t)]), 2`(t) will always
be in [F0(t)/2, 8F0(t)] for all t ≥ t1, which we just saw is true for t = t1. Note that
conditioned on RoughEstimator being correct, its estimate of F0 cannot jump by
a factor more than 8 at any given point in the stream. Furthermore, if this happens,
we will detect it since we store up to Aj4. Thus, whenever we find that the estimate
from RoughEstimator changed (say from 2`

′
to 2`

′′
), we increment ` by `′′− `′ and

set each Aji to Aji+`′′−`′ for i ≤ 4 + `′ − `′′ For 4 + `′ − `′′ < i ≤ 4, we recompute Aji
from scratch, by looping over the KRE counters Ci. This requires O(KRE) work, but
note that since t ≥ t1, there must be at least KRE updates before F0(t) doubles, and
thus we can afford to do O(1) work toward this looping per update. In the meantime
2` cannot fall below F0/2. �

We will use the following “variable-bit-length array” data structure to implement
the array C of counters in Figure 2-2, which has entries whose binary representations
may have unequal lengths. Specifically, in Figure 2-2, the bit representation of Ci
requires O(1 + log(Ci + 2)) bits.

Definition 16 (Blandford, Blelloch [17]). A variable-bit-length array (VLA) is a data
structure implementing an array C1, . . . , Cn supporting the following operations: (1)
update(i, x) sets the value of Ci to x, and (2) read(i) returns Ci. Unlike in standard
arrays, the Ci are allowed to have bit-representations of varying lengths, and we use
len(Ci) to represent the length of the bit-representation of Ci.

Theorem 17 (Blandford and Blelloch [17]). There is a VLA data structure using
O(n+

∑
i len(Ci)) space to store n elements, supporting worst-case O(1) updates and

reads, under the assumptions that (1) len(Ci) ≤ w for all i, and (2) w ≥ log(M).

34

Here w is the machine word size, and M is the amount of memory available to the
VLA.

We now give a time-optimal version of Figure 2-2.

Theorem 18. The algorithm of Figure 2-2 can be implemented with O(1) worst-case
update and reporting times.

Proof. For update time, we select h3 from the hash family of Theorem 14, which
requires O(1/εε) space for arbitrarily small ε > 0 of our choosing (say, ε = 1), and
thus this space is dominated by other parts of the algorithm. We then can evaluate
h1, h2, h3 in constant time, as well as compute the required least significant bit in
constant time. Updating A requires computing the ceiling of a base-2 logarithm,
but this is just a most significant bit computation which we can do in O(1) time by
Theorem 12. We can also read and write the Cj in constant time whilst using the
same asymptotic space by Theorem 17.

What remains is to handle the if statement for when R > 2est. Note that a
näıve implementation would require O(K) time. Though this if statement occurs
infrequently enough that one could show O(1) amortized update time, we instead
show the stronger statement that an implementation is possible with O(1) worst
case update time. The idea is similar to that in the proof of Lemma 15: when bnew

changes, it cannot change more than a constant number of times again in the next
O(K) updates, and so we can spread the O(K) required work over the next O(K)
stream updates, doing a constant amount of work each update.

Specifically, note that bnew only ever changes for times t when R(t) > 2est(t) ≥
K/16, conditioned on the subroutine of Theorem 11 succeeding, implying that F0(t) ≥
K/256, and thus there must be at least K/256 updates for F0(t) to double. Since
RoughEstimator always provides an 8-approximation, est can only increase by at
most 3 in the next K/256 stream updates. We will maintain a primary and secondary
instantiation of our algorithm, and only the primary receives updates. Then in cases
where R > 2est and bnew changes from b, we copy a sufficiently large constant number
of the Cj (specifically, 3 · 256) for each of the next K/256 updates, from the primary
to secondary structure, performing the update Cj ← max{−1, Cj + b − bnew} in the
secondary structure. If RoughEstimator fails and est changes by more than 3
in the next K/256 updates, we output FAIL. Meanwhile, during this copy phase,
we process new stream updates in both the primary and secondary structures, and
we answer updates from the primary structure. The analysis of correctness remains
virtually unchanged, since the value 2b corresponding to the primary structure still
remains a constant-factor approximation to F0 during this copy phase.

For reporting time, note we can maintain T = |{i : Ci ≥ 0}| during updates, and
thus the reporting time is the time to compute a natural logarithm, which can be
made O(1) via a small lookup table (see Section 2.4.2). �

35

1. Set K = 1/ε2.

2. Instantiate a log d×K bit-matrix A, initializing each Ai,j to 0.

3. Pick random h1 ∈ H2([d], [0, d − 1]), h2 ∈ H2([d], [K3]), h3 ∈ Hr([K3], [K]) for
r = Ω(log(1/ε)/ log log(1/ε)).

4. Obtain a value R ∈ [F0, cF0] from some oracle, for some constant c ≥ 1.

5. Update(i): Set Alsb(h1(i)),h3(h2(i)) ← 1.

6. Estimator: Set T = |{j ∈ [K] : Alog(16R/K),j = 1}|. Output F̃0 = 32R
K ·

ln(1− T
K)

ln(1− 1
K)

.

Figure 2-3: An algorithm skeleton for F0 estimation.

2.3 `0 estimation algorithm

Our `0 algorithm is based on the approach to F0 estimation in Figure 2-3. In this
approach, we maintain a log d × K bit-matrix A, and upon receiving an update i,
we subsample i to the row determined by the lsb of a hash evaluation, then eval-
uate another hash function to tell us a column and set the corresponding bit of A
to 1. Note that our algorithm from Section 2.2 is just a space-optimized implemen-
tation of this approach. Specifically, in Figure 2-2 we obtained a c-approximation
R to F0 via RoughEstimator for c = 8. The value b we maintained was just
max{0, log(32R/K)}. Then rather than explicitly maintaining A, we instead main-
tained counters Cj which allowed us to deduce whether Ab,j = 1 (specifically, Ab,j = 1
iff Cj = 0).

The proof of correctness of the approach in Figure 2-3 is thus essentially identical
to that of Theorem 10 (in fact simpler, since we do not have to upper bound the case
of outputting FAIL), so we do not repeat it here. Thus, we need only show that the
approach in Figure 2-3 can be implemented for some constant c ≥ 1 in the context of
`0 estimation. Specifically, we must show that (a) the bit-matrix A can be maintained
(with large probability), and (b) we can implement the oracle in Step 4 of Figure 2-3
to give a c-approximation to `0 for some constant c ≥ 1.

We first show (a), that we can maintain the bit-matrix A with large probability.
In fact, note our estimate of `0 only depends on one particular row i∗ = log(16R/K)
of A, so we need only ensure that we maintain row i∗ with large constant probability.
We first give two facts.

Fact 19. Let t, r > 0 be integers. Pick h ∈ H2([r], [t]). For any S ⊂ [r] ,

E

[
s∑
i=1

(
|h−1(i) ∩ S|

2

)]
≤ |S|2/(2t).

36

Proof. Write |S| = s. Let Xi,j indicate h(i) = j. By linearity of expectation, the
desired expectation is then

t
∑
i<i′

E[Xi,1]E[Xi′,1] = t

(
s

2

)
1

t2
≤ s2

2t
.

�

Fact 20. Let Fq be a finite field and v ∈ Fdq be a non-zero vector. Then, a random
w ∈ Fdq gives Prw[v · w = 0] = 1/q, where v · w is the inner product over Fq.

Proof. The set of vectors orthogonal to v is a linear subspace V ⊂ Fdq of dimension
d− 1 and thus has qd−1 points. Thus, Pr[w ∈ V] = 1/q. �

Lemma 21. There is a scheme representing each Ai,j using O(log(1/ε)+log log(mM))
bits such that, for i∗ = log(16R/K), the (i∗)th row of A can be recovered with proba-
bility 2/3. Furthermore, the update time and time to recover any Ai,j are both O(1).

Proof. We represent each Ai,j as a counter Bi,j of O(log(K)+log log(mM)) bits. We
interpret Ai,j as being the bit “1” if Bi,j is non-zero; else we interpret Ai,j as 0. The de-
tails are as follows. We choose a prime p randomly in [D,D3] for D = 100K log(mM).
Notice that for mM larger than some constant, by standard results on the density
of primes there are at least K2 log2(mM) primes in the interval [D,D3]. Since every
frequency xi is at most mM in magnitude and thus has at most log(mM) prime fac-
tors, non-zero frequencies remain non-zero modulo p with probability 1 − O(1/K2),
which we condition on occurring. We also randomly pick a vector u ∈ FKp and
h4 ∈ H2([K3], [K]). Upon receiving an update (i, v), we increment Blsb(h1(i)),h3(h2(i))

by v · uh4(h2(i)), then reduce modulo p.
Define Ii∗ = {i ∈ I : lsb(i) = i∗}. Note that conditioned on R ∈ [‖x‖0, c‖x‖0],

we have E[Ii∗] ≤ K/32, and thus Pr[|Ii∗| ≤ K/20] = 1 − O(1/K) = 1 − o(1)
by Chebyshev’s inequality. We condition on this event occurring. Also, since the
range of h2 is of size K3, the indices in Ii∗ are perfectly hashed with probability
1−O(1/K) = 1− o(1), which we also condition on occurring.

Let Q be the event that p does not divide any |xj| for j ∈ Ii∗ . Then by a union
bound, Pr[Q] = 1−O(1/K).

Let Q′ be the event that h4(h2(j)) 6= h4(h2(j′)) for distinct j, j′ ∈ Ii∗ with
h3(h2(j)) = h3(h2(j′)).

Henceforth, we also condition on both Q and Q′ occurring, which we later show
holds with good probability. Define J as the set of j ∈ [K] such that h3(h2(i)) = j
for at least one i ∈ Ii∗ , so that to properly represent the Ai∗,j we should have Bi∗,j

non-zero iff j ∈ J . For each j ∈ J , Bi∗,j can be viewed as maintaining the dot product
of a non-zero vector v, the frequency vector x restricted to coordinates in Ii∗ which
hashed to j, with a random vector w, namely, the projection of u onto coordinates
in Ii∗ that hashed to j. The vector v is non-zero since we condition on Q, and w is
random since we condition on Q′.

Now, let Xi,j be a random variable indicating that h3(h2(j)) = h3(h2(j′)) for
distinct j, j′ ∈ Ii∗ . Let X =

∑
j<j′ Xj,j′ . By Fact 19 with r = K3, t = K, and

37

s = |Ii∗| < K/20, we have that E[X] ≤ K/800. Let Z = {{j, j′} ∈
(
Ii∗
2

)
: h3(h2(j)) =

h3(h2(j′))}. For (j, j′) ∈ Z let Yj,j′ be a random variable indicating h4(h2(j)) =
h4(h2(j′)), and let Y =

∑
(j,j′)∈Z Yj,j′ . Then by pairwise independence of h4, and the

fact that we conditioned on Ii∗ being perfectly hashed under h2, we have

E[Y] =
∑

(j,j′)∈Z

Pr[h4(h2(j)) = h4(h2(j′))] = |Z|/K.

Note |Z| = X. Conditioned on X ≤ 20E[X] ≤ K/40, which happens with probability
at least 19/20 by Markov’s inequality, we have that E[Y] ≤ |Z|/K ≤ 1/40, so that
Pr[Y ≥ 1] ≤ 1/40. Thus, Q′ holds with probability at least (19/20) · (39/40) > 7/8.

Finally, by Fact 20 with q = p, and union bounding over all K counters Bi∗,j, no
Bi∗,j for j ∈ J is 0 with probability 1 − K/p ≥ 99/100. Thus, our scheme overall
succeeds with probability (7/8) · (99/100)− o(1) > 2/3. �

We next show (b) in Section 2.3.1, i.e. give an algorithm providing an O(1)-
approximation to `0 with O(1) update and reporting times. The space used is
O(log d log logmM).

Note that, as with our F0 algorithm, we also need to have an algorithm which
provides a (1 ± ε)-approximation when `0 � 1/ε2. Just as in Section 2.2.3, this is
done by using the same scheme as in Section 2.2.3, but using Lemma 21 to represent
our bit array.

Putting everything together, we have the following.

Theorem 22. There is an algorithm using space O(ε−2 log d(log(1/ε)+log log(mM)))
for (1 ± ε)-approximating `0 with 2/3 success probability, and with O(1) worst-case
update and reporting times.

2.3.1 A Rough Estimator for `0 estimation

We describe here a subroutine RoughL0Estimator which gives a constant-factor
approximation to `0 with probability 9/16. First, we need the following lemma which
states that when `0 is at most some constant c, it can be computed exactly in small
space. The lemma follows by picking a random prime p = Θ(log(mM) log log(mM))
and pairwise independently hashing the universe into [Θ(c2)] buckets. Each bucket
is a counter which tracks the sum of frequencies modulo p of updates to universe
items landing in that bucket. The estimate of `0 is then the total number of non-zero
counters, and the maximum estimate after O(log(1/η)) trials is finally output. This
gives the following.

Lemma 23. Given η ∈ (0, 1/2), there is an algorithm using O(c2 log log(mM) log(1/η))
space, in addition to needing to store O(log(1/η)) independently chosen pairwise in-
dependent hash functions mapping [d] into [c2], which when given the promise that
`0 ≤ c can output `0 exactly with probability at least 1−η. The worst-case update and
reporting times are O(1).

Now we describe RoughL0Estimator. We pick a function h : [d] → [d] at
random from a pairwise independent family. For each 0 ≤ j ≤ log d we create a

38

substream Sj consisting of those x ∈ [d] with lsb(h(x)) = j. Let `0(S) denote `0

of the substream S. For each Sj we run an instantiation Bj of Lemma 23 with
c = 141 and η = 1/16. All instantiations share the same O(log(1/η)) hash functions
h1, . . . , hO(log(1/η)).

To obtain our final estimate of `0 for the entire stream, we find the largest value
of j for which Bj declares `0(Sj) > 8. Our estimate of `0 is ˜̀

0 = 2j. If no such j
exists, we estimate ˜̀

0 = 1.

Theorem 24. RoughL0Estimator with probability at least 9/16 outputs a value
˜̀
0 satisfying `0 ≤ ˜̀

0 ≤ 110`0. The space used is O(log d log logmM), and the update
and reporting times are O(1).

Proof. The space to store h is O(log d). The Θ(log(1/η)) hash functions hi in total
require O(log(1/η) log d) = O(log d) bits to store since 1/η = O(1). The remaining
space to store a single Bj for a level is O(log logmM) by Lemma 23, and thus storing
all Bj across all levels requires O(log d log logmM) space.

As for running time, upon receiving a stream update (i, v), we first hash i using
h, taking time O(1). Then, we compute lsb(h(i)), also in constant time. Now, given
our choice of η for Bj, we can update Bj in O(1) time by Lemma 23.

To obtain O(1) reporting time, we again use the fact that we can compute the
least significant bit of a machine word in constant time. We maintain a single machine
word z of at least log d bits and treat it as a bit vector. We maintain that the jth
bit of z is 1 iff `0(Sj) is reported to be greater than 8 by Bj. This property can be
maintained in constant time during updates. Constant reporting time then follows
since finding the deepest level j with greater than 8 reported elements is equivalent
to computing lsb(z).

Now we prove correctness. Observe that E[`0(Sj)] = `0/2
j+1 when j < log d

and E[`0(Sj)] = `0/2
j = `0/d when j = log d. Let j∗ be the largest j satisfying

E[`0(Sj)] ≥ 1 and note that 1 ≤ E[`0(Sj∗)] ≤ 2. For any j > j∗, Pr[`0(Sj) >
8] < 1/(8 · 2j−j∗−1) by Markov’s inequality. Thus, by a union bound, the probability
that any j > j∗ has `0(Sj) > 8 is at most (1/8) ·

∑∞
j−j∗=1 2−(j−j∗−1) = 1/4. Now,

let j∗∗ < j∗ be the largest j such that E[`0(Sj)] ≥ 55, if such a j exists. Since we
increase the j by powers of 2, we have 55 ≤ E[`0(Sj∗∗)] < 110. Note that h is pairwise
independent, so Var[`0(Sj∗∗)] ≤ E[`0(Sj∗∗)]. For this range of E[`0(Sj∗∗)], we then
have by Chebyshev’s inequality that

Pr
[
|`0(Sj∗∗)− E[`0(Sj∗∗)]| ≥ 3

√
E[`0(Sj∗∗)]

]
≤ 1/9.

If |`0(Sj∗∗)− E[`0(Sj∗∗)]| < 3
√

E[`0(Sj∗∗)], then

32 < 55− 3
√

55 < `0(Sj∗∗) < 110 + 3
√

110 < 142

since 55 ≤ E[`0(Sj∗∗)] < 110.
So far we have shown that with probability at least 3/4, `0(Sj) ≤ 8 for all j > j∗.

Thus, for these j the Bj will estimate `0 of the corresponding substreams to be at
most 8, and we will not output ˜̀

0 = 2j for j > j∗. On the other hand, we know for

39

j∗∗ (if it exists) that with probability at least 8/9, Sj∗∗ will have 32 < `0(Sj
∗∗

i) < 142.
By our choice of c = 141 and η = 1/16 in the Bj, Bj∗∗ will output a value ˜̀

0(Sj
∗∗

i) ≥
`0(Sj

∗∗

i)/4 > 8 with probability at least 1 − (1/9 + 1/16) > 13/16 by Lemma 23.
Thus, with probability at least 1− (3/16 + 1/4) = 9/16, we output ˜̀

0 = 2j for some
j∗∗ ≤ j ≤ j∗, which satisfies 110 · 2j < `0 ≤ 2j. If such a j∗∗ does not exist, then
`0 < 55, and 1 is a 55-approximation in this case. �

2.4 Further required proofs

2.4.1 Various calculations for balls and bins

Fact 3 (restatement). Var[X] = K (K − 1)
(
1− 2

K

)A
+K

(
1− 1

K

)A−K2
(
1− 1

K

)2A

and E[X] = K
(

1−
(
1− 1

K

)A)
Proof. The computation for E[X] follows by linearity of expectation.

For Var[X], we have

Var[X] = E[X2]− E2[X]

=
∑
i

E[X2
i] + 2

∑
i<j

E[XiXj]− E2[X]

We have E[X2
i] = E[Xi], so the first sum is simply E[X]. We now calculate E[XiXj]

for i 6= j. Let Yi indicate that at least one good ball landed in bin i, and let Zi
indicate that at least one bad ball landed in bin i. Then,

E[XiXj] = Pr[Yi ∧ Yj ∧ Z̄i ∧ Z̄j]
= Pr[Z̄i ∧ Z̄j] ·Pr[Yi ∧ Yj|Z̄i ∧ Z̄j]
= Pr[Z̄i ∧ Z̄j] ·Pr[Yi ∧ Yj]

=

(
1− 2

K

)B
· (1−Pr[Ȳi ∧ Ȳj]−Pr[Yi ∧ Ȳj]

−Pr[Ȳi ∧ Yj])

=

(
1− 2

K

)B
·
(
1−Pr[Ȳi ∧ Ȳj]− 2 ·Pr[Yi ∧ Ȳj]

)
=

(
1− 2

K

)B
· (1−Pr[Ȳi ∧ Ȳj]

− 2 ·Pr[Ȳj] ·Pr[Yi|Ȳj])

=

(
1− 2

K

)B
·

(
1−

(
1− 2

K

)A
− 2

(
1− 1

K

)A
×

(
1−

(
1− 1

K − 1

)A))

40

=

(
1− 2

K

)B
·

(
1−

(
1− 2

K

)A
− 2

(
1− 1

K

)A
+ 2

(
1− 2

K

)A)

=

(
1− 2

K

)B
·

(
1− 2

(
1− 1

K

)A
+

(
1− 2

K

)A)

The variance calculation then follows by noting 2
∑

i<j E[XiXj] = K(K−1)E[X1X2]

then expanding out E[X] +K(K − 1)E[X1X2]− E2[X]. �

The following is a proof of Lemma 4. Recall that there are A balls being tossed
into K bins independently at random, and X is the random variable which is the
number of bins receiving at least one ball.
Lemma 4 (restatement). If 1 ≤ A ≤ K/20, then Var[X] < 4A2/K.
Proof. By Fact 3,

Var[X] = K (K − 1)

(
1− 2

K

)A
+K

(
1− 1

K

)A
−K2

(
1− 1

K

)2A

= K2

[(
1− 2

K

)A
−
(

1− 1

K

)2A
]

+K

[(
1− 1

K

)A
−
(

1− 2

K

)A]

= K2

(
1− 2

K

)A [
1−

(
1− 2

K
+ 1

K2

1− 2
K

)A]

+K

[(
1− 1

K

)A
−
(

1− 2

K

)A]

= K2

(
1− 2

K

)A 1−

(
1 +

1

K2
(
1− 2

K

))A


+K

[(
1− 1

K

)A
−
(

1− 2

K

)A]

= K2

(
1− 2

K

)A [
1−

(
1 +

A

K2
(
1− 2

K

) + E1

)]

+K

[(
1− A

K
+ E2

)
−
(

1− 2A

K
+ E3

)]
,

41

where E1, E2, and E3 are the sum of quadratic and higher terms of the binomial
expansions for (1 + 1/(K2(1 − 2/K)))A, (1 − 1/K)A, and (1 − 2/K)A, respectively.
Continuing the expansion,

Var[X] = −K2

(
1− 2

K

)A(
A

K2
(
1− 2

K

) + E1

)
+ A+K(E2 − E3)

= −A
(

1− 2

K

)A−1

−K2E1

(
1− 2

K

)A
+ A+K(E2 − E3)

= −A
(

1− 2(A− 1)

K
+ E4

)
−K2E1

(
1− 2

K

)A
+ A+K(E2 − E3)

= −A+
2A(A− 1)

K
− AE4 −K2E1

(
1− 2

K

)A
+ A+K(E2 − E3)

=
2A(A− 1)

K
− AE4 −K2E1

(
1− 2

K

)A
+K(E2 − E3),

where E4 is the sum of quadratic and higher terms of the binomial expansion of
(1− 2/K)A−1.

We claim that E1, E2, E3, and E4 are non-negative. We use Bernoulli’s inequality,
which is that (1 + x)i ≥ 1 + ix for integers i ≥ 1 and any real number x ≥ −1. This
inequality implies the sum of quadratic and higher terms in the expansion of (1+x)i is
non-negative, since 1 + ix corresponds to the remaining terms. Since 1 ≤ A ≤ K/20,
we have that K ≥ 20, and so 1/(K2(1−2/K)),−1/K, and −2/K are greater than −1.
Bernoulli’s inequality thus implies E1, E2, and E3 are non-negative. Moreover, since
we can in fact assume that A ≥ 2, as otherwise there is 1 ball and so Var[X] = 0, we
have that A− 1 ≥ 1 and so Bernoulli’s inequality implies E4 is also non-negative.

Hence,

Var[X] ≤ 2A(A− 1)

K
+K(E2 − E3).

We also have,

E2 − E3 =

((
A
2

)
K2
−
(
A
3

)
K3

+ · · ·

)
−

(
4
(
A
2

)
K2
−

8
(
A
3

)
K3

+ · · ·

)

= −
3
(
A
2

)
K2

+
7
(
A
3

)
K3
− · · ·

42

This series can be upper bounded by the series

∞∑
i=2

(2i − 1)(A/K)i

i!
,

and lower bounded by the series

−
∞∑
i=2

(2i − 1)(A/K)i

i!
.

This series, in absolute value, is a geometric series with starting term 3A2/(2K2) and
ratio at most A/K ≤ 1/20. Thus, |E2 − E3| ≤ (20/19) · (3A2/(2K2)) = (30/19) ·
(A/K)2, and so |K(E2 − E3)| ≤ (30/19) · A2/K.

Hence, Var[X] ≤ 2A2

K
+ 30A2

19K
< 4A2

K
, as desired. �

2.4.2 A compact lookup table for the natural logarithm

Lemma 25. Let K > 4 be a positive integer, and write γ = 1/
√
K. It is possible to

construct a lookup table requiring O(γ−1 log(1/γ)) bits such that ln(1− c/K) can then
be computed with relative accuracy γ in constant time for all integers c ∈ [4K/5].

Proof. We set γ′ = γ/15 and discretize the interval [1, 4K/5] geometrically by
powers of (1 + γ′). We precompute the natural algorithm evaluated at 1 − ρ/K for
all discretization points ρ, with relative error γ/3, creating a table A taking space
O(γ−1 log(1/γ)). We answer a query ln(1−c/K) by outputting the natural logarithm
of the closest discretization point in A. First, we argue that the error from this output
is small enough. Next, we argue that the closest discretization point can be found in
constant time.

For the error, the output is up to (1± γ/3),

ln(1− (1± γ′)c/K) = ln(1− c/K ± γ′c/K)

= ln(1− c/K)± 5γ′c/K

= ln(1− c/K)± γc/(3K).

Using the fact that | ln(1−z)| ≥ z/(1−z) for 0 < z < 1, we have that | ln(1−c/K)| ≥
c/(K − c) ≥ c/K. Thus,

(1± γ/3)(ln(1− c/(3K))± γc/K) = (1± γ/3)2 ln(1− c/K)

= (1± γ) ln(1− c/K).

Now, for finding the discretization point, note we need to look up A[
⌈
log1+γ′(c)

⌉
] =

A[dlog(c)/(aγ′)e], where aγ′ = log(1 + γ′) (note, we can compute log(1 + γ′) = aγ′

in preprocessing). Now, write c = c′ · 2k where k = blog(c)c and thus 1 ≤ c′ < 2.
We can compute k in O(1) time since it is the most significant bit of c. We know
log1+γ′(c) = log(c′ · 2k)/(aγ′) = k/(aγ′) + log(c′)/(aγ′). Now, the derivative of the

43

log function in the range [1, 2) is sandwiched between two constants. Thus, if we
discretize [1, 2) evenly into O(γ′−1) buckets and store the log of a representative of
each bucket in a lookup table B, we can additively O(γ′)-approximate log c′ by table
lookup of B[b(c′ − 1)/γ′c]. So now we have computed

k/(aγ′)+(log c′ +O(γ′))/(aγ′)

= k/(aγ′) + log(c′)/(aγ′)±O(1).

This O(1) can be taken to be arbitrarily small, say at most 1/3, by tuning the constant
in the discretization. Thus we know the correct index to look at in our index table A
up to ±1/3; since indices are integers, we are done. �

44

Chapter 3

Moment Estimation

In this chapter we describe our contributions for the problem of moment estimation.
We would like to (1± ε)-approximate

Fp
def
= ‖x‖pp =

d∑
i=1

|xi|p.

For p a constant bounded away from 0, this is equivalent to estimating `p
def
= ‖x‖p up

to changing ε by a constant factor.
In Section 3.2 we describe an improved derandomization of Indyk’s median al-

gorithm [67], which is sufficient to yield the first optimal space algorithm for this
problem. The update time of this algorithm, however, is Θ(1/ε2). In Section 3.3 we
give a more involved algorithm which simultaneously achieves optimal space and a
faster update time of O(log2(1/ε) log log(1/ε)).

The analysis of both our algorithms requires an analytical tool we dub FT-
mollification, which we describe in Section 3.1. Essentially, we use FT-mollification to
show that the CDF of a random variable A =

∑
iAixi is pointwise close everywhere

to the CDF of a random variable B =
∑

iBixi as long as the Bi and Ai are identi-
cally distributed, and where the Ai are fully independent and the Bi are only r-wise
independent for sufficiently large r. This statement is equivalent to the statement

∀t ∈ R, |E[I[t,∞)(A)− E[I[t,∞)(B)]| < γ

for some small γ > 0. One might think to show such a statement by approximating
I[t,∞) by a low-degree polynomial, obtained for example by Taylor expansion, then
bounding the difference in expectations by bounding the expectation of the Taylor
error. Unfortunately, Taylor’s theorem requires the function to be sufficiently smooth,
whereas I[t,∞) is not even continuous. Instead, we devise a smooth approximation

Ĩc[t,∞) to I[a,b] then show the chain of inequalities

E[I[t,∞)(A)] ≈ε E[Ĩc[t,∞)(A)] ≈ε E[Ĩc[t,∞)(B)] ≈ε E[I[t,∞)(B)].

This smooth function Ĩc[t,∞) is obtained via our FT-mollification procedure.

45

Bibliographic remarks: FT-mollification was initially investigated in joint work
with Kane and Woodruff [78], though it was later refined to the form seen in Sec-
tion 3.1 in subsequent joint work with Diakonikolas and Kane [38]. Section 3.2 and
Section 3.4 are based on joint work with Kane and Woodruff [78]. Section 3.3 is based
on joint work with Kane, Porat, and Woodruff [77], which itself built upon joint work
with Woodruff [98].

3.1 FT-Mollification

In this section, we describe a technical procedure called FT-mollification for smooth-
ing real functions. The main theorem of this section is the following.

Theorem 26. Let f : R → R be bounded and c > 1 be arbitrary. Then, there exists
a function f̃ c : R→ R satisfying the following properties.

i. ‖(f̃ c)(`)‖∞ ≤ ‖f‖∞ · (2c)` for all ` ≥ 0.

ii. Fix some x ∈ R. Then if |f(x)− f(y)| ≤ ε whenever x− y ≤ δ for some ε ≥ 0,
δ > 0, then |F̃ c(x)− F (x)| ≤ ε+ ‖f‖∞ · 5/(2c2δ2).

iii. If f is nonnegative everywhere, then so is f̃ c.

We prove Theorem 26 by a procedure we dub FT-mollification. This procedure
works as follows. We define the function b : R→ R by

b(x) =

√
15

4
·

{
1− x2 for |x| < 1

0 otherwise
.

The value
√

15/4 was chosen so that ‖b‖2
2 = 1.

We let b̂ : Rd → R denote the Fourier transform of b, i.e.

b̂(t) =
1√
2π

∫
R
b(x)e−itxdx.

Finally, B : R→ R denotes the function b̂2, and we define Bc : R→ R by

Bc(x) = c ·B(cx).

Definition 27 (FT-mollification). For f : R → R and given c > 0, we define the
FT-mollification f̃ c : R→ R by

f̃ c(x) = (Bc ∗ f)(x) =

∫
R
Bc(y)f(x− y)dy.

FT-mollification provides the function f̃ c guaranteed in Theorem 26. Before we
prove Theorem 26, we show a few lemmas.

46

Lemma 28. For any c > 0, ∫
R
Bc(x)dx = 1.

Proof. Since B = b̂2, the stated integral when c = 1 is ‖b̂‖2
2, which is ‖b‖2

2 = 1
by Plancherel’s theorem. For general c, make the change of variables u = cx then
integrate over u. �

Lemma 29. For any ` ≥ 0, ‖B(`)‖1 ≤ 2`.

Proof. By the product rule for derivatives,

B(`) =
∑̀
j=0

(
`

j

)
· b̂(j) · b̂(`−j)

Thus,

∥∥B(`)
∥∥

1
=

∥∥∥∥∥∑̀
j=0

(
`

j

)
· b̂(j) · b̂(`−j)

∥∥∥∥∥
1

≤
∑̀
j=0

(
`

j

)
·
∥∥∥b̂(j)

∥∥∥
2
·
∥∥∥b̂(`−j)

∥∥∥
2

(3.1)

=
∑̀
j=0

(
`

j

)∥∥xj · b∥∥
2
·
∥∥x`−j · b∥∥

2
(3.2)

≤
∑̀
j=0

(
`

j

)
(3.3)

= 2`

Eq. (3.1) follows by Cauchy-Schwarz. Eq. (3.2) follows from Plancherel’s theorem,
since the Fourier transform of b̂(j) is xj · b, up to factors of i. Eq. (3.3) follows since
‖x(j) · b‖2 ≤ ‖b‖2 = 1. �

Lemma 30. Let z > 0 be arbitrary. Then∫
|x|>z

B(x)dx = 5/(2z2).

Proof. Consider the integral

S =

∫
R
x2 ·B(x)dx.

Recalling that B = b̂2, the Fourier transform of B is (2π)−1/2(b∗b). The above integral
is (2π)1/2 times the Fourier transform of x2 · B, evaluated at 0. Since multiplying a

47

function by ix corresponds to differentiation in the Fourier domain,

S =

(
d2

dx2
(b ∗ b)

)
(0) =

((
d

dx
b

)
∗
(
d

dx
b

))
(0) =

∥∥∥∥ ddxb
∥∥∥∥2

2

with the last equality using that the derivative of b is an odd function.
We have, for |x| < 1, (

∂

∂xi
b

)
(x) = −2x,

and thus, ∥∥∥∥ ddxb
∥∥∥∥2

2

=
5

2
.

We now finish the proof of the lemma. Since B has unit integral on R (Lemma 28)
and is nonnegative everywhere, we can view B as the density function of a probability
distribution on R. Then S can be viewed as Ex∼B[x2]. Then by Markov’s inequality,

Prx∼B
[
x2 ≥ z2

]
≤ E[x2]/z2,

which is equivalent to
Prx∼B [|x| ≥ z] ≤ E[x2]/z2.

We conclude by observing that the above probability is simply∫
|x|≥z

B(x)dx.

�

We are now ready to prove Theorem 26, the main theorem of this section.
Proof (of Theorem 26). We first prove (i).∣∣∣(f̃ c)(`)(x)

∣∣∣ =
∣∣(Bc ∗ f)(`)(x)

∣∣
=

∣∣(B(`)
c ∗ f)(x)

∣∣
=

∣∣∣∣∫
R
B(`)
c (y)f(x− y)dy

∣∣∣∣
≤ ‖f‖∞ ·

∥∥B(`)
c

∥∥
1

= ‖f‖∞ · c` ·
∥∥B(`)

∥∥
1

(3.4)

≤ ‖f‖∞ · (2c)`

with the last inequality holding by Lemma 29.
We now prove (ii).

f̃ c(x) = (Bc ∗ f)(x)

=

∫
R
Bc(x− y)f(y)dy

48

= f(x) +

∫
R
(f(y)− f(x))Bc(x− y)dy (3.5)

= f(x) +

∫
|x−y|<δ

(f(y)− f(x))Bc(x− y) +

∫
|x−y|≥δ

(f(y)− f(x))Bc(x− y)

= f(x)± ε ·
∫
|x−y|<δ

|Bc(x− y)|+
∫
|x−y|≥δ

(f(y)− f(x))Bc(x− y)

= f(x)± ε ·
∫
R
Bc(x− y) +

∫
|x−y|≥δ

(f(y)− f(x))Bc(x− y)

= f(x)± ε± ‖f‖∞ ·
∫
|x−y|≥δ

Bc(x− y)dy

= f(x)± ε± ‖f‖∞ ·
∫
|u|≥cδ

B(u)du

= f(x)± ε± ‖f‖∞ · 5/(2c2δ2)

where Eq. (3.5) uses Lemma 28.
Item (iii) follows since if f is nonnegative everywhere, then f̃ c is the convolution

of two nonnegative functions and is thus itself nonnegative. �

We then naturally have the following corollary. By d(x, ∂S) below, we simply
mean the distance from x to the complement of S if x ∈ S, and the distance from x
to S if x /∈ S.

Corollary 31. For any subset S ⊆ R and x ∈ R,

|IS(x)− ĨcS(x)| ≤ min

{
1,

5

2c2 · d(x, ∂S)2

}
.

Proof. We have |IS(x)− ĨcS(x)| ≤ 1 always since ĨcS is nonnegative and is never larger
than ‖IS‖∞ = 1. The other bound is obtained by applying Theorem 26 to f = IS
with ε = 0, δ = d(x, ∂S). �

3.2 Slow Moment Estimation in Optimal Space

Here we describe a proof that Indyk’s `p estimation algorithm [67] can be more ef-
ficiently derandomized (Figure 3-1) to produce a space-optimal algorithm. Remarks
on approximating median(|Dp|) are in Section 3.2.2. This space-optimal variant can
be implemented to have update time O(1/ε2). In Section 3.3 we give a more sophis-
ticated algorithm, building on some of the ideas in this section, which simultaneously
achieves optimal space and update time Õ(log2(1/ε)).

We assume p ∈ (0, 2) is a fixed constant bounded away from {0, 2}. Some con-
stants in our asymptotic notation are functions of p. We also assume ‖x‖p > 0; ‖x‖p =
0 is detected when y = 0 in Figure 3-1. Finally, we assume ε ≥ 1/

√
m. Otherwise,

the trivial solution of keeping the entire stream in memory requires O(m log(dM)) =

49

1. Pick a random matrix S ∈ Rk×d as follows for k = Θ(1/ε2). Each Si,j is
distributed according to Dp. For fixed i, the Si,j are r-wise independent with
r = Θ(1/εp). For i 6= i′, the seeds used to generate the {Si,j}dj=1 and {Si′,j}dj=1

are pairwise independent.

2. Maintain the vector y = Sx throughout the stream.

3. Output median{|yi|}ki=1/median(|Dp|).

Figure 3-1: Indyk’s derandomized `p estimation algorithm pseudocode, 0 < p < 2,
assuming infinite precision.

O(ε−2 log(dM)) space, which can be made O(ε−2 log(mM)) by the argument in Sec-
tion 3.5.1. Our main theorem in this section is the following.

Theorem 32. For all p ∈ (0, 2), the algorithm of Figure 3-1 can be implemented with
limited precision to use space O(ε−2 log(mM)) and output (1±ε)‖x‖p with probability
at least 7/8. The update time is O(1/ε2).

To understand the first step of Figure 3-1, we recall the definition of a p-stable
distribution, initially studied by Lévy and Khintchine (a thorough treatment of these
distributions can be found in a book by Zolotarev [128]).

Definition 33. For 0 < p ≤ 2, there exists a probability distribution Dp called the
p-stable distribution with E[eitZ] = e−|t|

p
for Z ∼ Dp. For any d and vector x ∈ Rd,

if Z,Z1, . . . , Zd ∼ Dp are independent, then
∑d

j=1 Zjxj ∼ ‖x‖pZ.

We also state a lemma giving the decay of the density function of Dp, which will
be useful later. See Theorem 42 in Section 3.2.2 for a proof.

Lemma 34. For 0 < p < 2, the density function ϕp of the p-stable distribution satis-
fies ϕp(x) = O(1/(1 + |x|)p+1) and is an even function. The cumulative distribution
function thus satisfies Φp(x) = O(1/(1 + |x|)−p).

We now prove the following technical lemma, which plays a role in our later
analyses.

Lemma 35. There exists an ε0 > 0 such that the following holds. Let n be a positive
integer and 0 < ε < ε0, 0 < p < 2 be given. Let f : R → R satisfy ‖f (`)‖∞ = O(α`)
for all ` ≥ 0, for some α satisfying αp ≥ log(1/ε). Let r = αp. Let a ∈ Rn satisfy
‖a‖p = O(1). Let Xi be a 3Cr-independent family of p-stable random variables for C
a suitably large even constant. Let Yi be a fully independent family of p-stable random
variables. Let X =

∑
i aiXi and Y =

∑
i aiYi. Then E[f(X)] = E[f(Y)] +O(ε).

Proof. The basic idea of the proof will be to show that the expectation can be
computed to within O(ε) just by knowing that the Xi’s are O(r)-wise independent.

50

Our main idea is to approximate f by a Taylor series and use our knowledge of the
moments of the Xi. The problem is that the tails of p-stable distributions for p < 2
are wide, and hence the expectations of the moments are infinite. We circumvent this
difficulty via a combination of truncation and approximate inclusion-exclusion.

Define the random variables

Ui =

{
1 if |aiXi| > λ

0 otherwise

and

X ′i = (1− Ui)Xi =

{
0 if |aiXi| > λ

Xi otherwise
,

where we set λ = 1/α. We note a couple of properties of these. First,

E[Ui] = O

(∫ ∞
|ai|−1λ

x−1−pdx

)
= O

(
|ai|pλ−p

)
by Lemma 34. We would also like to bound the moments of X ′i. We note that
E[(aiX

′
i)
`] is 1 for ` = 0, by symmetry is 0 when ` is odd, and otherwise is

O

(∫ |ai|−1λ

0

(aix)`x−p−1

)
= O

(
|ai|`(|ai|−1λ)`−p

)
(3.6)

= O
(
|ai|pλ`−p

)
where the implied constant above can be chosen to hold independently of `.

For S ⊆ [n], let 1S be the indicator random variable for the event

S = {i : Ui = 1}.

Then since
∑

S⊆[n] 1S = 1 for any point in the probability space,

E[f(X)] = E

∑
S⊆[n]

1S · f(X)

 =
∑
S⊆[n]

E[1S · f(X)]. (3.7)

Now let 1′S be the indicator random variable for the event

S ⊆ {i : Ui = 1}

so that

1S = 1′S ·

(∏
i/∈S

(1− 1′{i})

)
=

∑
T⊂[n]\S

(−1)|T |1′S∪T ,

51

and define

FS,T

(−→
X
)

= (−1)|T |

(∏
i∈S∪T

Ui

)
f

(∑
i∈S

aiXi +
∑
i 6∈S

aiX
′
i

)
.

Then, by definition of Ui and Eq. (3.7),

E[f(X)] = E

∑
S⊆[n]

∑
T⊆[n]\S

FS,T

(−→
X
) .

We will approximate E[f(X)] as

E

 ∑
S⊆[n]
|S|≤Cr

∑
T⊆[n]\S
|T |≤Cr

FS,T

(−→
X
) . (3.8)

That is, we approximate E[f(X)] using approximate inclusion-exclusion, by truncat-
ing the summation to not include large S, T . Call the function inside the expectation

in Eq. (3.8) F
(−→
X
)

. We would like to bound the error in approximating f(X) by

F
(−→
X
)

. Fix values of the Xi, and let O be the set of i with Ui = 1. We note that

F
(−→
X
)

=
∑
S⊆O
|S|≤Cr

∑
T⊆O\S
|T |≤Cr

(−1)|T |f

(∑
i∈S

aiXi +
∑
i 6∈S

aiX
′
i

)
.

Notice that other than the (−1)|T | term, the expression inside the sum does not
depend on T . This means that if 0 < |O\S| ≤ Cr then the inner sum is 0, since O\S
will have exactly as many even subsets as odd ones. Hence if |O| ≤ Cr, we have that

F
(−→
X
)

=
∑
S=O

f

(∑
i∈S

aiXi +
∑
i 6∈S

aiX
′
i

)

= f

(∑
i∈O

aiXi +
∑
i 6∈O

aiX
′
i

)
= f(X).

Otherwise, after fixing O and S, we can sum over possible values of t = |T | and

52

obtain: ∑
T⊆O\S
|T |≤Cr

(−1)|T | =
Cr∑
t=0

(−1)t
(
|O\S|
t

)
.

In order to bound this we use the following lemma.

Lemma 36. For integers A ≥ B+1 > 0 we have that
∑B

i=0(−1)i
(
A
i

)
and

∑B+1
i=0 (−1)i

(
A
i

)
have different signs, with the latter sum being 0 if A = B + 1.

Proof. First suppose that B < A/2. We note that since the terms in each sum are
increasing in i, each sum has the same sign as its last term, proving our result in this
case. For B ≥ A/2 we note that

∑A
i=0(−1)i

(
A
i

)
= 0, and hence letting j = A− i, we

can replace the sums by (−1)A+1
∑A−B−1

j=0 (−1)j
(
A
j

)
and (−1)A+1

∑A−B−2
j=0 (−1)j

(
A
j

)
,

reducing to the case of B′ = A−B − 1 < A/2. �

Using Lemma 36, we note that
∑Cr

t=0(−1)t
(|O\S|

t

)
and

∑Cr+1
t=0 (−1)t

(|O\S|
t

)
have

different signs. Therefore we have that∣∣∣∣∣
Cr∑
t=0

(−1)t
(
|O\S|
t

)∣∣∣∣∣ ≤
(
|O\S|
Cr + 1

)
=

(
|O| − |S|
Cr + 1

)
.

Recalling that ‖f‖∞ is bounded, we are now ready to bound
∣∣∣F (−→X)− f(X)

∣∣∣. Recall

that if |O| ≤ Cr, this difference is 0, and otherwise we have that∣∣∣F (−→X)− f(X)
∣∣∣ ≤ ‖f‖∞ · ∑

S⊆O
|S|≤Cr

(
|O| − |S|
Cr + 1

)

= O

(
Cr∑
s=0

(
|O|
s

)(
|O| − s
Cr + 1

))

= O

(
Cr∑
s=0

(
|O|

Cr + s+ 1

)(
Cr + s+ 1

s

))

= O

(
Cr∑
s=0

2Cr+s+1

(
|O|

Cr + s+ 1

))
.

Therefore we can bound the error as∣∣∣E [F (−→X)]− E[f(X)]
∣∣∣ (3.9)

= O

(
Cr∑
s=0

2Cr+s+1E

[(
|O|

Cr + s+ 1

)])
.

53

We note that (
|O|

Cr + s+ 1

)
=

∑
I⊆[n]

|I|=Cr+s+1

∏
i∈I

Ui.

Hence by linearity of expectation, (2Cr + 1)-wise independence, and the fact that
s ≤ Cr,

E

[(
|O|

Cr + s+ 1

)]
=

∑
I⊆[n]

|I|=Cr+s+1

E

[∏
i∈I

Ui

]

=
∑
I⊆[n]

|I|=Cr+s+1

∏
i∈I

O(|ai|pλ−p)

= eO(Cr)
∑
I⊆[n]

|I|=Cr+s+1

(∏
i∈I

|ai|pλ−p
)
.

We note when this sum is multiplied by (Cr+ s+ 1)!, these terms all show up in the

expansion of
(
‖a‖ppλ−p

)Cr+s+1
. In fact, for any integer 0 ≤ t ≤ n,

∑
I⊆[n]
|I|=t

(∏
i∈I

|ai|pλ−p
)
≤

(‖a‖ppλ−p)t

t!
. (3.10)

Hence, since ‖a‖p = O(1),

E

[(
|O|

Cr + s+ 1

)]
=

eO(Cr)λ−p(Cr+s+1)

(Cr + s+ 1)!

= eO(Cr)

(
λ−p

Cr

)(Cr+s+1)

.

Therefore, by choice of λ and Eq. (3.9),

∣∣∣E [F (−→X)]− E[f(X)]
∣∣∣ = eO(Cr)

Cr∑
s=0

(
λ−p

Cr

)(Cr+s+1)

= C−O(Cr) = O(ε). (3.11)

Hence it suffices to approximate E
[
F
(−→
X
)]

.

Recall
F
(−→
X
)

=
∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

FS,T

(−→
X
)
.

54

We will attempt to compute the conditional expectation of FS,T

(−→
X
)

, conditioned

on the Xi for i ∈ S ∪ T . Note the independence on the Xi’s is sufficient that the
values of the Xi for i ∈ S ∪ T are fully independent of one another, and that even
having fixed these values, the remaining Xi are still Cr-wise independent.

We begin by making some definitions. Let R = [n]\(S ∪ T). Having fixed S,
T , and the values of Xi for i ∈ S ∪ T , set c =

∑
i∈S aiXi and X ′ =

∑
i∈R aiX

′
i.

We note that FS,T

(−→
X
)

= 0 unless Ui = 1 for all i ∈ S ∪ T , and otherwise that

FS,T

(−→
X
)

= f(c + X ′). This is because if Ui = 1 for some i ∈ T , then X ′i = 0. Let

pc(x) be the Taylor series for f(c + x) about 0, truncated so that its highest degree
term is degree Cr − 1. We approximate E[f(c+X ′)] by E[pc(X

′)].

Lemma 37. |E[f(c+X ′)]− E[pc(X
′)]| < e−Cr.

Proof. By Taylor’s theorem, the fact that C is even, and our given bounds on
‖f (Cr)‖∞,

|pc(x)− f(c+ x)| ≤ |x|
CrαCr

(Cr)!
=
xCrαCr

(Cr)!
.

We note that E[pc(X
′)] is determined simply by the independence properties of the

Xi since it is a low-degree polynomial in functions of the Xi.
We now attempt to bound the error in approximating f(c+ x) by pc(x). In order

to do so we will wish to bound E[(X ′)Cr]. Let ` = Cr. We have that E[(X ′)`] =

E
[(∑

i∈R aiX
′
i

)`]
. Expanding this out and using linearity of expectation yields a sum

of terms of the form E
[∏

i∈R(aiX
′
i)
`i
]
, for some non-negative integers `i summing to

`. Let L be the set of i so that `i > 0. Since |L| ≤ ` which is at most the degree of
independence, Eq. (3.6) implies that the above expectation is

(∏
i∈L |ai|pλ−p

)
λ`eO(|L|).

Notice that the sum of the coefficients in front of such terms with a given L is at
most |L|`. This is because for each term in the product, we need to select an i ∈ L.
Eq. (3.10) implies that summing

∏
i∈L |ai|pλ−p over all subsets L of size s, gives at

most
(‖a‖ppλ−p)s

s!
. Putting everything together:

E
[
(X ′)`

]
≤

∑̀
s=1

s`λ`−speO(s)

s!

=
∑̀
s=1

exp(` log s− s log s (3.12)

− (`− sp) log(1/λ) +O(s)).

The summand (ignoring the O(s)) is maximized when

`

s
+ log(1/λp) = log(s) + 1.

Rearranging terms and setting u = ` · λp, this happens when ` = s log(λp · s) + s,

55

which occurs for

s =

(
1 +O

(
log log(u)

log(u)

))
· `

log(u)
.

Since the sum is at most ` times the biggest term,

E
[
(X ′)`

]
≤ exp

(
` ·

(
log(`)− log log(u)− log(`)

log(u)

− log(1/λ) +
log(1/λp)

log(u)
+O(1)

))
.

Therefore we have that

|E[f(c+X ′)]− E[pc(X
′)]| ≤ E

[
(X ′)`α`

`!

]
≤ exp

(
` ·

(
log(α)− log log(u)− log(`)

log(u)

−
(

1− p

log(u)

)
log(1/λ) +O(1)

))

= exp

(
` ·

(
log(α)− log log(u)− log(`)

log(u)

−
(

1

p
− 1

log(u)

)
log(`/u) +O(1)

))
= exp

(
` ·
(

log(α)− log log(u)− log(`1/p)

+ log(u1/p) +O(1)
))

= exp

(
−` ·

(
log

(
1

α · λ

)
+ log log(u)−O(1)

))
< e−`

with the last inequality holding for C (and hence u) a sufficiently large constant. �

So to summarize:
E[f(X)] = E

[
F
(−→
X
)]

+O(ε).

Now,

E
[
F
(−→
X
)]

=
∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

E
[
FS,T

(−→
X
)]

56

=
∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

(−1)|T |
∫
{xi}i∈S∪T

((∏
i∈S∪T

Ui

)
×

E[f(c+X ′)]

)
dXi(xi)

=
∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

(−1)|T |
∫
{xi}i∈S∪T

((∏
i∈S∪T

Ui

)
×

(
E[pc(X

′)]± e−Cr
))

dXi(xi).

We recall that the term involving E[pc(X
′)] is entirely determined by the 3Cr-

independence of the Xi’s. We are left with an error of magnitude

e−Cr ·


∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

(−1)|T |
∫
{xi}i∈S∪T

(∏
i∈S∪T

Ui

)
dXi(xi)



≤ e−Cr ·


∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

E

[∏
i∈S∪T

Ui

]

≤ e−Cr ·


∑

S,T⊆[n]
|S|,|T |≤Cr
S∩T=∅

(∏
i∈S∪T

|ai|pλ−p
)
eO(|S|+|T |)

 .

Letting s = |S| + |T |, we change this into a sum over s. We use Eq. (3.10) to upper
bound the product. We also note that given S ∪ T , there are at most 2s ways to pick
S and T . Putting this together and recalling the choice of λ and that ‖a‖p = O(1),
the above is at most

e−Cr

(
2Cr∑
s=0

2s
(‖a‖psp λ−ps

s!

)
eO(s)

)
= e−Cr

(
2Cr∑
s=0

O
(

1
λp

)s
s!

)
< e−Cr · eO(1

λp) = O(ε). (3.13)

Hence E[f(X)] is determined up to O(ε). �

57

Remark 38. For constant α in the statement of Lemma 35, one can slightly op-
timize the proof to show that r = log(1/ε)/ log log(1/ε) suffices. We describe here
the necessary changes in the proof. First, we instead set λ = (Cr)−1/10. In the first
inequality where the value of λ is used, namely Eq. (3.11), the desired difference is
then (Cr)−O(Cr) = O(ε). Next, in the proof of Lemma 37, the summand in Eq. (3.12)
is maximized when s = O(`/ log `), and straightforward calculations show that the
desired difference in the statement of Lemma 37 is O(ε2). The left hand side of
Eq. (3.13) is then at most O(ε2) · eO(1/λp), which is still O(ε).

We now prove Theorem 32. We defer analysis of the required precision (and hence
the required space) to Section 3.2.1, and here just argue correctness.

Proof (of Theorem 32). Consider first the following argument that Indyk’s median
estimator provides a (1 ± ε)-approximation when k = Θ(1/ε2) and we use a sketch
matrix B such that the Bi,j are fully independent from Dp. The following argument is
only slightly different from Indyk’s original argument, but is presented in such a way
that adapts well to the entries of the sketch matrix having limited independence. Let
z = Bx be the sketch when using the fully independent matrix B. Since we scale our
final output by median(|Dp|), we henceforth argue as if median(|Dp|) = 1 (remarks
on computing median(|Dp|) with relative error 1 ± ε are in Section 3.2.2. The value
1 being the median is equivalent to the statement E[I[−1,1](zi/‖x‖p)] = 1/2, since Dp
is symmetric. Let ϕp be the density function of Dp. Then by compactness, ϕp takes
on some minimum value ηp in the interval [−2, 2] (a strictly positive lower bound on
ηp can be efficiently computed using Theorem 42). Then

E

[
I[−1+ε,1−ε]

(
zi
‖x‖p

)]
≤ 1

2
− ηpε =

1

2
−Θ(ε) (3.14)

and

E

[
I[−1−ε,1+ε]

(
zi
‖x‖p

)]
≥ 1

2
+ ηpε =

1

2
+ Θ(ε). (3.15)

Now if we let

Z =
1

k

k∑
i=1

I[−1+ε,1−ε]

(
zi
‖x‖p

)
and

Z ′ =
1

k

k∑
i=1

I[−1−ε,1+ε]

(
zi
‖x‖p

)
then E[Z] = 1/2 − Θ(ε), E[Z ′] = 1/2 + Θ(ε), and Var[Z],Var[Z ′] ≤ 1/k = Θ(ε2).
Writing k = c′/ε2, Chebyshev’s inequality and a union bound imply Z = 1/2−Θ(ε)
and Z ′ = 1/2 + Θ(ε) with probability 7/8 for large c′. We conclude by noting
median{|zi|}ki=1 = (1± ε)‖x‖p when both these events occur.

We now modify the above argument to handle our case where we use the sketch
y = Sx with the Si,j only r-wise independent for fixed i, and the seeds used to gen-
erate different rows of S being pairwise independent. Note that once we established

58

bounds on E[Z] and E[Z ′] above, concentration of Z,Z ′ was shown via Chebyshev’s
inequality, which only required pairwise independence between rows of S. Thus, we
need only show that E[I[a,b](zi/‖x‖p)] ≈ε E[I[a,b](yi/‖x‖p)]. Ideally we would just
apply Lemma 35, but we cannot do this directly: the function I[a,b] does not have
bounded high-order derivatives. We instead argue indirectly via FT-mollification.
Let c be some value in Θ(1/ε), and let Zi = zi/‖x‖p and Yi = yi/‖x‖p. We argue the
following chain of inequalities:

E[I[a,b](Zi)] ≈ε E[Ĩc[a,b](Zi)] ≈ε E[Ĩc[a,b](Yi)] ≈ε E[I[a,b](Yi)]. (3.16)

Noting that I[a,b](y) = I[a,∞)(y) − I[b,∞)(y), it suffices to show Eq. (3.16) with

I[a,b], Ĩ
c
[a,b] replaced by I[θ,∞), Ĩ[θ,∞) for arbitrary θ ∈ R.

E[I[θ,∞)(Zi)] ≈ε E[̃Ic[θ,∞)(Zi)]: We have

|E[I[θ,∞)(Zi)]− E[Ĩc[θ,∞)(Zi)]| ≤ E[|I[θ,∞)(Zi)− Ĩc[θ,∞)(Zi)|]

≤ Pr[|Zi − θ| < ε] +
∞∑
s=0

Pr[2sε ≤ |Zi − θ| < 2s+1ε] ·O(c−22−2sε−2)

≤ O(ε) +O(c−2ε−2) ·
∞∑
s=0

2−2s ·Pr[|Zi − θ| < 2s+1ε]

= O(ε) +O(c−2ε−2) ·O(ε)

The third inequality holds because the p-stable distribution is anticoncentrated (the
probability that Zi is in any interval of length t is O(t)).

E[̃Ic[a,b](Zi)] ≈ε E[̃Ic[a,b](Yi)]: Apply Lemma 35 with α = Θ(1/ε) and vector x/‖x‖p.

E[̃Ic[a,b](Yi)] ≈ε E[I[a,b](Yi)]: We argue as in the first inequality, but now we must
show anticoncentration of the Yi. That is, we must show that for any t, γ ∈ R with
γ ≥ ε, Pr[|Yi − t| < γ] = O(γ). Suppose there exists nonnegative ft,γ : R→ R with

i. ‖f (`)
t,γ ‖∞ = O(α`) for all ` ≥ 0, with α = O(1/γ)

ii. E[ft,γ(D)] = O(γ) for D ∼ Dp

iii. ft,γ ≥ I[t−γ,t+γ] on R

By (i), (ii) and Lemma 35 we would have E[ft,γ(Yi)] ≈γ E[ft,γ(D)] = O(γ). Then
(iii) implies E[I[t−γ,t+γ](Yi)] ≤ E[ft,γ(Yi)] = O(γ), as desired. It only remains to

exhibit such a function ft,γ. We take ft,γ = 2Ĩc
′

[t−2γ,t+2γ] for c′ =
√

5/γ. Item (i)

is immediate from Theorem 26(i). Item (ii) follows by applying the argument from
the first two steps of Eq. (3.16) applied to the function I[t−2γ,t+2γ]. For item (iii),
first consider y with |y − t| > γ. In this case, I[t−γ,t+γ](y) = 0, whereas ft,γ(y) ≥ 0.
Now consider the case |y − t| < γ. Then we have that for S = [t − 2γ, t + 2γ],
∂S = {t − 2γ, t + 2γ}. Thus, d(y, ∂S) > γ. Now, applying Corollary 31 with our

59

choice of c′, we have |I[t−2γ,t+2γ](y)− Ĩc′[t−2γ,t+2γ](y)| < 1/2. Since I[t−2γ,t+2γ] = 1, this

implies ft,γ(y) ≥ 1 = I[t−γ,t+γ](y).
Näıvely the update time would be O(1/ε2+p), since during an update we would

have to evaluate an r-wise independent hash function k times for r = O(1/εp) and
k = O(1/ε2). We discuss in Remark 39 though how in fact the algorithm can be
implemented to have update time O(k + r). �

Remark 39. To achieve the desired update time, observe that each row of S needs a
random hash function from an r-wise independent family mapping [d] into [q], where
q = poly(mM/ε) fits in a machine word (this is due to the precision considerations
in Section 3.2.1). This can be achieved by picking a random polynomial over Fq of
degree r − 1. Across rows, these polynomials only need to be pairwise-independent.
Thus, if the polynomial corresponding to row i is Pi, we can set Pi = Ai+ B, where
A,B are independent random polynomials of degree r− 1 over Fq. It’s easy to check
the Pi are now pairwise independent (view the coefficient vectors of A,B as elements
of the field Fqr , then note we’re just evaluating a random degree-1 polynomial over
this field to get the Pi). Thus, to evaluate our k different hash functions, rather than
spending Θ(r) time for each of k rows, we just evaluate A,B each in Θ(r) time, then
spend an additional O(1) time per row for a total of O(k + r) time

3.2.1 Alterations for handling limited precision

In this section, we deal with the precision issues mentioned in the proof of Theorem 32.
We deal with rounding errors first. We will pick some number β = Θ(ε/m). We

round each Si,j to the nearest multiple of β. This means that we only need to store
the yi to a precision of β. This does produce an error in these values of size at most
‖x‖1β ≤ ‖x‖0‖x‖∞β ≤ m‖x‖pβ = Θ(ε‖x‖p). Changing all entries in a vector by
ε‖x‖p cannot change the median by more than ε‖x‖p.

Next we need to determine how to sample from these continuous distributions. It
was shown by [28], and also used in [67], that a p-stable random variable X can be
generated by taking θ uniform in [−π/2, π/2], t uniform in [0, 1] and letting

X = f(t, θ) =
sin(pθ)

cos1/p(θ)
·
(

cos(θ(1− p))
log(1/t)

)(1−p)/p

.

We would like to know how much of an error is introduced by using values of t and
θ only accurate to within β′. This error is at most β′ times the derivative of f . This
derivative is not large except when θ or (1−p)θ is close to ±π/2, or when t is close to
0 or 1. Since we only ever need mk different values of Si,j, we can assume that with
large constant probability we never get a t or θ closer to these values than O(ε2/m).
In such a case the derivative will be bounded by (m/ε)O(1). Therefore, if we choose t
and θ with a precision of (ε/m)O(1), we introduce error at most β in producing X.

60

3.2.2 Approximating the median of |Dp|
The purpose of this section is to show that there is an efficient uniform algorithm for
approximating median(|Dp|) to within relative error 1 ± ε, given 0 < ε < 1/2 and
0 < p < 2 as input. The method described here is certainly not the most efficient
way of performing this task, but our goal is just to show that the task is possible.
For remarks on efficiency, see Remark 40.

Let ϕp be the density of the p-stable distribution Dp with characteristic function
e−|t|

p
. That is, if X ∼ Dp, then1

ϕ̂p(t) = E[eitX] = e−|t|
p

, ϕp(x) =
1

2π
·
∫
R
e−|t|

p

e−itxdt.

We provide an explicit and efficiently computable function ϕ−p which is strictly positive
for sufficiently large inputs such that for X ∼ Dp,

∀x ∈ R, ϕ−p (x) ≤ ϕp(x). (3.17)

Computing ϕ−p and other quantities in this section requires approximating the Γ
function, which can be done using Lanczos approximation [86]. Theorem 42 gives a
good ϕ−p , which is Θ(ϕp) as x→∞.

With such ϕ−p in hand, there is a simple algorithm to approximate the median of
|Dp| to within relative error ε with success probability 3/4. First, since ϕp is unimodal
with mode zero (see [127]), we have that

‖ϕp‖∞ = ϕp(0) =
1

2πp
Γ(1/p).

This implies a lower bound on the median of

x−med =
1

4
· 1

ϕp(0)
=

πp

2Γ(1/p)
.

Thus, an ε′-additive approximation to the median xmed of |Dp| for ε′ = ε · x−med is a
relative-error (1± ε) approximation.

We now discuss how to obtain such an additive approximation. Note xmed is such
that the p-stable distribution contains 1/4 probability mass in the interval [0, xmed].
We first try to identify an interval containing strictly more than 1/4 probability mass.
We do this iteratively by guessing i as the right endpoint of the interval in iteration i,
and verify the guess with a simple randomized algorithm having success probability
1/2i+3: we take Θ(ε−2 · i) samples for any constant ε > 1/3−1/4 and check whether a
1/3±ε fraction landed in the interval. This works with the desired success probability
by the Chernoff-Hoeffding bound. Now after having identified an i∗ such that [0, i∗]
contains strictly larger than 1/4 probability mass, we know that xmed lies in the

1For convenience, in this section we define f̂(t) as
∫
R f(x)e−itxdx, unlike in Section 3.1 which

had an extra factor of (
√

2π)−1.

61

interval [x−med, i
∗]. Also, due to unimodality, we know

ϕp(x) ≥ ϕp(i
∗) ≥ ϕ−p (i∗)

in this interval, and where we can compute the last term efficiently. Thus, by Cheby-
shev’s equality it suffices to take the median of 8 · (ε′ · ϕ−p (i∗))−2 samples. Our total

error probability is then at most
∑∞

i=1 2−(i+3) + 1/8 ≤ 1/4.

Remark 40. The running time of the above algorithm is O(1/ε2) (with a hidden
constant depending on p) to obtain a (1 ± ε)-approximation of median(|Dp|), but it
should be possible to accomplish this task using polylog(1/ε) time. The above al-
gorithm can be used with constant ε to first obtain a constant-factor approximation
to the median, which can then be used as an initial guess for an iterative numerical
method. In each iteration one would then have to numerically approximate an in-
tegral to approximate the cumulative distribution function of Dp. We do not delve
into the details since our algorithm must already spend O(1/ε2) pre-processing time
initializing counters, and thus the approach described above does not dominate the
pre-processing cost by more than a constant factor.

We now give the function ϕ−p . Our approach contains no new ideas and essentially
follows an approach of Oleszkiewicz in [100, Lemma 1], which he used to derive
asymptotic behavior of the p-pseudostable distribution for p > 2. In fact, we were
made aware that this approach should be extendable to p < 2 in discussions with
Oleszkiewicz, and we thank him for this suggestion. This section also benefited from
discussions with Daniel Kane.

We first need the following lemma (see [100, Lemma 2] for a proof).

Lemma 41. For any p > 0,∫
R
|t|pe−|t|e−itxdt =

2Γ(p+ 1)

(1 + x2)
p+1
2

· cos

(
p+ 1

2
π − (p+ 1) arcsin

1√
1 + x2

)
The proof of following theorem then closely follows that of [100, Lemma 1]. We

make no attempt whatsoever to optimize constants.

Theorem 42. For 0 < p < 2, define ϕ+
p and ϕ−p as follows:

ϕ−p (x)
def
=

Γ(p+ 1)

π · xp+1
· sin

(π
2
p
)
−
d3/pe∑
j=2

2(jp+1)/2

j!
· Γ(jp+ 1)

π · xjp+1
−
d3/pe∑
j=1

2(jp+2)/2

j!
· Γ(jp+ 2)

π · xjp+2

− 1

2

d3/pe∑
j=1

2(jp+3)/2

j!
· Γ(jp+ 3)

π · xjp+3
±
∣∣∣∣a1,p + a2,p

x3

∣∣∣∣

62

and

ϕ+
p (x)

def
= 2(p+1)/2 · Γ(p+ 1)

π · xp+1
· sin

(π
2
p
)

+

d3/pe∑
j=2

2(jp+1)/2

j!
· Γ(jp+ 1)

π · xjp+1

+

d3/pe∑
j=1

2(jp+2)/2

j!
· Γ(jp+ 2)

π · xjp+2
+

1

2

d3/pe∑
j=1

2(jp+3)/2

j!
· Γ(jp+ 3)

π · xjp+3
±
∣∣∣∣a1,p + a2,p

x3

∣∣∣∣
for

a1,p
def
=

80

p
· Γ(6 + 1/p) + 926 ·

⌈
3

p

⌉
· 6!, a2,p

def
= 60e+

⌈
3

p

⌉
·
[
73 · 5

2
+ 83 · 3e

2

]
Then for any x ≥ 1, ϕ−p (x) ≤ ϕp(x) ≤ ϕ+

p (x).

Proof. Define

hp(t) = e−|t|
p −

d3/pe∑
j=1

(−1)j

j!
·
(
|t|jpe−|t| + |t|jp+1e−|t| +

1

2
· |t|jp+2e−|t|

)
.

By expanding the above exponentials as series, we find that hp is thrice-differentiable.
Thus, by the Riemann-Lebesgue theorem,

lim
x→∞
|x3 · ĥp(x)| = lim

t→∞
|h(3)
p (t)| = 0,

so that

2π · ϕp(x) = ĥp(x)−
d3/pe∑
j=1

(−1)j

j!
·

(∫
R
|t|jpe−|t|eitx +

∫
R
|t|jp+1e−|t|eitx

+
1

2
·
∫
R
|t|jp+2e−|t|eitx

)

= o(1/x3)−
d3/pe∑
j=1

(−1)j

j!
·

(∫
R
|t|jpe−|t|eitx +

∫
R
|t|jp+1e−|t|eitx (3.18)

+
1

2
·
∫
R
|t|jp+2e−|t|eitx

)
.

As we will see, the dominant term in the above summation comes from the |t|jpe−|t|
term for j = 1, and all other terms are asymptotically smaller. From this point we
simply need to make the constant in the o(1/x3) term in Eq. (3.18) explicit, as well
as to plug in Lemma 41 to bound the terms in the summation.

63

We first deal with the o(1/x3) term. We have

|x3 · ĥp(x)| =
∣∣∣∣∫

R
ĥ(3)
p (t)e−itxdt

∣∣∣∣
≤
∫
R

∣∣∣ĥ(3)
p (t)

∣∣∣ dt.
Then, for t 6= 0, and defining q = jp in the inner sum for notational convenience,

ĥ(3)
p (t) = (−p(p− 1)(p− 2)|t|p−3 + 3p2(p− 1)|t|2p−3 − p3|t|3p−3) · sign(t)e−|t|

p

−
d3/pe∑
j=1

(−1)j

j!
· (q(q − 1)(q − 2)|t|q−3 + (q3 − 3q2 + 2q)|t|q−2

− 1

2
(5q2 − 3q − 2)|t|q−1 − 1

2
(3q2 + 3q + 1)|t|q

+
1

2
(3q + 4)|t|q+1 − 1

2
|t|q+2) · sign(t)e−|t|

Thus for |t| > 1, using that p < 2 we have

|ĥ(3)
p (t)| ≤ 40|t|6e−|t|p + 463 ·

⌈
3

p

⌉
· |t|6e−|t|.

By substitution,

∫
|t|>1

|ĥ(3)
p (t)|dt ≤ 40

∫
R
|t|6e−|t|pdt+ 463 ·

⌈
3

p

⌉∫
R
|t|6e−|t|dt

=
40

p

∫
R
|u|

1
p

+5e−|u|du+ 463 ·
⌈

3

p

⌉∫
R
|t|6e−|t|dt

=
80

p
· Γ(6 + 1/p) + 926 ·

⌈
3

p

⌉
· 6!

def
= a1,p

Next, to deal with the contribution to ‖ĥ(3)
p ‖1 from |t| < 1, consider the series

expansion

ĥ(3)
p (t) =

∞∑
j=1

(−1)j

j!
· jp(jp− 1)(jp− 2) · sign(t) · |t|jp−3

+

d3/pe∑
j=1

(
∞∑
k=0

(−1)k

k!
· (k + jp)(k + jp− 1)(k + jp− 2) · sign(t) · |t|k+jp−3

+
∞∑
k=0

(−1)k

k!
· (k + jp+ 1)(k + jp)(k + jp− 1) · sign(t) · |t|k+jp−2

64

+
1

2

∞∑
k=0

(−1)k

k!
· (k + jp+ 2)(k + jp+ 1)(k + jp) · sign(t) · |t|k+jp−1

)

Note hp was defined so that all terms in its series expansion have |t| with an exponent
larger than 3 via cancellations, so that all terms in the series expansion of its third
derivative have |t| raised to a nonnegative exponent. Thus, for |t| < 1, ĥ

(3)
p (t) is at

most the sum of magnitudes of its series expansion, which is at most

∞∑
j=1

1

j!
· |jp(jp− 1)(jp− 2)|+

d3/pe∑
j=1

(
∞∑
k=0

1

k!
· |(k + jp)(k + jp− 1)(k + jp− 2)|

+
∞∑
k=0

1

k!
· |(k + jp+ 1)(k + jp)(k + jp− 1)|

+
1

2

∞∑
k=0

1

k!
· (k + jp+ 2)(k + jp+ 1)(k + jp)

)

≤ 60e+

⌈
3

p

⌉
·
[
73 ·

(
1

0!
+

1

1!
+

1

2!

)
+ 83 · 3e

2

]
def
= a2,p

Now, plugging back into Eq. (3.18), applying Lemma 41, and using that cos(θ) =
sin(π/2− θ),

2πϕp(x) =

d3/pe∑
j=1

(−1)j+1

j!
· 2Γ(jp+ 1)

(1 + x2)
jp+1

2

· sin
(
π

2
jp− (jp+ 1) arcsin

1√
1 + x2

)

±
d3/pe∑
j=1

1

j!
· 2Γ(jp+ 2)

(1 + x2)
jp+2

2

± 1

2

d3/pe∑
j=1

1

j!
· 2Γ(jp+ 3)

(1 + x2)
jp+3

2

±
∣∣∣a1,pa2,p

x3

∣∣∣
=

2Γ(p+ 1)

(1 + x2)
p+1
2

· sin
(
π

2
p− (p+ 1) arcsin

1√
1 + x2

)
±
d3/pe∑
j=2

1

j!
· 2Γ(jp+ 1)

(1 + x2)
jp+1

2

±
d3/pe∑
j=1

1

j!
· 2Γ(jp+ 2)

(1 + x2)
jp+2

2

± 1

2

d3/pe∑
j=1

1

j!
· 2Γ(jp+ 3)

(1 + x2)
jp+3

2

±
∣∣∣a1,pa2,p

x3

∣∣∣
We thus have that

2Γ(p+ 1)

(1 + x2)
p+1
2

· sin
(π

2
p
)
−
d3/pe∑
j=2

1

j!
· 2Γ(jp+ 1)

(1 + x2)
jp+1

2

−
d3/pe∑
j=1

1

j!
· 2Γ(jp+ 2)

(1 + x2)
jp+2

2

− 1

2

d3/pe∑
j=1

1

j!
· 2Γ(jp+ 3)

(1 + x2)
jp+3

2

±
∣∣∣∣a1,p + a2,p

x3

∣∣∣∣

65

≤ 2πϕp(x) ≤ 2Γ(p+ 1)

(1 + x2)
p+1
2

·+
d3/pe∑
j=2

1

j!
· 2Γ(jp+ 1)

(1 + x2)
jp+1

2

+

d3/pe∑
j=1

1

j!
· 2Γ(jp+ 2)

(1 + x2)
jp+2

2

+
1

2

d3/pe∑
j=1

1

j!
· 2Γ(jp+ 3)

(1 + x2)
jp+3

2

+

∣∣∣∣a1,p + a2,p

x3

∣∣∣∣
Then, since the function f(y) = (1 + y2)(q+1)/2/yq+1 is strictly decreasing for any

q > 0, we have for any x > 1 that

2Γ(p+ 1)

xp+1
· sin

(π
2
p
)
−
d3/pe∑
j=2

2(jp+1)/2

j!
· 2Γ(jp+ 1)

xjp+1
−
d3/pe∑
j=1

2(jp+2)/2

j!
· 2Γ(jp+ 2)

xjp+2

− 1

2

d3/pe∑
j=1

2(jp+3)/2

j!
· 2Γ(jp+ 3)

xjp+3
±
∣∣∣∣a1,p + a2,p

x3

∣∣∣∣
≤ 2πϕp(x) ≤ 2(p+1)/2 · 2Γ(p+ 1)

xp+1
·+

d3/pe∑
j=2

2(jp+1)/2

j!
· 2Γ(jp+ 1)

xjp+1

+

d3/pe∑
j=1

2(jp+2)/2

j!
· 2Γ(jp+ 2)

xjp+2
+

1

2

d3/pe∑
j=1

2(jp+3)/2

j!
· 2Γ(jp+ 3)

xjp+3
+

∣∣∣∣a1,p + a2,p

x3

∣∣∣∣
�

3.3 Fast Moment Estimation in Optimal Space

In this section we describe a more sophisticated algorithm for Fp estimation in data
streams, which also uses optimal space but has a faster O(log2(1/ε) log log(1/ε)) up-
date time. We first give an overview of how this algorithm works.

At the highest level, our faster algorithm in this section splits the coordinates
i ∈ [d] into a list L of heavy hitters, and the remaining light coordinates. A φ-heavy
hitter with respect to Fp is a coordinate i such that |xi|p ≥ φ‖x‖pp.

To estimate the contribution of the light elements to Fp, we use R = Θ(1/ε2)
sketches B1, . . . , BR, each with the property that it can be updated quickly and can
provide a nearly unbiased estimate of the Fp contribution of items mapped to it, and
with low variance. Upon receiving an update to xi in the stream, we feed the update
to Bh(i) for some hash function h : [d]→ [R]. At the end of the stream, the estimate
of the contribution to Fp from light elements is (R/(R − |h(L)|)) ·

∑
j /∈h(L) Estp(Bj),

where Estp is a derandomized variant of Li’s geometric mean estimator [87]. We could
use Li’s geometric mean estimator itself, and our analysis would only need that this
estimator is unbiased and has a good variance bound. Unfortunately, the analysis of
the geometric mean estimator assumes that the p-stable random variables being used
are all independent. We show that a slight variant of Li’s geometric mean estima-
tor has bounded variance and is approximately unbiased (to within relative error ε)

66

even when the associated p-stable random variables are only r-wise independent for
r = Ω(1/εp). This variant allows us to avoid Nisan’s pseudorandom generator [99]
and thus achieve optimal space. We evaluate the necessary r-wise independent hash
function quickly by a combination of buffering and fast multipoint evaluation of a col-
lection of pairwise independent polynomials. Our proof that bounded independence
suffices uses FT-mollification.

In particular, analyzing Li’s geometric mean estimator under bounded indepen-
dence requires showing that E[f(

∑
iQixi)] is approximately preserved for r-wise in-

dependent p-stable random variables Qi for f(x) = |x|1/t. We express E[f(x)] =∫∞
0
f(x)ϕp(x)dx as

∫∞
0
f ′(x)(1 − Φp(x))dx via integration by parts, where ϕp is the

density function of the absolute value of the p-stable distribution, and Φp is the cor-
responding cumulative distribution function. We then note 1 − Φp(x) = Pr[|X| ≥
x] = E[I[x,∞)∪(−∞,−x](X)] for X p-stable. We then FT-mollify I[x,∞)∪(−∞,−x], which is
the indicator function of some set, to write E[f(x)] as a weighted integral of indicator
functions, from which point we can apply a similar proof technique to that in the
proof of Theorem 32.

In order to estimate the contribution to Fp from coordinates in L, we develop
a novel data structure we refer to as HighEnd. Suppose L contains all the α-heavy
hitters, and every index in L is an (α/2)-heavy hitter. We would like to compute
‖xL‖pp ± O(ε) · ‖x‖pp, where α = Ω(ε2). We maintain a matrix of counters Dj,k for
(j, k) ∈ [t]× [s] for t = O(log(1/ε)) and s = O(1/α). For each j ∈ [t] we have a hash
function hj : [d] → [s] and gj : [d] → [r] for r = O(log(1/ε)). The counter Dj,k then

stores
∑

hj(v)=k e
2πigj(v)/rxv for i =

√
−1. That is, our data structure is similar to the

CountSketch data structure of Charikar, Chen, and Farach-Colton [29], but rather
than taking the dot product with a random sign vector in each counter, we take the
dot product with a vector whose entries are random complex roots of unity. At the
end of the stream, our estimate of the Fp-contribution from heavy hitters is

Re

∑
w∈L

3

t

t/3∑
k=1

e−2πigj(w,k)(w)/r · sign(xw) ·Dj(w,k),hj(w,k)(w)

p .
The choice to use complex roots of unity is to ensure that our estimator is approxi-
mately unbiased, stemming from the fact that the real part of large powers of roots
of unity is still 0 in expectation. Here Re[z] denotes the real part of z, and j(w, k)
denotes the kth smallest value b ∈ [t] such that hb isolates w from the other w′ ∈ L
(if fewer than t/3 such b exist, we fail).

For related problems, e.g., estimating Fp for p > 2, using complex roots of unity
leads to sub-optimal bounds [53]. Moreover, it seems that “similar” algorithms using
sign variables in place of roots of unity do not work, as they have a constant factor
bias in their expectation for which it is unclear how to remove. Our initial intuition
was that an algorithm using p-stable random variables would be necessary to estimate
the contribution to Fp from the heavy hitters. However, such approaches we explored
suffered from too large a variance.

In parallel we must run an algorithm we develop to find the heavy hitters. Un-

67

fortunately, this algorithm, as well as HighEnd, use suboptimal space. To overcome
this, we actually use a list of ε2-heavy hitters for ε = ε · log(1/ε). This then improves
the space, at the expense of increasing the variance of LightEstimator. We then run
O((ε/ε)2) pairwise independent instantiations of LightEstimator in parallel and take
the average estimate, to bring the variance down. This increases some part of the
update time of LightEstimator by a log2(1/ε) factor, but this term turns out to any-
way be dominated by the time to evaluate various hash functions. Though, even in
the extreme case of balancing with ε = 1, our algorithm for finding the heavy hitters
algorithm requires Ω(log d log(mM)) space, which is suboptimal. We remedy this
by performing a dimensionality reduction down to dimension poly(1/ε) via hashing
and dot products with random sign vectors. We then apply HighEnd to estimate
the contribution from heavy hitters in this new vector, and we show that with high
probability the correctness of our overall algorithm is still maintained.

3.3.1 Estimating the contribution from heavy hitters

Before giving our algorithm HighEnd for estimating ‖xL‖pp, we first give a few necessary
lemmas and theorems.

The following theorem gives an algorithm for finding the φ-heavy hitters with
respect to Fp. This algorithm uses the dyadic interval idea of [34] together with a
black-box reduction of the problem of finding Fp heavy hitters to the problem of
estimating Fp. Our proof is in Section 3.3.5. We note that our data structure both
improves and generalizes that of [56], which gave an algorithm with slightly worse
bounds that only worked in the case p = 1.

Theorem 43. There is an algorithm FpHH satisfying the following properties. Given
0 < φ < 1 and 0 < δ < 1, with probability at least 1 − δ, FpHH produces a list
L such that L contains all φ-heavy hitters and does not contain indices which are
not φ/2-heavy hitters. For each i ∈ L, the algorithm also outputs sign(xi), as
well as an estimate x̃i of xi satisfying x̃pi ∈ [(6/7)|xi|p, (9/7)|xi|p]. Its space us-
age is O(φ−1 log(φd) log(dmM) log(log(φd)/(δφ))). Its update time is O(log(φd) ·
log(log(φd)/(δφ)). Its reporting time is O(φ−1(log(φd) · log(log(φd)/(δφ)))).

The following moment bound can be derived by integrating Bernstein’s inequality
(see [39, Theorem 1.2]).2

Lemma 44. Let X1, . . . , Xn be such that Xi has expectation µi and variance σ2
i , and

Xi ≤ K almost surely. Then if the Xi are `-wise independent for some even integer
` ≥ 2,

E

(n∑
i=1

Xi − µ

)`
 ≤ 2O(`) ·

((
σ
√
`
)`

+ (K`)`
)
,

2A tail bound can be converted into a moment bound since E[|Z|`] = ` ·
∫∞
0
z`−1Pr[|Z| ≥ z]dz,

by integration by parts.

68

where µ =
∑

i µi and σ2 =
∑

i σ
2
i . In particular,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ λ

]
≤ 2O(`) ·

((
σ
√
`/λ
)`

+ (K`/λ)`
)
,

by Markov’s inequality on the random variable (
∑

iXi − µ)`.

Lemma 45 (Khintchine inequality [61]). For x ∈ Rn, t ≥ 2, and uniformly random

z ∈ {−1, 1}n, Ez[| 〈x, z〉 |t] ≤ ‖x‖t2 ·
√
t
t
.

In the following lemma, and henceforth in this section, i denotes
√
−1.

Lemma 46. Let x ∈ Rn be arbitrary. Let z ∈ {e2πi/r, e2πi·2/r, e2πi·3/r, . . . , e2πi·r/r}n be
a random such vector for r ≥ 2 an even integer. Then for t ≥ 2 an even integer,

Ez[| 〈x, z〉 |t] ≤ ‖x‖t2 · 2t/2
√
t
t
.

Proof. Since x is real, |〈x, z〉|2 =
(∑n

j=1 Re[zj] · xj
)2

+
(∑n

j=1 Im[zj] · xj
)2

. Then

by Minkowski’s inequality,

E[| 〈x, z〉 |t] = E


∣∣∣∣∣∣
(

n∑
j=1

Re[zj] · xj

)2

+

(
n∑
j=1

Im[zj] · xj

)2
∣∣∣∣∣∣
t/2


≤

2 ·max

E

[(
n∑
j=1

Re[zj] · xj

)t]2/t

,E

[(
n∑
j=1

Im[zj] · xj

)t]2/t

t/2

≤ 2t/2 ·

(
E

[(
n∑
j=1

Re[zj] · xj

)t]
+ E

[(
n∑
j=1

Im[zj] · xj

)t])
. (3.19)

Since r is even, we may write Re[zj] as (−1)yj |Re[zj]| and Im[zj] as (−1)y
′
j |Im[zj]|,

where y, y′ ∈ {−1, 1}n are random sign vectors chosen independently of each other.
Let us fix the values of |Re[zj]| and |Im[zj]| for each j ∈ [n], considering just the
randomness of y and y′. Applying Lemma 45 to bound each of the expectations in

Eq. (3.19), we obtain the bound 2t/2 ·
√
t
t · (‖b‖t2 + ‖b′‖t2) ≤ 2t/2 ·

√
t
t · (‖b‖2

2 + ‖b′‖2
2)t/2

where bj = Re[zj] · xj and b′j = Im[zj] · xj. But this is just 2t/2 ·
√
t
t · ‖x‖t2 since

|zj|2 = 1. �

The HighEnd data structure

In this section, we assume we know a subset L ⊆ [d] of indices j so that

1. for all j for which |xj|p ≥ α‖x‖pp, j ∈ L,

2. if j ∈ L, then |xj|p ≥ (α/2)‖x‖pp,

3. for each j ∈ L, we know sign(xj).

69

for some 0 < α < 1/2 which we know. We also are given some 0 < ε < 1/2. We
would like to output a value ‖xL‖pp ± O(ε)‖x‖pp with large constant probability. We
assume 1/α = O(1/ε2).

We first define the BasicHighEnd data structure. Put s = d4/αe. We choose
a hash function h : [d] → [s] at random from an rh-wise independent family for
rh = Θ(log(1/α)). Also, let r = Θ(log 1/ε) be a sufficiently large even integer. For
each j ∈ [d], we associate a random complex root of unity e2πig(j)/r, where g : [d]→ [r]
is drawn at random from an rg-wise independent family for rg = r. We initialize s
counters b1, . . . , bs to 0. Given an update of the form (j, v), add e2πig(j)/r · v to bh(j).

We now define the HighEnd data structure. Define T = τ ·max{log(1/ε), log(2/α)}
for a sufficiently large constant τ to be determined later. Define t = 3T and instantiate
t independent copies of the BasicHighEnd data structure. Given an update (j, v),
perform the update described above to each of the copies of BasicHighEnd. We think
of this data structure as a t × s matrix of counters Dj,k, j ∈ [t] and k ∈ [s]. We let
gj be the hash function g in the jth independent instantiation of BasicHighEnd, and
similarly define hj. We sometimes use g to denote the tuple (g1, . . . , gt), and similarly
for h.

We now define our estimator, but first we give some notation. For w ∈ L, let
j(w, 1) < j(w, 2) < . . . < j(w, nw) be the set of nw indices j ∈ [t] such that w is
isolated by hj from other indices in L; that is, indices j ∈ [t] where no other w′ ∈ L
collides with w under hj.

Event E . Define E to be the event that nw ≥ T for all w ∈ L.

If E does not hold, our estimator simply fails. Otherwise, define

x∗w =
1

T
·

T∑
k=1

e−2πigj(w,k)(w)/r · sign(xw) ·Dj(w,k),hj(w,k)(w).

If Re[x∗w] < 0 for any w ∈ L, then we output fail. Otherwise, define

Ψ′ =
∑
w∈L

(x∗w)p .

Our estimator is then Ψ = Re[Ψ′]. Note x∗ is a complex number. By zp for complex
z, we mean |z|p · eip·arg(z), where arg(z) ∈ (−π, π] is the angle formed by the vector
from the origin to z in the complex plane.

A useful random variable

For w ∈ L, we make the definitions

yw
def
=
x∗w − |xw|
|xw|

, Φw
def
= |xw|p ·

 r/3∑
k=0

(
p

k

)
· ykw



70

as well as Φ
def
=
∑

w∈L Φw. We assume E occurs so that the yw and Φw (and hence Φ)

are defined. Also, we use the definition
(
p
k

)
= (
∏k−1

j=0(p − j))/k! (note p may not be
an integer).

Our overall goal is to show that Ψ = ‖xL‖pp ± O(ε) · ‖x‖pp with large constant
probability. Our proof plan is to first show that |Φ− ‖xL‖pp| = O(ε) · ‖x‖pp with large
constant probability, then to show that |Ψ′ − Φ| = O(ε) · ‖x‖pp with large constant
probability, at which point our claim follows by a union bound and the triangle
inequality since |Ψ− ‖xL‖pp| ≤ |Ψ′ − ‖xL‖pp| since ‖xL‖pp is real.

Before analyzing Φ, we define the following event.

Event D. Let D be the event that for all w ∈ L we have

1

T 2

T∑
k=1

∑
v/∈L

hj(w,k)(v)=hj(w,k)(w)

x2
v <

(α · ‖x‖pp)2/p

r
.

We also define

V =
1

T 2

∑
w∈L

t∑
j=1

∑
v/∈L

hj(w)=hj(v)

|xw|2p−2 · |xv|2.

Theorem 47. Conditioned on h, Eg[Φ] = ‖xL‖pp and Varg[Φ | D] = O(V).

Proof. By linearity of expectation,

Eg[Φ] =
∑
w∈L

|xw|p ·

 r/3∑
k=0

(
p

k

)
Eg[y

k
w]

 =
∑
w∈L

|xw|p +
∑
w∈L

|xw|p ·
r/3∑
k=1

(
p

r

)
Eg

[
ykw
]
,

where we use that
(
p
0

)
= 1. Then Eg[y

k
w] = 0 for k > 0 by using linearity of expectation

and rg-wise independence, since each summand involves at most k < r rth roots of
unity. Hence,

Eg[Φ] =
∑
w∈L

|xw|p.

We now compute the variance. Note that if the gj were each fully independent,
then we would have Varg[Φ | D] =

∑
w∈L Varg[Φw | D] since different Φw depend

on evaluations of the gj on disjoint v ∈ [d]. However, since rg > 2r/3, Eg[|Φ|2] is
identical as in the case of full independence of the gj. We thus have Varg[Φ | D] =

71

∑
w∈L Varg[Φw | D] and have reduced to computing Varg[Φw | D].

Varg[Φw | D] = Eg[|Φw − Eg[Φw]|2 | D]

= |xw|2p · Eg

∣∣∣∣∣∣
r/3∑
k=1

(
p

k

)
ykw

∣∣∣∣∣∣
2

| D


= |xw|2p ·

p2 · Eg[|yw|2 | D] +

r/3∑
k=2

O(Eg[|yw|2k | D])


We have

Eg[|yw|2 | D]
def
= u2

w =
1

T 2

T∑
k=1

∑
v/∈L

hj(w,k)(v)=hj(w,k)(w)

x2
v

x2
w

, (3.20)

so that ∑
w∈L

p2 · Eg[|yw|2 | D] ≤ p2V.

Eq. (3.20) follows since, conditioned on E so that yw is well-defined,

Eg[|yw|2] =
1

T 2x2
w

T∑
k,k′=1

∑
v/∈L

∑
v′ /∈L

1hj(w,k)(v)=hj(w,k)(w) · 1hj(w,k′)(v′)=hj(w,k′)(w)

× E[e−2πi(gj(w,k)(v)−gj(w,k′)(v′))/r]xvxv′ .

When j(w, k) 6= j(w, k′) the above expectation is 0 since the gj are independent across
different j. When j(w, k) = j(w, k′) the above expectation is only non-zero for v = v′

since rg ≥ 2.
We also have for k ≥ 2 that

Eg[|yw|2k | D] ≤ 2O(k) · u2k
w · (2k)k

by Lemma 46, so that
r/3∑
k=2

Eg[|yw|2k | D] = O(u2
w)

since D holds and so the sum is dominated by its first term. Thus, Varg[Φ | D] =
O(V). �

Lemma 48. Eh[V] ≤ 3α · ‖x‖2p
p /(4T).

Proof. For any w ∈ L, v /∈ L, and j ∈ [t], we have Prh[h
j(w) = hj(v)] = 1/s ≤ α/4

72

since rh ≥ 2. Thus,

Eh[V] ≤ α

4T 2

∑
w∈L
v 6∈L
j∈[t]

|xw|2p−2|xv|2

=
3α

4T

(∑
w∈L

|xw|p|xw|p−2

)(∑
v/∈L

|xv|2
)

≤ 3α

4T

(∑
w∈L

‖x‖pp(α · ‖x‖pp)(p−2)/p

)(
1

α
(α · ‖x‖pp)2/p

)
(3.21)

=
3

4
· α · ‖x‖2p

p /T.

where Eq. (3.21) used that ‖x[d]\L‖2
2 is maximized when [d]\L contains exactly 1/α

coordinates v each with |xv|p = α‖x‖pp, and that |xw|p−2 ≤ (α · ‖x‖pp)(p−2)/p since
p ≤ 2. �

Lemma 49. Prh[E] ≥ 1− ε.
Proof. For any j ∈ [t], the probability that w is isolated by hj is at least 1/2, since
the expected number of collisions with w is at most 1/2 by pairwise independence of
the hj and the fact that |L| ≤ 2/α so that s ≥ 2|L|. If X is the expected number
of buckets where w is isolated, the Chernoff bound gives Prh[X < (1 − ε)Eh[X]] <
exp(−ε2Eh[X]/2) for 0 < ε < 1. The claim follows for τ ≥ 24 by setting ε = 1/3 then
applying a union bound over w ∈ L. �

Lemma 50. Prh[D] ≥ 63/64.

Proof. We apply the bound of Lemma 44 for a single w ∈ L. Define Xj,v =
(x2

v/T
2) · 1hj(v)=hj(w) and X =

∑t
j=1

∑
v/∈LXj,v. Note that X is an upper bound for

the left hand side of the inequality defining D, and thus it suffices to show a tail
bound for X. In the notation of Lemma 44, we have σ2 ≤ (3/(sT 3)) · ‖x[d]\L‖4

4,
K = (α · ‖x‖pp)2/p/T 2, and µ = (3/(sT)) · ‖x[d]\L‖2

2. Since ‖x[d]\L‖2
2 and ‖x[d]\L‖4

4 are
each maximized when there are exactly 1/α coordinates v /∈ L with |xv|p = α · ‖x‖pp,

σ2 ≤ 3

4T 3
· (α · ‖x‖pp)4/p, µ ≤ 3

4T
· (α · ‖x‖pp)2/p.

Setting λ = (α · ‖x‖pp)2/p/(2r), noting that µ < λ for τ sufficiently large, and
assuming ` ≤ rh is even, we apply Lemma 44 to obtain

Pr[X ≥ 2λ] ≤ 2O(`) ·

(√3r ·
√
`

T 3/2

)`

+

(
2r · `
T 2

)` .

By setting τ sufficiently large and ` = log(2/α) + 6, the above probability is at most
(1/64) · (α/2). The lemma follows by a union bound over all w ∈ L, since |L| ≤ 2/α.
�

73

We now define another event.

Event F . Let F be the event that for all w ∈ L we have |yw| < 1/2.

Lemma 51. Prg[F | D] ≥ 63/64.

Proof. D occurring implies that uw ≤
√

1/r ≤
√

1/(64(log(2/α) + 6) (recall we
assume 1/α = O(1/ε2) and pick r = Θ(log(1/ε)) sufficiently large, and uw is as

is defined in Eq. (3.20)), and we also have Eg[|yw|` | D] < u`w
√
`
`
2` by Lemma 46.

Applying Markov’s bound on the random variable |yw|` for even ` ≤ rg, we have |yw|`
is determined by rg-wise independence of the gj, and thus

Prg[|yw| ≥ 1/2 | D] <

(√
16`

64(log(2/α) + 6)

)`

,

which equals (1/64) · (α/2) for ` = log(2/α) + 6. We then apply a union bound over
all w ∈ L. �

Lemma 52. If F occurs, then |Ψ′ − Φ| < ε‖xL‖pp.

Proof. Observe
Ψ′ =

∑
w∈L

|xw|p · (1 + yw)p.

We have that ln(1+z), as a function of z, is holomorphic on the open disk of radius 1
about 0 in the complex plane, and thus f(z) = (1 + z)p is holomorphic in this region
since it is the composition exp(p · ln(1+z)) of holomorphic functions. Therefore, f(z)
equals its Taylor expansion about 0 for all z ∈ C with |z| < 1 (see for example [123,
Theorem 11.2]). Then since F occurs, we can Taylor-expand f about 0 for z = yw
and apply Taylor’s theorem to obtain

Ψ′ =
∑
w∈L

|xw|p
 r/3∑

k=0

(
p

k

)
ykw ±O

((
p

r/3 + 1

)
· |yw|−r/3−1

)
= Φ +O

(
‖xL‖pp ·

((
p

r/3 + 1

)
· |yw|−r/3−1

))
The lemma follows since

(
p

r/3+1

)
< 1 and |yw|−r/3−1 < ε for |yw| < 1/2. �

Theorem 53. HighEnd uses O(α−1 log(1/ε) log(mM/ε) + O(log2(1/ε) log d)) space.
The update time is O(log2(1/ε)). The reporting time is O(α−1 log(1/ε) log(1/α)).
Also, Prh,g[|Ψ− ‖xL‖pp| < O(ε) · ‖x‖pp] > 7/8.

Proof. We first argue correctness. By a union bound, E and D hold simultaneously
with probability 31/32. By Markov’s inequality and Lemma 48, V = O(α · ‖x‖2p

p /T)
with probability 63/64. We then have by Chebyshev’s inequality and Theorem 47
that |Φ − ‖xL‖pp| = O(ε) · ‖x‖pp with probability 15/16. Lemma 52 then implies

74

|Ψ′ − ‖xL‖pp| = O(ε) · ‖x‖pp with probability 15/16−Pr[¬F] > 7/8 by Lemma 51. In
this case, the same must hold true for Ψ since Ψ = Re[Ψ′] and ‖xL‖pp is real.

Next we discuss space complexity. We start with analyzing the precision required
to store the counters Dj,k. Since our correctness analysis conditions on F , we can
assume F holds. We store the real and imaginary parts of each counterDj,k separately.
If we store each such part to within precision γ/(2mT) for some 0 < γ < 1 to be
determined later, then each of the real and imaginary parts, which are the sums of
at most m summands from the m updates in the stream, is stored to within additive
error γ/(2T) at the end of the stream. Let x̃∗w be our calculation of x∗w with such
limited precision. Then, each of the real and imaginary parts of x̃∗w is within additive
error γ/2 of those for x∗w. Since F occurs, |x∗w| > 1/2, and thus γ/2 < γ|x∗w|, implying
|x̃∗w| = (1±O(γ))|x∗w|. Now we argue arg(x̃∗w) = arg(x∗w)±O(

√
γ). Write x∗w = a+ ib

and x̃∗w = ã+ib̃ with ã = a±γ/2 and b̃ = b±γ/2. We have cos(arg(x∗w)) = a/
√
a2 + b2.

Also, cos(arg(x̃∗w)) = (a ± γ/2)/((1 ± O(γ))
√
a2 + b2) = (1 ± O(γ)) cos(arg(x∗w)) ±

O(γ) = cos(arg(x∗w))±O(γ), implying arg(x̃∗w) = arg(x∗w)±O(
√
γ). Our final output is∑

w∈L |x̃∗w|p ·cos(p·arg(x̃∗w)). Since cos never has derivative larger than 1 in magnitude,
this is

∑
w∈L[(1 ± O(γ))|x∗w|p cos(p · arg(x∗w)) ± O(

√
γ) · (1 ± O(γ))|x∗w|p]. Since F

occurs, |x∗w|p < (3/2)p · |xw|p, and thus our overall error introduced from limited
precision is O(

√
γ · ‖xL‖pp), and it thus suffices to set γ = O(ε2), implying each

Dj,k requires O(log(mM/ε)) bits of precision. For the remaining part of the space
analysis, we discuss storing the hash functions. The hash functions hj, gj each require
O(log(1/ε) log d) bits of seed, and thus in total consume O(log2(1/ε) log d) bits.

Finally we discuss time complexity. To perform an update, for each j ∈ [t] we must
evaluate gj and hj then update a counter. Each of gj, hj require O(log(1/ε)) time to
evaluate. For the reporting time, we can mark all counters with the unique w ∈ L
which hashes to it under the corresponding hj (if a unique such w exists) in |L|·t·rh =
O(α−1 log(1/ε) log(1/α)) time. Then, we sum up the appropriate counters for each
w ∈ L, using the Taylor expansion of cos(p ·arg(z)) up to the Θ(log(1/ε))th degree to
achieve additive error ε. Note that conditioned on F , arg(x∗w) ∈ (−π/4, π/4), so that
|p·arg(x∗w)| is bounded away from π/2 for p bounded away from 2; in fact, one can even
show via some calculus that arg(x∗w) ∈ (−π/6, π/6) when F occurs by showing that
cos(arg(x∗w)) = cos(arg(1− yw)) is minimized for |yw| ≤ 1/2 when yw = 1/4 + i

√
3/4.

Regardless, additive error ε is relative error O(ε), since if |p · arg(z)| is bounded away
from π/2, then | cos(p · arg(z))| = Ω(1). �

3.3.2 Estimating the contribution from light elements

In this section, we show how to estimate the contribution to Fp from coordinates of x
which are not heavy hitters. More precisely, given a list L ⊆ [d] such that |L| ≤ 2/ε2

and |xi|p ≤ ε2‖x‖pp for all i /∈ L, we describe a subroutine LightEstimator that outputs
a value that is ‖x[d]\L‖pp ±O(ε) · ‖x‖pp with probability at least 7/8.

We first need the following theorem, which comes from a derandomized variant of
the geometric mean estimator of Li [87]. Our proof is in Section 3.3.4.

75

Given: L ⊆ [d] at stream end such that |L| ≤ 2/ε2 and |xi|p < ε2‖x‖pp for all i /∈ L

1. Initialize R = 4/ε2 instantiations B1, . . . , BR of structure Dp from Theorem 54.

The randomness used across instantiations is pairwise independent.

2. Pick a random hash function h : [d]→ [R] as in Theorem 13 with z = R and c = 2.

3. Update(i, v): Feed update (i, v) to Bh(i).

4. Estimator: Let I = [R]\h(L). Output R
|I| ·

∑
j∈I Estp(Bj).

Figure 3-2: LightEstimator, for estimating contribution from non-heavy hitters

Theorem 54. For any 0 < p < 2, there is a randomized data structure Dp, and a
deterministic algorithm Estp mapping the state space of the data structure to reals,
such that

1. E[Estp(Dp(x))] = (1± ε)‖x‖pp

2. E[Estp(Dp(x))2] ≤ Cp · ‖x‖2p
p

for some constant Cp > 0 depending only on p, and where the expectation is taken over
the randomness used by Dp. Aside from storing a length-O(ε−p log(dmM)) random
string, the space complexity is O(log(dmM)). The update time is the time to evaluate
a Θ(1/εp)-wise independent hash function over a field of size poly(dmM), and the
reporting time is O(1).

We also need the following algorithm for fast multipoint evaluation of polynomials.

Theorem 55 ([120, Ch. 10]). Let R be a ring, and let q ∈ R[x] be a degree-r
polynomial. Then, given distinct x1, . . . , xr ∈ R, all the values q(x1), . . . , q(xr) can
be computed using O(r log2 r log log r) operations over R.

The guarantees of the final LightEstimator are then given in Theorem 56.

Theorem 56. Suppose we are given 0 < ε < 1/2, and given a list L ⊆ [d] at
the end of the data stream such that |L| ≤ 2/ε2 and |xi|p < ε2‖x‖pp for all i /∈ L.
Then, given access to a randomized data structure satisfying properties (1) and (2)
of Theorem 54, the algorithm LightEstimator (described in Figure 3-2) satisfies the
following: The randomness used by LightEstimator can be broken up into a certain
random hash function h, and another random string s. LightEstimator outputs a
value Φ′ satisfying Eh,s[Φ

′] = (1 ± O(ε))‖x[d]\L‖pp, and Eh[Vars[Φ
′]] = O(ε2‖x‖2p

p).

The space usage is O(ε−2 log(dmM)), the update time is O(log2(1/ε) log log(1/ε)),
and the reporting time is O(1/ε2).

76

Proof. The random string s in the theorem statement is the total randomness
required by B1, . . . , BR. First we show the computation of Eh,s[Φ

′]. In this proof,
we let xtail denote x[d]\L and xhead denote xL. Also, for S ⊆ [d] we let FS be the
event that the hash family H we randomly select in Step 3 via Theorem 13 is |S|-wise
independent when restricted to S.

Eh,s[Φ
′] = (1±O(ε))‖xtail‖pp : For ρ = 1−Pr[FL],

Es,h

[
R

|I|
·
∑
j∈I

Estp(Bj)

]
= Es,h

[
R

|I|
·
∑
j∈I

Estp(Bj)
∣∣∣ FL] ·Pr[FL]

+ Es,h

[
R

|I|
·
∑
j∈I

Estp(Bj)
∣∣∣ ¬FL] ·Pr[¬FL]

= (1− ρ)Es,h

[
R

|I|
·
∑
j∈I

Estp(Bj)
∣∣∣ FL]

+ ρ · Es

[
Eh

[
R

|I|
·
∑
j∈I

Estp(Bj)
∣∣∣ ¬FL]]

= (1− ρ)Es,h

[
R

|I|
·
∑
j∈I

Estp(Bj)
∣∣∣ FL]± (ρ ·R)‖xtail‖pp

(3.22)

by Theorem 13. We now compute the above expectation conditioned on I. Let EI′
be the event I = I ′ for an arbitrary I ′. Then,

Es,h

[
R

|I ′|
·
∑
j∈I′

Estp(Bj)
∣∣∣ FL, EI′] =

R

|I ′|
·
∑
j∈I′

Es,h

[
Estp(Bj)

∣∣∣ FL, EI′]
=

R

|I ′|
·
∑
j∈I′

Eh

[∑
i/∈L

1h(i)=j · |x|pi
∣∣∣ FL, EI′]

=
R

|I ′|
·
∑
j∈I′

∑
i/∈L

|x|pi ·Prh [h(i) = j | FL, EI′]

=
R

|I ′|
·
∑
j∈I′

∑
i/∈L

|x|pi ·
Prh [(h(i) = j) ∧ EI′ | FL]

Pr[EI′ | FL]

(3.23)

Now we note

Prh [(h(i) = j) ∧ EI′ | FL] = Prh
[
(h(i) = j) ∧ EI′ | FL∪{i},FL

]
·Pr[FL∪{i} | FL]

+ Prh
[
(h(i) = j) ∧ EI′ | ¬FL∪{i},FL

]
·Pr[¬FL∪{i} | FL]

= Prh
[
h(i) = j | FL∪{i},FL

]
·Prh

[
EI′ | FL,FL∪{i}, h(i) = j

]
77

×Pr[FL∪{i} | FL]

+ Pr[¬FL∪{i} | FL] ·Pr[EI′ | FL,¬FL∪{i}]
×Pr[h(i) = j | ¬FL∪{i},FL, EI′]

Now note a couple things. First, if FL∪{i} occurs, then EI′ is independent of the
event h(i) = j. Also, if FL occurs, then EI′ is independent of FL∪{i}. Thus, the above
equals

Prh
[
h(i) = j | FL∪{i}

]
·Prh [EI′ | FL] ·Pr[FL∪{i} | FL]

+ Pr[¬FL∪{i} | FL] ·Pr[EI′ | FL] ·Pr[h(i) = j | ¬FL∪{i},FL, EI′]

Note Pr[¬FL∪{i} | FL] ≤ Pr[¬FL∪{i}]/Pr[FL] = ρ′i/(1 − ρ) for ρ′i = 1 − Pr[FL∪{i}].
Also, Pr[FL∪{i} | FL] ≥ Pr[FL∪{i}] since Pr[FL∪{i}] is a weighted average of Pr[FL∪{i} |
FL] and Pr[FL∪{i} | ¬FL], and the latter is 0. Thus, for some ρ′′i ∈ [0, ρ′i] Eq. (3.23) is

R

|I ′|
·
∑
j∈I′

∑
i/∈L

|x|pi ·
(

1− ρ′′i
R

± ρ′i
1− ρ

)
= ‖xtail‖pp −

∑
i/∈L

ρ′′i |x|
p
i ±

(
maxi ρ

′
i

1− ρ

)
·R · ‖xtail‖pp

By our setting of c = 2 when picking the hash family of Theorem 13 in Step 3, we
have ρ, ρ′i, ρ

′′
i = O(ε3) for all i, and thus ρ′i/(1− ρ) · R = O(ε), implying the above is

(1±O(ε))‖xtail‖pp. Plugging this in Eq. (3.22) then shows that the desired expectation
is (1±O(ε))‖xtail‖pp.

We now bound the expected variance of (R/|I|) ·
∑

j∈I Estp(Bj).

Eh

[
Vars

[
R
|I| ·
∑

j∈I Estp(Bj)
]]

= O(ε2 · ‖x‖2pp) :

For any fixed h, R/|I| is determined, and the Estp(Bj) are pairwise independent.
Thus, for fixed h,

Vars

[
R

|I|
·
∑
j∈I

Estp(Bj)

]
=

(
R

|I|

)2

·
∑
j∈I

Vars[Estp(Bj)]

First observe that since |I| ≥ R − |L| ≥ 2/ε2, for any choice of h we have that
R/|I| ≤ 2. Thus, up to a constant factor, the expectation we are attempting to
compute is

Eh

[
Vars

[∑
j∈I

Estp(Bj)

]]
.

For notational convenience, say Estp(Bj) = 0 if j /∈ I. Now,

Eh

[
Vars

[∑
j∈I

Estp(Bj)

]]
= Eh

[
R∑
j=1

1j∈I ·Vars [Estp(Bj)]

]

78

=
R∑
j=1

Eh [1j∈I ·Vars [Estp(Bj)]]

≤
R∑
j=1

Eh

[
Vars [Estp(Bj)]

∣∣∣ j ∈ I]

=
R∑
j=1

Eh

Cp ·(∑
i/∈L

1h(i)=j · |xi|p
)2 ∣∣∣ j ∈ I

 ,
which equals

Cp ·

(
R∑
j=1

∑
i/∈L

|xi|2p ·Prh[h(i) = j | j ∈ I]

+
R∑
j=1

∑
i 6=i′
i,i′ /∈L

|xi|p|xi′ |p ·Prh[(h(i) = j) ∧ (h(i′) = j) | j ∈ I]

)
(3.24)

Now consider the quantity Prh[h(i) = j | j ∈ I]. Then

Prh[h(i) = j | j ∈ I] = Prh[h(i) = j | FL∪{i}, j ∈ I] ·Prh[FL∪{i} | j ∈ I]

+ Prh[h(i) = j | ¬FL∪{i}, j ∈ I] ·Prh[¬FL∪{i} | j ∈ I]

≤ Prh[h(i) = j | FL∪{i}, j ∈ I] + Prh[¬FL∪{i} | j ∈ I]

=
1

R
+ Prh[¬FL∪{i} | j ∈ I]

Then by Bayes’ theorem, the above is at most

1

R
+

Prh[¬FL∪{i}]
Prh[j ∈ I]

≤ 1

R
+

Prh[¬FL∪{i}]
Prh[j ∈ I | FL] ·Pr[FL]

=
1

R
+

Prh[¬FL∪{i}](
1− 1

R

)|L| ·Pr[FL]

≤ 1

R
+

Prh[¬FL∪{i}](
1− |L|

R

)
·Pr[FL]

Note |L|/R ≤ 1/2. Also, by choice of c, z in the application of Theorem 13 in Step
3, Pr[FL] = 1−O(ε) and Pr[¬FL∪{i}] = O(1/R2). Thus overall,

Prh[h(i) = j | j ∈ I] = O(1/R).

An essentially identical calculation, but conditioning on FL∪{i,i′} instead of FL∪{i},

79

gives that
Prh[(h(i) = j) ∧ (h(i′) = j) | j ∈ I] = O(1/R2).

Combining these bounds with Eq. (3.24), we have that the expected variance we
are aiming to compute is

O(‖xtail‖2p
2p + ‖xtail‖2p

p /R).

The second summand is O(ε2‖x‖2p
p). For the first summand, given our properties of

L, every |xi| for i /∈ L has |xi| ≤ ε2‖x‖pp. Under this constraint, ‖xtail‖2p
2p is maximized

when there are exactly 1/ε2 coordinates i /∈ L each with |xi| = ε2‖x‖pp, in which case

‖xtail‖2p
2p = ε2‖x‖2p

p .
To achieve the desired update time, we buffer every r = 1/εp updates then per-

form the fast multipoint evaluation of Theorem 55 in batch (note this does not affect
our space bound since p < 2). That is, although the hash function h can be evaluated
in constant time, updating any Bj requires evaluating a degree-Ω(1/εp) polynomial,
which näıvely requires Ω(1/εp) time. Note that one issue is that the different data
structures Bj use different polynomials, and thus we may need to evaluate 1/εp dif-
ferent polynomials on the 1/εp points, defeating the purpose of batching. To remedy
this, note that these polynomials are themselves pairwise independent, so we can
use the same approach described in Remark 39 to evaluate all the polynomials in
combined time O(ε−p log(1/ε) log log(1/ε) + r). �

3.3.3 The final algorithm: putting it all together

To obtain our final algorithm, one option is to run HighEnd and LightEstimator in
parallel after finding L, then output the sum of their estimates. Note that by the
variance bound in Theorem 56, the output of a single instantiation of LightEstimator
is ‖x[d]\L‖pp ± O(ε)‖x‖pp with large constant probability. The downside to this option
is that Theorem 43 uses space that would make our overall Fp estimation algorithm
suboptimal by polylog(d/ε) factors, and HighEnd by an O(log(1/ε)) factor for α = ε2

(Theorem 53). We can overcome this by a combination of balancing and universe
reduction. Specifically, for balancing, notice that if instead of having L be a list of
ε2-heavy hitters, we instead defined it as a list of ε2-heavy hitters for some ε > ε,
we could improve the space of both Theorem 43 and Theorem 53. To then make the
variance in LightEstimator sufficiently small, i.e. O(ε2‖x‖2

p), we could run O((ε/ε)2)
instantiations of LightEstimator in parallel and output the average estimate, keeping
the space optimal but increasing the update time to Ω((ε/ε)2). This balancing gives
a smooth tradeoff between space and update time; in fact note that for ε = 1, our
overall algorithm simply becomes a derandomized variant of Li’s geometric mean
estimator. We would like though to have ε� 1 to have small update time.

Doing this balancing does not resolve all our issues though, since Theorem 43 is
suboptimal by a log d factor. That is, even if we picked ε = 1, Theorem 43 would
cause our overall space to be Ω(log d log(mM)), which is suboptimal. To overcome
this issue we use universe reduction. Specifically, we set N = 1/ε18 and pick hash

80

functions h1 : [d]→ [N] and σ : [d]→ {−1, 1}. We define a new N -dimensional vector
y by yi =

∑
h1(j)=i σ(j)xj. Henceforth in this section, y, h1, and σ are as discussed

here. Rather than computing a list L of heavy hitters of x, we instead compute a list
L′ of heavy hitters of y. Then, since y has length only poly(1/ε), Theorem 43 is only
suboptimal by polylog(1/ε) factors and our balancing trick applies. The list L′ is also
used in place of L for both HighEnd and LightEstimator. Though, since we never learn
L, we must modify LightEstimator. Namely, the hash function h : [d] → [R] should
be implemented as the composition of h1, and a hash function h2 : [N]→ [R] chosen
as Theorem 13 (again with z = R and c = 2). Then, we let I = [R]\h2(L′). The
remaining parts of the algorithm remain the same.

There are several issues we must address to show that our universe reduction
step still maintains correctness. Informally, we need that (a) any i which is a heavy
hitter for y should have exactly one j ∈ [d] with h1(j) = i such that j was a heavy
hitter for x, (b) if i is a heavy hitter for x, then h1(i) is a heavy hitter for y, and
|yh1(i)|p = (1±O(ε))|xi|p so that xi’s contribution to ‖x‖pp is properly approximated by
HighEnd, (c) ‖y‖pp = O(‖x‖pp) with large probability, since the error term in HighEnd
is O(ε · ‖y‖pp), and (d) the amount of Fp mass not output by LightEstimator because
it collided with a heavy hitter for x under h1 is negligible. Also, the composition h =
h1 ◦ h2 for LightEstimator does not satisfy the conditions of Theorem 13 even though
h1 and h2 might do so individually. To see why, as a simple analogy, consider that the
composition of two purely random functions is no longer random. For example, as the
number of compositions increases, the probability of two items colliding increases as
well. Nevertheless, the analysis of LightEstimator carries over essentially unchanged
in this setting, since whenever considering the distribution of where two items land
under h, we can first condition on them not colliding under h1. Not colliding under
h1 happens with 1−O(ε18) probability, and thus the probability that two items land
in two particular buckets j, j′ ∈ [R] under h is still (1± o(ε))/R2.

We now give our full description and analysis. We pick h1 as in Theorem 13 with
z = R and c = ch a sufficiently large constant. We also pick σ from an Ω(logN)-
wise independent family. We run an instantiation of FpHH for the vector y with
φ = ε2/(34C) for a sufficiently large constant C > 0. We also obtain a value F̃p ∈
[Fp/2, 3Fp/2] using the algorithm of Section 3.2. We define L′ to be the sublist of
those w output by our FpHH instantiation such that |ỹw|p ≥ (2ε2/7)F̃p.

For ease of presentation in what follows, define Lφ to be the list of φ-heavy hitters
of x with respect to Fp (“L”, without a subscript, always denotes the ε2-heavy hitters
with respect to x), and define zi =

∑
w∈h−1

1 (i)\Lε8
σ(w)xw, i.e. zi is the contribution

to yi from the significantly light elements of x.

Lemma 57. For x ∈ Rn, λ > 0 with λ2 a multiple of 8, and random z ∈ {−1, 1}n
drawn from a (λ2/4)-wise independent family, Pr[| 〈x, z〉 | > λ‖x‖2] < 2−λ

2/4.

Proof. By Markov’s inequality on the random variable 〈x, z〉λ
2/4, Pr[| 〈x, z〉 | > λ] <

λ−λ
2/4 · E[〈x, z〉λ

2/4]. The claim follows by applying Lemma 45. �

Lemma 58. For any C > 0, there exists ε0 such that for 0 < ε < ε0, Pr[‖y‖pp >
17C‖x‖pp] < 2/C.

81

Proof. Condition on h1. Define Y (i) to be the vector xh−1
1 (i). For any vector v

we have ‖v‖2 ≤ ‖v‖p since p < 2. Letting E be the event that no i ∈ [N] has
|yi| > 4

√
logN‖Y (i)‖p, we have Pr[E] ≥ 1− 1/N4 by Lemma 57. For i ∈ [N], again

by Lemma 57 any i ∈ [N] has |yi| ≤ 2t · ‖Y (i)‖2 ≤ 2t · ‖Y (i)‖p with probability at
least 1−max{1/(2N), 2−t

2}. Then for fixed i ∈ [N],

E[|yi|p | E] ≤ 2p‖Y (i)‖pp +
∞∑
t=0

Pr
[
(2 · 2t)p‖Y (i)‖pp < |yi|p ≤ (2 · 2t+1)p‖Y (i)‖pp | E

]
× (2 · 2t+1)p‖Y (i)‖pp

≤ 2p‖Y (i)‖pp + (1/Pr[E]) ·
log(2

√
logN)∑

t=0

2−22t · (2 · 2t+1)p‖Y (i)‖pp

< 4‖Y (i)‖pp + (1/Pr[E]) ·
log(2

√
logN)∑

t=0

2−22t · (2 · 2t+1)2‖Y (i)‖pp

< 17‖Y (i)‖pp

since Pr[E] ≥ 1− 1/N4 and ε0 is sufficiently small. Thus by linearity of expectation,
E[‖y‖pp | E] ≤ 17‖x‖pp, which implies ‖y‖pp ≤ 17C‖x‖pp with probability 1 − 1/C,
conditioned on E holding. We conclude by again using Pr[E] ≥ 1− 1/N4. �

Lemma 59. With probability at least 1−poly(ε) over σ, simultaneously for all i ∈ [N]
we have that |zi| = O(

√
log(1/ε) · ε6/p‖x‖p).

Proof. By Lemma 57, any i ∈ [N] has |zi| ≤ 4
√

log(1/ε) · (
∑

w∈h−1
1 (i)\Lε8

|xw|2)1/2

with probability at least 1 − 1/N4. We then apply a union bound and use the fact
that `p ≤ `2 for p < 2, so that |zi| ≤ 4

√
log(1/ε) · (

∑
w∈h−1

1 (i)\Lε8
|xw|p)1/p (call this

event E) with probability 1− poly(ε).
We now prove our lemma, i.e. we show that with probability 1− poly(ε), |zi|p =

O(logp/2 ε6‖x‖pp) simultaneously for all i ∈ [N]. We apply Lemma 44. Specifically,
fix an i ∈ [N]. For all j with |xj|p ≤ ε8‖x‖pp, let Xj = |xj|p · 1h1(j)=i. Then, in the
notation of Lemma 44, µj = |xj|p/N , and σ2

j ≤ |xj|2p/N , and thus µ = ‖x‖pp/N and

σ2 ≤ ‖x‖2p
2p/N ≤ ε8‖x‖pp/N . Also, K = ε8‖x‖pp. Then if h1 were `-wise independent

for ` = 10, Lemma 44 would give

Pr

[∣∣∣∣∣∑
i

Xi − ‖x‖pp/N

∣∣∣∣∣ > ε6‖x‖pp

]
< 2O(`) · (ε7` + ε2`) = O(ε/N).

A union bound would then give that with probability 1−ε, the Fp mass in any bucket
from items i with |xi|p ≤ ε8‖x‖pp is at most ε6‖x‖pp. Thus by a union bound with event

E , |zi|p = O(logp/2 ε6‖x‖pp) for all i ∈ [N] with probability 1− poly(ε).
Though, h1 is not 10-wise independent. Instead, it is selected as in Theorem 13.

However, for any constant `, by increasing the constant ch in our definition of h1

we can ensure that our `th moment bound for (
∑

iXi − µ) is preserved to within a

82

constant factor, which is sufficient to apply Lemma 44. �

Lemma 60. With probability 1 − poly(ε), for all w ∈ L we have |yh1(w)|p = (1 ±
O(ε))|xw|p, and thus with probability 1−poly(ε) when conditioned on ‖y‖pp ≤ 17C‖x‖pp,
we have that if w is an α-heavy hitter for x, then h1(w) is an α/(34C)-heavy hitter
for y.

Proof. Let w be in L. We know from Lemma 59 that |zh1(w)| ≤ 2
√

log(1/ε)ε6/p‖x‖p
with probability 1 − poly(ε), and that the elements of L are perfectly hashed under
h1 with probability 1 − poly(ε). Conditioned on this perfect hashing, we have that
|yh1(w)| ≥ |xw| − 2ε6/p

√
log(1/ε)‖x‖p. Since for w ∈ L we have |xw| ≥ ε2/p‖x‖p, and

since p < 2, we have |yh1(w)| ≥ (1−O(ε))|xw|.
For the second part of the lemma, (1 − O(ε))|xw| > |xw|/21/p for ε0 sufficiently

small. Thus if w is an α-heavy hitter for x, then h1(w) is an α/(34C)-heavy hitter
for y. �

Finally, the following lemma follows from a Markov bound followed by a union
bound.

Lemma 61. For w ∈ [d] consider the quantity sw =
∑

v 6=w
h(v)=h(w)

|xv|p. Then, with

probability at least 1−O(ε), sw ≤ ε15‖x‖pp simultaneously for all w ∈ L.

We now put everything together. We set ε = ε log(1/ε). As stated earlier, we
define L′ to be the sublist of those w output by our FpHH instantiation with φ = ε2

such that |ỹw|p ≥ (2ε2/7)F̃p. We interpret updates to x as updates to y to then
be fed into HighEnd, with α = ε2/(34C). Thus both HighEnd and FpHH require
O(ε−2 log(nmM/ε)) space. We now define some events.

Event A. Lε8 is perfectly hashed under h1, and ∀i ∈ [N], |zi|p = O(log(1/ε)p/2 ·
ε6‖x‖pp).

Event B. ∀w ∈ Lε2 , h1(w) is output as an ε2/(34C)-heavy hitter by FpHH.

Event C. ∀w ∈ Lε2/18, |yh1(w)| = (1±O(ε))|xw|.

Event D. F̃p ∈ [(1/2) · ‖x‖pp, (3/2) · ‖x‖pp], and HighEnd, LightEstimator, and FpHH
succeed.

Now, suppose A, B, C, and D all occur. Then for w ∈ Lε2 , w is output by
FpHH, and furthermore |yh1(w)|p ≥ (1 − O(ε))|xw|p ≥ |xw|p/2 ≥ ε2‖x‖pp/2. Also,

ỹph1(w) ≥ (6/7) · |yh1(w)|p. Since F̃p ≤ 3‖x‖pp/2, we have that h1(w) ∈ L′. Furthermore,

we also know that for i output by FpHH, ỹpi ≤ (9/7) · |yi|p, and thus i ∈ L′ implies
|yi|p ≥ (ε2/9) · ‖x‖pp. Notice that by event A, each yi is zi, plus potentially xw(i) for
some xw(i) ∈ Lε8 . If |yi|p ≥ (ε2/9) · ‖x‖pp, then there must exist such a w(i), and
furthermore it must be that |xw(i)|p ≥ (ε2/18) · ‖x‖pp. Thus, overall, L′ contains h1(w)
for all w ∈ Lε2 , and furthermore if i ∈ L′ then w(i) ∈ Lε2/18.

Since L′ contains h1(Lε2), LightEstimator outputs ‖x[d]\h−1(L′)‖pp±O(ε‖x‖pp). Also,
HighEnd outputs ‖yL′‖ ±O(ε) · ‖y‖pp. Now we analyze correctness. We have Pr[A] =

83

1−poly(ε), Pr[B | ‖y‖pp ≤ 17C‖x‖pp] = 1−poly(ε), Pr[C] = 1−poly(ε), and Pr[D] ≥
5/8. We also have Pr[‖y‖pp ≤ 17C‖x‖pp] ≥ 1−2/C. Thus by a union bound and setting
C sufficiently large, we have Pr[A ∧ B ∧ C ∧ D ∧ (‖y‖pp ≤ 17C‖x‖pp)] ≥ 9/16. Define
Linv to be the set {w(i)}i∈L′ , i.e. the heavy hitters of x corresponding to the heavy
hitters in L′ for y. Now, if all these events occur, then ‖x[d]\h−1(L′)‖pp = ‖x[d]\Linv

‖pp ±
O(ε15)‖x‖pp with probability 1 − O(ε) by Lemma 61. We also have, since C occurs
and conditioned on ‖y‖pp = O(‖x‖pp), that ‖yL′‖±O(ε) · ‖y‖pp = ‖xLinv

‖pp±O(ε) · ‖x‖pp.
Thus, overall, our algorithm outputs ‖x‖pp±O(ε) · ‖x‖pp with probability 17/32 > 1/2
as desired. Notice this probability can be amplified to 1−δ by outputting the median
of O(log(1/δ)) independent instantiations.

We further note that for a single instantiation of LightEstimator, Eh[Vars[Φ
′]] =

O(ε2‖x‖2p
p). Once h is fixed, the variance of Φ′ is simply the sum of variances across the

Bj for j /∈ h1(L′). Thus, it suffices for the Bj to use pairwise independent randomness.
Furthermore, in repeating O((ε/ε)2) parallel repetitions of LightEstimator, it suffices
that all the Bj across all parallel repetitions use pairwise independent randomness,
and the hash function h can remain the same. Thus, as discussed in Remark 39, the
coefficients of the degree-O(1/εp) polynomials used in all Bj combined can be gen-
erated by just two coefficient vectors, and thus the update time of LightEstimator
with O((ε/ε)2) parallel repetitions is just O((ε/ε)2 + O(log2(1/ε) log log(1/ε))) =
O(log2(1/ε) log log(1/ε)). Thus overall, we have the following theorem.

Theorem 62. There exists an algorithm such that given 0 < p < 2 and 0 < ε < 1/2,
the algorithm outputs (1±ε)‖x‖pp with probability 2/3 using O(ε−2 log(dmM/ε)) space.

The update time of the algorithm is O(log2(1/ε) log log(1/ε)), and its reporting time
is O(ε−2 log2(1/ε) log log(1/ε)).

The space bound above can be assumedO(ε−2 log(mM)+log log d) by Section 3.5.1.

3.3.4 A derandomized geometric mean estimator variant

In this section we prove Theorem 54. The data structure and estimator we give is a
slightly modified version of the geometric mean estimator of Li [87]. Our modification
allows us to show that only bounded independence is required amongst the p-stable
random variables in our data structure.

Li’s geometric mean estimator is as follows. For some positive integer t > 2, select
a matrix S ∈ Rt×d with independent p-stable entries, and maintain y = Sx in the
stream. Given y, the estimate of ‖x‖pp is then Ct,p·(

∏t
j=1 |yj|p/t) for some constant Ct,p.

For Theorem 54, we make the following adjustments. First, we require t > 4. Next,
for any fixed row of S we only require that the entries be Ω(1/εp)-wise independent,
though the rows themselves we keep independent. Furthermore, in parallel we run
the algorithm of Section 3.2 with constant error parameter to obtain a value F̃p in
[‖x‖pp/2, 3‖x‖pp/2]. The Dp data structure of Theorem 54 is then simply y, together
with the state maintained by the algorithm of Section 3.2. The estimator Estp is
min{Ct,p · (

∏t
j=1 |yj|p/t), F̃p/ε}. To state the value Ct,p, we use the following theorem,

which follows from [128, Theorem 2.6.3] after applying Euler’s reflection formula.

84

Theorem 63. For Q ∼ Dp and −1 < λ < p,

E[|Q|λ] =
2

π
Γ

(
1− λ

p

)
Γ(λ) sin

(π
2
λ
)
.

Theorem 63 implies that we should set

Ct,p =

[
2

π
· Γ
(

1− 1

t

)
· Γ
(p
t

)
· sin

(πp
2t

)]−t
.

We now prove a tail bound for linear forms over r-wise independent p-stable
random variables. Note that for a random variable X whose moments are bounded,
one has Pr[X − E[X] > t] ≤ E[(X − E[X])r]/tr by applying Markov’s inequality to
the random variable (X − E[X])r for some even integer r ≥ 2. Unfortunately, for
0 < p < 2, it is known that even the second moment of Dp is already infinite, so this
method cannot be applied. We instead prove our tail bound via FT-mollification of
I[t,∞), since Pr[X ≥ t] = E[I[t,∞)(X)].

We now prove our tail bound.

Lemma 64. Suppose x ∈ Rd, ‖x‖p = 1, 0 < ε < 1/2 is given, and R1, . . . , Rd are
r-wise independent p-stable random variables for r ≥ 2. Let Q ∼ Dp. Then for all

t ≥ 0, R =
∑d

i=1Rixi satisfies

|Pr[|Q| ≥ t]−Pr[|R| ≥ t]| = O(r−1/p/(1 + tp+1) + r−2/p/(1 + t2) + 2−Ω(r)).

Proof. We have Pr[|Z| ≥ t] = E[I[t,∞)(Z)] + E[I(−∞,t](Z)] for any random vari-
able Z, and thus we will argue |E[I[t,∞)(Q)] − E[I[t,∞)(R)]| = O(r−1/p/(1 + tp+1) +
r−2/p/(1+ t2)+2−Ω(r)); a similar argument shows the same bound for |E[I(−∞,t](Q)]−
E[I(−∞,t](R)]|.

We argue the following chain of inequalities for c = r1/p/(3C), for C the constant
in Lemma 35, and we define γ = r−1/p/(1 + tp+1) + r−2/p/(1 + t2):

E[I[t,∞)(Q)] ≈γ E[Ĩc[t,∞)(Q)] ≈2−cp E[Ĩc[t,∞)(R)] ≈γ+2−cp E[I[t,∞)(R)].

E[I[t,∞)(Q)] ≈γ E[̃Ic[t,∞)(Q)]: Assume t ≥ 1. We have

|E[I[t,∞)(Q)]− E[Ĩc[t,∞)(Q)]| ≤ E[|I[t,∞)(Q)− Ĩc[t,∞)(Q)|]

≤ Pr[|Q− t| ≤ 1/c] +

log(ct)−1∑
s=1

Pr[|Q− t| ≤ 2s/c] ·O(2−2s)

 (3.25)

+ Pr[|Q− t| > t/2] ·O(c−2t−2)

= O(1/(c · tp+1)) +O(c−2t−2)

since Pr[|Q− t| ≤ 2s/c is O(2s/(c · tp+1) as long as 2s/c ≤ t/2.
In the case 0 < t < 1, we repeat the same argument as above but replace Eq. (3.25)

with a summation from s = 1 to ∞, and also remove the additive Pr[|Q − t| >

85

t/2] ·O(c−2t−2) term. Doing so gives an overall upper bound of O(1/c) in this case.

E[̃Ic[t,∞)(Q)] ≈2−cp E[̃Ic[t,∞)(R)]: This follows from Lemma 35 with ε = 2−c
p

and α = c.

E[̃Ic[t,∞)(R)] ≈γ+2−cp E[I[t,∞)(R)]: We would like to apply the same argument as when

showing E[Ĩc[t,∞)(Q)] ≈γ E[I[t,∞)(Q)] above. The trouble is, we must bound Pr[|R −
t| > t/2] and Pr[|R − t| ≤ 2s/c] given that the Ri are only r-wise independent. For
the first probability, we above only used that Pr[|Q− t| > t/2] ≤ 1, which still holds
with Q replaced by R.

For the second probability, observe Pr[|R − t| ≤ 2s/c] = E[I[t−2s/c,t+2s/c](R)].
Define δ = 2s/c + b/c for a sufficiently large constant b > 0 to be determined later.
Then, arguing as above, we have

E[Ĩc[t−δ,t+δ](R)] ≈2−cp E[Ĩc[t−δ,t+δ](Q)] ≈γ E[I[t−δ,t+δ](Q)],

and we also know

E[I[t−δ,t+δ](Q)] = O(E[I[t−2s/c,t+2s/c](Q)]) = O(Pr[|Q− t| ≤ 2s/c]) = O(2s/(c · tp+1)).

Now, for x /∈ [t−2s/c, t+2s/c], I[t−2s/c,t+2s/c](x) = 0 while I[t−δ,t+δ](x) = 1. For x ∈ [t−
2s/c, t+2s/c], the distance from x to {t−δ, t+δ} is at least b/c, implying Ĩc[t−δ,t+δ](x) ≥
1/2 for b sufficiently large by Corollary 31. Thus, 2 · Ĩc[t−δ,t+δ] ≥ I[t−2s/c,t+2s/c] on R,

and thus in particular, E[I[t−2s/c,t+2s/c](R)] ≤ 2 · E[Ĩc[t−δ,t+δ](R)]. Thus, in summary,

E[I[t−2s/c,t+2s/c](R)] = O(2s/(c · tp+1) + γ + 2−c
p
). �

We now prove the main lemma of this section, which implies Theorem 54.

Lemma 65. Let x ∈ Rd be such that ‖x‖p = 1, and suppose 0 < ε < 1/2. Let 0 < p <
2, and let t be any constant greater than 4/p. Let R1, . . . , Rd be r-wise independent
p-stable random variables for r = Ω(1/εp), and let Q be a p-stable random variable.
Define f(x) = min{|x|1/t, T}, for T = 1/ε. Then, |E[f(R)] − E[|Q|1/t] = O(ε) and
E[f 2(R)] = O(E[|Q|2/t]).

Proof. We first argue |E[f(R)] − E[|Q|1/t] = O(ε). We argue through the chain of
inequalities

E[|Q|1/t] ≈ε E[f(Q)] ≈ε E[f(R)].

86

E[|Q|1/t] ≈ε E[f(Q)]: We have

|E[|Q|1/t]− E[f(Q)]| = 2

∫ ∞
T t

(x1/t − T) · ϕp(x)dx

=

∫ ∞
T t

(x1/t − T) ·O(1/xp+1)dx

= O

(
T 1−tp ·

(
t

pt− 1
+

1

p

))
= O(1/(Tp))

= O(ε)

E[f(Q)] ≈ε E[f(R)]: Let ϕ+
p be the probability density function corresponding to the

distribution of |Q|, and let Φ+
p be its cumulative distribution function. Then, by

integration by parts and Lemma 64,

E[f(Q)] =

∫ T t

0

x1/tϕ+
p (x)dx+ T ·

∫ ∞
T t

ϕ+
p (x)dx

= −[x1/t · (1− Φ+
p (x))]T

t

0 − T · [(1− Φ+
p (x))]∞T t +

1

t

∫ T t

0

1

x1−1/t
(1− Φ+

p (x))dx

=
1

t

∫ T t

0

1

x1−1/t
·Pr[|Q| ≥ x]dx

=
1

t

∫ T t

0

1

x1−1/t
· (Pr[|R| ≥ x] +O(r−1/p1/(1 + xp+1)

+ r−2/p/(1 + x2) + 2−Ω(r)))dx

= E[f(R)] +

∫ 1

0

x1/t−1 ·O(r−1/p + r−2/p + 2−Ω(r)))dx

+

∫ T t

1

x1/t−1 ·O(r−1/p/xp+1 + r−2/p/x2 + 2−Ω(r)))dx (3.26)

= E[f(R)] +O(ε) +O

(
1

r1/p
·
(

1

T tp+t−1
− 1

)
· 1

1
t
− p− 1

)
+O

(
1

r2/p
·
(

1

T 2t−1
− 1

)
· 1

1
t
− 2

)
+O(2−Ω(r) · (T − 1))

= E[f(R)] +O(ε)

We show E[f 2(R)] = O(|Q|2/t) similarly. Namely, we argue through the chain of
inequalities

E[|Q|2/t] ≈ε E[f 2(Q)] ≈ε E[f 2(R)],

which proves our claim since E[|Q|2/t] = Ω(1) by Theorem 63.

87

E[|Q|1/t] ≈ε E[f2(Q)]: We have

|E[|Q|2/t]− E[f 2(Q)]| = 2

∫ ∞
T t

(x2/t − T 2) · ϕp(x)dx

=

∫ ∞
T t

(x2/t − T 2) ·O(1/xp+1)dx

= O

(
T 2−tp ·

(
t

pt− 2
− 1

p

))
= O(1/(Tp))

= O(ε)

E[f2(Q)] ≈ε E[f2(R)]: This is argued similarly as our proof that E[f(Q)] ≈ε E[f(R)]
above. The difference is that our error term corresponding to Eq. (3.26) is now∫ 1

0

x2/t−1 ·O(r−1/p + r−2/p + 2−Ω(r)))dx

+

∫ T t

1

x2/t−1 ·O(r−1/p/xp+1 + r−2/p/x2 + 2−Ω(r)))dx

= O(ε) +O

(
1

r1/p
·
(

1

T tp+t−2
− 1

)
· 1

2
t
− p− 1

)
+O

(
1

r2/p
·
(

1

T 2t−2
− 1

)
· 1

2
t
− 2

)
+O(2−Ω(r) · (T 2 − 1))

= O(ε)

�

3.3.5 A heavy hitter algorithm for Fp

Note that FpReport, FpUpdate, and FpSpace below can be as in the statement in
Section 3.3.1 by using the algorithm of Section 3.2.

Theorem 43 (restatement). There is an algorithm FpHH satisfying the following
properties. Given 0 < φ, δ < 1/2 and black-box access to an Fp estimation algorithm
FpEst(ε′, δ′) with ε′ = 1/7 and δ′ = φδ/(12(log(φd) + 1)), FpHH produces a list L such
that L contains all φ-heavy hitters and does not contain indices which are not φ/2-
heavy hitters with probability at least 1−δ. For each i ∈ L, the algorithm also outputs
sign(xi), as well as an estimate x̃i of xi satisfying x̃pi ∈ [(6/7)|xi|p, (9/7)|xi|p]. Its
space usage is O(φ−1 log(φd) ·FpSpace(ε′, δ′) +φ−1 log(1/(δφ)) log(dmM)). Its update
time is O(log(φd)·FpUpdate(ε′, δ′)+log(1/(δφ))). Its reporting time is O(φ−1(log(φd)·
FpReport(ε′, δ′) + log(1/(δφ)))). FpReport(ε′, δ′), FpUpdate(ε′, δ′), and FpSpace(ε′, δ′)
are the reporting time, update time, and space consumption of FpEst when a (1± ε′)-
approximation to Fp is desired with probability at least 1− δ′.
Proof. First we argue with δ′ = φδ/(12(log d+1)). We assume without loss of gener-

88

ality that d is a power of 2. Consider the following data structure BasicFpHH(φ′, δ, ε′, k),
where k ∈ {0, . . . , log d}. We set R = d1/φ′e and pick a function h : {0, . . . , 2k−1} →
[R] at random from a pairwise independent hash family. We also create instantiations
D1, . . . , DR of FpEst(ε′, 1/5). This entire structure is then repeated independently in
parallel T = Θ(log(1/δ)) times, so that we have hash functions h1, . . . , hT , and in-
stantiations Dj

i of FpEst for i, j ∈ [R] × [T]. For an integer i in [d], let prefix(i, k)
denote the length-k prefix of i − 1 when written in binary, treated as an integer in
{0, . . . , 2k − 1}. Upon receiving an update (i, v) in the stream, we feed this update
to Dj

hj(prefix(i,k)) for each j ∈ [T].

For t ∈ {0, . . . , 2k − 1}, let Fp(t) denote the Fp value of the vector x restricted
to indices i ∈ [d] with prefix(i) = t. Consider the procedure Query(t) which outputs
the median of Fp estimates given by Dj

hj(t)
over all j ∈ [T]. We now argue that the

output of Query(t) is in the interval [(1− ε′) · Fp(t), (1 + ε′) · (Fp(t) + 5φ′‖x‖pp)]], i.e.
Query(t) “succeeds”, with probability at least 1− δ.

For any j ∈ [T], consider the actual Fp value Fp(t)
j of the vector x restricted to

coordinates i such that hj(prefix(i, k)) = hj(t). Then Fp(t)
j = Fp(t) + R(t)j, where

R(t)j is the Fp contribution of the i with prefix(i, k) 6= t, yet hj(prefix(i, k)) = h(t). We
have R(t)j ≥ 0 always, and furthermore E[R(t)j] ≤ ‖x‖pp/R by pairwise independence
of hj. Thus by Markov’s inequality, Pr[R(t)j > 5φ′‖x‖pp] < 1/5. Note for any fixed

j ∈ [T], the Fp estimate output by Dj
h(t) is in [(1−ε′)·Fp(t), (1+ε′)·(Fp(t)+5φ′‖x‖pp)]]

as long as both the events “Dj
h(t) successfully gives a (1 ± ε′)-approximation” and

“R(t)j ≤ 5φ′‖x‖pp” occur. This happens with probability at least 3/5. Thus, by a
Chernoff bound, the output of Query(t) is in the desired interval with probability at
least 1− δ.

We now define the final FpHH data structure. We maintain one global instantiation
D of FpEst(1/7, δ/2). We also use the dyadic interval idea for `1-heavy hitters given in
[34]. Specifically, we imagine building a binary tree T over the universe [d] (without
loss of generality assume n is a power of 2). The number of levels in the tree is
` = 1 + log d, where the root is at level 0 and the leaves are at level log d. For each
level j ∈ {0, . . . , `}, we maintain an instantiation Bj of BasicFpHH(φ/80, δ′, 1/7, j) for
δ′ as in the theorem statement. When we receive an update (i, v) in the stream, we
feed the update to D and also to each Bj.

We now describe how to answer a query to output the desired list L. We first query
D to obtain F̃p, an approximation to Fp. We next initiate an iterative procedure on
our binary tree, beginning at the root, which proceeds level by level. The procedure
is as follows. Initially, we set L = {0}, L′ = ∅, and j = 0. For each i ∈ L, we
perform Query(i) on Bj then add 2i and 2i + 1 to L′ if the output of Query(i) is at
least 3φF̃p/4. After processing every i ∈ L, we then set L← L′ then L′ ← ∅, and we
increment j. This continues until j = 1 + log d, at which point we halt and return
L. We now show why the list L output by this procedure satisfies the claim in the
theorem statement. We condition on the event E that F̃p = (1± 1/7)Fp, and also on
the event E ′ that every query made throughout the recursive procedure is successful.
Let i be such that |xi|p ≥ φFp. Then, since Fp(prefix(i, j)) ≥ |xi|p for any j, we always
have that prefix(i, j) ∈ L at the end of the jth round of our iterative procedure, since

89

(6/7)|xi|p ≥ (3/4)φF̃p given E . Now, consider an i such that |xi|p < (φ/2)Fp. Then,
(8/7) · (|xi|p − 5 · (φ/80)) < 3φF̃p/4, implying i is not included in the final output
list. Also, note that since the query at the leaf corresponding to i ∈ L is successful,
then by definition of a successful query, we are given an estimate x̃pi of |xi|p by the
corresponding BasicFpHH structure satisfying x̃pi ∈ [(6/7)|xi|p, (8/7)|xi|p + (φ/16)Fp],
which is [(6/7)|xi|p, (9/7)|xi|p] since |xi|p ≥ (φ/2)Fp.

We now only need to argue that E and E ′ occur simultaneously with large proba-
bility. We have Pr[E] ≥ 1− δ/2. For E ′, note there are at most 2φ φ/2-heavy hitters
at any level of the tree, where at level j we are referring to heavy hitters of the 2j-
dimensional vector yj satisfying (yj)

p
i =

∑
prefix(t, j) = i|xt|p. As long as the Query(·)

calls made for all φ/2-heavy hitters and their two children throughout the tree succeed
(including at the root), E ′ holds. Thus, Pr[E ′] ≥ 1 − δ′ · 6(log d + 1)φ−1 = 1 − δ/2.
Therefore, by a union bound Pr[E ∧ E ′] ≥ 1− δ.

Finally, notice that the number of levels in FpHH can be reduced from log d to
log d − log d1/φe = O(log(φd)) by simply ignoring the top log d1/φe levels of the
tree. Then, in the topmost level of the tree which we maintain, the universe size is
O(1/φ), so we can begin our reporting procedure by querying all these universe items
to determine which subtrees to recurse upon.

To recover sign(xw) for each w ∈ L, we use the CountSketch data structure
of [29] with T = (21 · 2p)/φ columns and C = Θ(log(1/(δφ))) rows; the space is
O(φ−1 log(1/(δφ)) log(dmM)), and the update time is O(log(1/(δφ))). CountSketch
operates by, for each row i, having a pairwise independent hash function hi : [d]→ [T]
and a 4-wise independent hash function σi : [d] → {−1, 1}. There are C · T coun-
ters Ai,j for (i, j) ∈ [C] × [T]. Counter Ai,j maintains

∑
hi(v)=j σi(v) · xv. For

(i, j) ∈ [C]× [T], let xi be the vector x restricted to coordinates v with hi(v) = hi(w),
other than w itself. Then for fixed i, the expected contribution to ‖xi‖pp is at most
‖x‖pp/T , and thus is at most 10‖x‖pp/T with probability 9/10 by Markov’s inequality.
Conditioned on this event, |xw| > ‖xi‖p/2 ≥ ‖xi‖2/2. The analysis of CountSketch
also guarantees |Ai,hi(w) − σi(w)xw| ≤ 2‖xi‖2 with probability at least 2/3, and thus
by a union bound, |xw| > |Ai,hi(w) − σi(w)xw| with probability at least 11/20, in
which case σi(w) · sign(Ai,hi(w)) = sign(xw). Thus, by a Chernoff bound over all rows,
together with a union bound over all w ∈ L, we can recover sign(xw) for all w ∈ L
with probability 1− δ. �

3.4 Lower Bounds

In this section we prove our lower bound for (1±ε)-multiplicative approximation of Fp
for any positive real constant p bounded away from 0 in the turnstile model. We show
a lower bound of Ω(min{d,m, ε−2(log(ε2mM))}). Note that if ε ≥ 1/min{d,m}1/2−δ

for any constant δ > 0, the lower bound becomes Ω(ε−2 logmM), matching our upper
bound. We also describe a folklore lower bound of Ω(log log d) in Section 3.5.2. Our
lower bound holds for all ranges of the parameters ε, d,m,M varying independently.

Our proof in part uses that Augmented-Indexing requires linear communica-
tion in the one-way, one-round model [91] (an alternative proof was also given later

90

in [10, Lemma 2]). We also use a known reduction [70, 125] from Indexing to Gap-
Hamdist. Henceforth all communication games discussed will be one-round and
two-player, with the first player to speak named “Alice”, and the second “Bob”. We
assume that Alice and Bob have access to public randomness.

Definition 66. In the Augmented-Indexing problem, Alice receives a vector x ∈
{0, 1}n, Bob receives some i ∈ [n] as well as all xj for j > i, and Bob must output xi.
The problem Indexing is defined similarly, except Bob receives only i ∈ [n], without
receiving xj for j > i.

Definition 67. In the Gap-Hamdist problem, Alice receives x ∈ {0, 1}n and Bob
receives y ∈ {0, 1}n. Bob is promised that either ∆(x, y) ≤ n/2−

√
n (NO instance),

or ∆(x, y) ≥ n/2 +
√
n (YES instance) and must decide which holds. Here ∆(·, ·)

denotes Hamming distance.

We also make use of the following two theorems.

Theorem 68 (Miltersen et al. [91, Lemma 13]). The randomized one-round, one-way
communication complexity of Augmented-Indexing with error probability at most
1/3 is Ω(n). �

Theorem 69 ([70], [125, Section 4.3]). There is a reduction from Indexing to Gap-
Hamdist such that deciding Gap-Hamdist with probability at least 11/12 implies
a solution to Indexing with probability at least 2/3. Furthermore, in this reduction
the parameter n in Indexing is within a constant factor of that for the reduced
Gap-Hamdist instance. �

Theorem 70 (Main lower bound). For any real constant p > 0, any one-pass stream-
ing algorithm for (1 ± ε)-multiplicative approximation of Fp with probability at least
11/12 in the turnstile model requires Ω(min{d,m, ε−2(1 + p · log(dε2mMe))}) bits of
space.

Proof. Let q = 21/p and define k = b1/ε2c and t = min{bmin{d,m}/kc ,
⌊
logq(M)

⌋
+

1}. Given an algorithm A providing a (1 ± rε/2p)-multiplicative approximation of
Fp with probability at least 11/12, where r > 0 is some small constant to be fixed
later, we devise a protocol to decide Augmented-Indexing on strings of length kt,
where the number of bits communicated in the protocol is dominated by the space
complexity of A. Since kt = Ω(min{d,m, ε−2(1 + p · log(dε2mMe))}) and 2p = O(1)
for constant p, the lower bound (ignoring the ε2m term) follows. At the end of the
proof, we describe how to obtain our stated dependence on m in the lower bound as
well.

Let Alice receive x ∈ {0, 1}kt, and Bob receive z ∈ [kt]. Alice conceptually divides
x into t contiguous blocks where the ith block bi is of size k. Bob’s index z lies in some
bi(z), and Bob receives bits xj that lie in a block bi with i > i(z). Alice applies the
Gap-Hamdist reduction of Theorem 69 to each bi separately to obtain new vectors
yi each of length at most c · k for some constant c for all 0 ≤ i < t. Alice then creates
a stream from the set of yi by, for each i and each bit (yi)j of yi, inserting an update

91

((i, j), bqic) into the stream if (yi)j = 1. Alice processes this stream with A then
sends the state of A to Bob along with the Hamming weight w(yi) of yi for all i. Note
the size of the universe in the stream is at most ckt = O(min{d,m}) = O(d).

Now, since Bob knows the bits in bi for i > i(z) and shares randomness with
Alice, he can run the same Gap-Hamdist reduction as Alice to obtain the yi for
i > i(z) then delete all the insertions Alice made for these yi. Bob then performs
his part of the reduction from Indexing on strings of length k to Gap-Hamdist
within the block bi(z) to obtain a vector y(B) of length ck such that deciding whether

∆(y(B), yi(z)) > ck/2 +
√
ck or ∆(y(B), yi(z)) < ck/2−

√
ck with probability at least

11/12 allows one to decide the Indexing instance on block bi(z) with probability at
least 2/3. Here ∆(·, ·) denotes Hamming distance. For each j such that y(B)j = 1,
Bob inserts ((i(z), j),−

⌊
qi(z)

⌋
) into the stream being processed by A. We have so

far described all stream updates, and thus the number of updates is at most 2ckt =
O(min{d,m}) = O(m). Note the pth moment L′′ of the underlying vector of the
stream now exactly satisfies

L′′ =
⌊
qi(z)

⌋p ·∆(y(B), yi(z)) +
∑
i<i(z)

w(yi)
⌊
qi
⌋p
. (3.27)

Setting η =
∑

i<i(z) w(yi) bqic
p

and rearranging terms, ∆(y(B), yi(z)) = (L′′−η)/
⌊
qi(z)

⌋p
.

Recall that in this Gap-Hamdist instance, Bob must decide whether ∆(y(B), yi(z)) <

ck/2−
√
ck or ∆(y(B), yi(z)) > ck/2 +

√
ck. Bob can compute η exactly given Alice’s

message. To decide Gap-Hamdist it thus suffices to obtain a (
√
ck/4)-additive ap-

proximation to
⌊
qi(z)

⌋−p
L′′. Note bqicp = 2i · (bqic /qi)p, and thus 2i/2p ≤ bqicp ≤ 2i.

Thus,
⌊
qi(z)

⌋−p
L′′ is upper-bounded by

⌊
qi(z)

⌋−p i(z)∑
i=0

⌊
qi
⌋p · ck ≤ 2p−i(z)(2i(z)+1 − 1)ck ≤ 2p+1ck,

implying our desired additive approximation is guaranteed by obtaining a (1 ± ε′)-
multiplicative approximation to L′′ for ε′ = (

√
ck/4)/(4 · 2p+1ck) = 1/(2p+3

√
ck). By

choice of k, this is a (1±O(ε/2p))-multiplicative approximation, which we can obtain
from A by setting r to be a sufficiently small constant. Recalling that A provides
this (1 ± O(ε/2p))-approximation with probability at least 11/12, we solve Gap-
Hamdist in the block i(z) with probability at least 11/12, and thus Indexing in
block i(z) with probability at least 2/3 by Theorem 69, which is equivalent to solving
the original Augmented-Indexing instance. This implies that the total number
of bits communicated in this protocol must be Ω(kt). Now note that the only bits
communicated other than the state of A are the transmissions of w(yi) for 0 ≤ i < t.
Since w(yi) ≤ k, all Hamming weights can be communicated in O(t log(k)) = o(kt)
bits. Thus, indeed, the communication of the protocol is dominated by the space
complexity of A, implying A uses space Ω(kt).

The above argument yields the lower bound Ω(min{d,m, ε2 log(M)). We can
similarly obtain the lower bound Ω(min{d,m, ε2 log(dε2me)) by, rather than updating

92

an item in the stream by fi = bqic in one update, we update the same item fi times
by 1. The number of total updates in the ith block is then at most bqic · k, and
thus the maximum number of blocks of length k we can give Alice to ensure that
both the stream length and number of used universe elements is at most min{d,m}
is t = min{bmin{d,m}/kc , O(log(dm/ke))}. The proof is otherwise identical. �

Our lower bound technique also improves lower bounds for p = 0, `p estimation
in the strict turnstile model (where we are promised xi ≥ 0 always). We first make
the following simple observation.

Observation 71. For vectors u, v of equal length with entries in {0, r}, let ∆(u, v) =
|{i : ui 6= vi}| denote their Hamming distance. Let w(z) = |{i : zi 6= 0}| denote the
weight of z. Then for any p ≥ 0,

rp(2p − 2)∆(u, v) = (2r)pw(u) + (2r)pw(v)− 2‖u+ v‖pp.

Theorem 72. For any real constant p > 0, any one-pass streaming algorithm for
(1± ε)-multiplicative approximation of Fp with probability at least 11/12 in the strict
turnstile model requires Ω(min{d,m, |p− 1|2ε−2(log(ε2mM/|p− 1|2))}) bits of space.

Proof (Sketch). The proof is very similar to that of Theorem 70, so we only explain
the differences. The main difference is the following. In the proof of Theorem 70, Bob
inserted item (i(z), j) into the stream with frequency −

⌊
qi(z)

⌋
for each j satisfying

y(B)j = 1. Doing this may not yield a strict turnstile stream, since (i(z), j) may never
have received a positive update from Alice. We instead have Bob insert (i(z), j) with
positive frequency

⌊
qi(z)

⌋
.

Now, after all updates have been inserted into the stream, Observation 71 implies
that the pth frequency moment of the stream is exactly

L′′ =
(2
⌊
qi(z)

⌋
)p

2
w(yi(z)) +

(2
⌊
qi(z)

⌋
)p

2
w(y(B))

−
⌊
qi(z)

⌋p
(2p − 2)

2
∆(yi(z), y(B))

+
∑
i<i(z)

w(yi)
⌊
qi
⌋p
.

Setting η =
∑

i<i(z) w(yi) bqic
p

and rearranging terms,

∆(yi(z), y(B)) =
2p−1

2p−1 − 1
w(yi(z)) +

2p−1

2p−1 − 1
w(y(B))

+

⌊
qi(z)

⌋−p
(η − L′′)

2p−1 − 1
.

Bob knows η, w(yi(z)), and w(y(B)) exactly. To decide Gap-Hamdist for vectors

yi(z), y(B), it thus suffices to obtain a ((2p−1 − 1)/(4
√
ck))-additive approximation

to
⌊
qi(z)

⌋−p
L′′. Since 2−i(z)L′′ is upper-bounded in absolute value by (1 + 2p)ck, our

93

desired additive approximation is guaranteed by obtaining a (1± ((2p−1− 1)
√
ck/(4 ·

(1 + 2p))))-multiplicative approximation to L′′. Since p 6= 1 is a constant, |2x −
1| = Θ(|x|) as |x| → 0, and k = Θ(1/ε2), this is a (1 ± O(|p − 1|ε))-multiplicative
approximation. To conclude, a (1 ± O(|p − 1|ε))-multiplicative approximation to
Fp with probability 11/12 gives a protocol for Augmented-Indexing with success
probability 2/3, with Alice having a string of length kt for k, t as in the proof of
Theorem 70. The theorem follows. �

The lower bounds of Theorem 70 and Theorem 72 fail to give any improved lower
bound over the previously known Ω(min{d,m, 1/ε2}) lower bound for p near (and
including) 0. The reason is that we gave items in block j a frequency of roughly 2j/p,
so that contributions to Fp increase geometrically as block ID increases. This fails
for, say, p = 0, since in this case increasing frequency does not increase contribution
to F0 at all. We fix this issue by, rather than giving items in large blocks a large
frequency, instead blow up the universe size. Specifically, we use a proof identical
to that of Theorem 72, but rather than give an index i in block j frequency roughly
2j/p, we instead create 2j indices (i, 1), . . . , (i, 2j) and give them each a frequency of
1. The setting of t, the number of blocks, can then be at most O(log(ε2 min{d,m}))
since n,m ≤ 2ε−2

∑t−1
j=0 2j, which we require to be at most min{d,m}. We thus have:

Theorem 73. For any real constant p ≥ 0, one-pass (1 ± ε)-multiplicative approx-
imation of Fp with probability at least 11/12 in the strict turnstile model requires
Ω(|p− 1|2ε−2 log(ε2 min{d,m}/|p− 1|2)) bits of space.

The decay of our lower bounds in the strict turnstile model as p→ 1 is necessary
since Li gave an algorithm in this model whose dependence on ε becomes subquadratic
as p→ 1 [88]. Furthermore, when p = 1 there is a simple, deterministic O(log(mM))-
space algorithm for computing F1: maintain a counter.

3.5 The additive log log d in `p bounds

Throughout this chapter and in the introduction and in the coming chapter on entropy
estimation (Chapter 4), we omit an additive log log d in the statements of various
upper and lower bounds. We here discuss why this term arises.

3.5.1 The upper bounds

Recall we assume that stream updates (i, v) come from [d]× {−M, . . . ,M}, causing
the change xi ← xi + v. We note that in fact, we can assume that i comes not
from the universe [d], but rather from [U] for U = O(m2), at the cost of an additive
O(log log d) in the space complexity of any streaming algorithm with constant error
in the turnstile model. We discuss why this is the case below, using an idea of [51].

Let {i1, . . . , ir} be the indices appearing in the stream. Picking a prime q and
treating all updates (i, v) as (i mod q, v), our `p estimate is unaffected as long as
ij1 6= ij2 mod q for all j1 6= j2. There are at most r2/2 differences |ij1 − ij2|, and
each difference is an integer bounded by d, thus having at most log d prime factors.

94

There are thus at most r2 log d prime factors dividing some |ij1 − ij2|. If we pick a

random prime q = Õ(r2 log d), we can ensure with constant probability arbitrarily
close to 1 (by increasing the constant in the “big-Oh”) that no indices collide modulo

q. Since r ≤ m, we thus have q = Õ(m2 log d). We then pick a hash function h :
{0, . . . , q−1} → [O(m2)] at random from pairwise independent family. With constant
probability which can be made arbitrarily high (again by increasing the constant in
the “big-Oh”), the mapping i 7→ h(i mod q) perfectly hashes the indices appearing
in the stream. Storing both h and q requires O(log q + logm) = O(logm+ log log d)
bits.

3.5.2 The lower bounds

An Ω(log log d) lower bound for moment estimation in the turnstile model follows by
a simple reduction from the communication problem of Equality in the private coin
model. The lower bound holds for streams of length at least 2 and arbitrary M . In
Equality, Alice receives x ∈ [d], and Bob receives y ∈ [d], and they must decide
whether x = y with probability 2/3. This problem requires Ω(log log d) communica-
tion [84]. Given a streaming algorithm A for turnstile Fp estimation for p ≥ 0 with
success probability 2/3, Alice performs the update (x,+1), sends A’s state to Bob,
and Bob performs the update (y,−1). Either x = y, implying Fp = 0, else Fp 6= 0.
Thus, any multiplicative approximation of Fp gives a solution to Equality, implying
A uses Ω(log log d) space. This same argument also applies for entropy estimation,
or for any other problem in which x = 0 must be distinguished from x 6= 0.

95

Chapter 4

Entropy Estimation

In this chapter we describe our algorithm for additive and multiplicative empirical
entropy estimation in turnstile streams. Recall that for a discrete probability distri-
bution with event probabilities q1, . . . , qn, its entropy is defined as

H = −
n∑
i=1

qi ln qi.

Throughout this chapter we consider the case qi = |xi|/‖x‖1 for a vector x updated
in a turnstile stream, and we would like to additively or multiplicatively estimate H
given some error parameter 0 < ε < 1/2. So that H is well-defined, we assume x 6= 0;
the case x = 0 can be detected with probability 1 − δ by taking the dot product of
x with a random sign vector drawn from a 4-wise independent family O(log(1/δ))
times, then checking whether any dot product is 0 [14].

Let Fp(q) denote the pth frequency moment of the q vector, and let Fp as usual
denote the pth frequency moment of x. The main idea behind all our algorithms in
this chapter is that if one defines the pth Tsallis entropy Tp by

Tp
def
=

1− Fp(q)
p− 1

,

then L’Hôpital’s rule easily shows that limp→1 Tp = H. Thus, at least for additive
entropy estimation, it suffices to take some p = p(ε) sufficiently close to 1 and produce
an estimate F̃p(q) = (1± ε̃)Fp(q), since

T̃p
def
=

1− F̃p(q)
p− 1

= Tp ±
ε̃

p− 1
.

One then should choose p so that |Tp−H| < ε/2, then choose ε̃ = ε(p−1)/2. In other
words, entropy estimation with additive error directly reduces to moment estimation
with multiplicative error, albeit with a different error parameter ε̃. Unfortunately,
consider the vector x = (1, . . . , 1) formed by a stream of length m = d. This vector

96

yields H = lnm, however

T1+ε/ lnm =
lnm

ε
·

(
1−m ·

(
1

m

)1+ε/ lnm
)

=
lnm

ε
·
(
1− e−ε

)
= (1 + Θ(ε)) lnm.

A similar calculation can be performed for T1−ε/ lnm. Thus, in general ε-additive
entropy estimation requires setting |p−1| = 1+O(ε/ ln2m), and thus requires setting
ε̃ = O(ε2/ ln2m). Due to Theorem 70, this reduction cannot yield an algorithm
using o(1/ε4) space. Our approach circumvents this problem using interpolation.
Specifically, we estimate Tp for many p, then interpolate a polynomial which we
evaluate at p = 1.

Remark 74. In the case of the strict turnstile model, the above argument does
not actually imply that a direction reduction to moment estimation would require
Ω(1/ε4) space. This is because the lower bound for moment estimation in the strict
turnstile model is only Ω(ε−2|p− 1|2) (Theorem 72). Recall that when p = 1, a very
simple algorithm estimates F1 with no error: maintain a counter.

We assume in our algorithms thatm, the length of the stream, is known in advance,
though in fact our algorithms work with only a constant factor increase in space as
long as a value m′ satisfying m ≤ m′ ≤ mO(1) is known. In fact, we actually only
need to know an upper bound for ‖x‖∞, which mM provides.

Bibliographic remarks: The algorithms in this chapter were developed in joint
work with Harvey and Onak [63]. The lower bound in Section 4.4 was developed in
joint work with Kane and Woodruff [78]. See also a later improvement to the lower
bound by Jayram and Woodruff [72] which takes error probability into account.

4.1 Noisy Extrapolation

In this section we describe an extrapolation technique that lies at the heart of our
streaming algorithms for entropy estimation. Let f : R → R be a continuous func-
tion that we can evaluate approximately at every point except 0. Further, suppose
that evaluating f(y) becomes increasingly expensive as y goes to 0. We want to
approximate f(0). We do this by approximating f at a few carefully chosen points
y0, . . . , yk far from 0 and use the achieved values to extrapolate the value of f at 0.
Let zi = f(yi) + ∆i be the approximation to f(yi) that we compute, where ∆i is the
error term. We then interpolate to obtain the only polynomial h of degree at most k
such that h(yi) = zi and hope that h(0) is a good approximation to f(0).

The polynomial h can be decomposed into two polynomials hf and h∆ of degree
at most k such that h = hf +h∆, and for each i, hf (yi) = f(yi) and h∆(yi) = ∆i. We
have

|h(0)− f(0)| ≤ |hf (0)− f(0)|+ |h∆(0)|. (4.1)

We analyze and bound each of the terms on the right hand side of Eq. (4.1) separately.
A standard result on approximation of functions by polynomials can be used to bound

97

the first term, provided f is sufficiently smooth. Bounding the second term requires
a careful choice of yi and employs extremal properties of Chebyshev polynomials.

4.1.1 Bounding the First Error Term

The following standard result on approximation of functions by polynomials can be
used to bound the error due to use of extrapolation.

Fact 75 (Phillips and Taylor [107], Theorem 4.2). Let y0, y1, . . . , yk be points in the
interval [a, b]. Let f : R → R be such that f (1), . . . , f (k) exist and are continuous on
[a, b], and f (k+1) exists on (a, b). Then, for every y ∈ [a, b], there exists ξy ∈ (a, b)
such that

f(y)− hf (y) =

(
k∏
i=0

(y − yi)

)
f (k+1)(ξy)

(k + 1)!
,

where hf (y) is the degree-k polynomial obtained by interpolating the points (yi, f(yi)),
0 ≤ i ≤ k.

As long as f is sufficiently smooth and has bounded derivatives, and y is not too
far from each yi, the above fact immediately yields a good bound on the extrapolation
error.

4.1.2 Bounding the Second Error Term

We now show how to bound |h∆(0)|, the error from learning each f(yi) only approx-
imately. The careful choice of y0, y1, . . . , yk and extremal properties of Chebyshev
polynomials are used to limit |h∆(0)|. We first describe properties of Chebyshev poly-
nomials that are important to us, then explain how we pick our points y0 through yk,
and eventually sketch how the absolute value of h∆ can be bounded at 0.

Review of Chebyshev Polynomials

Our technique exploits certain extremal properties of Chebyshev polynomials. For a
basic introduction to Chebyshev polynomials we refer the reader to [106, 107, 108].
A thorough treatment of these objects can be found in [110]. We now present the
background relevant for our purposes.

Definition 76. The set Pk consists of all polynomials of degree at most k with real
coefficients. The Chebyshev polynomial of degree k, Pk(x), is defined by the recurrence

Pk(x) =


1, (k = 0)

x, (k = 1)

2xPk−1(x)− Pk−2(x), (k ≥ 2)

(4.2)

and satisfies |Pk(x)| ≤ 1 for all x ∈ [−1, 1]. The value |Pk(x)| equals 1 for exactly
k + 1 values of x in [−1, 1]; specifically, Pk(ηj,k) = (−1)j for 0 ≤ j ≤ k, where

98

ηj,k = cos(jπ/k). The set Ck is defined as the set of all polynomials h ∈ Pk satisfying
max0≤j≤k |h(ηj,k)| ≤ 1.

The following can be found in [110, Ex. 1.5.11] or [111].

Fact 77 (Extremal Growth Property). If h ∈ Ck and |t| ≥ 1, then |h(t)| ≤ |Pk(t)|.

Fact 77 states that all polynomials which are bounded on certain “critical points”
of the interval I = [−1, 1] cannot grow faster than Chebyshev polynomials once
leaving I.

The Choice of yi

We will use Fact 77 to bound h∆(0). Since this fact provides no guarantees at t = 0,
we produce a new polynomial from h∆ by applying an affine map to its domain, then
bound this new polynomial at a point t slightly larger than 1. Fact 77 requires that
this new polynomial is bounded on the points ηi,k, so we will chose the yi’s accordingly.
The affine map is also parameterized by a value ` > 0 which is irrelevant for now,
but is used in Section 4.2 to control how close the yi’s are to 0, and consequently the
efficiency of estimating f(yi).

Formally, define

g`(t)
def
=

(
`

2k2 + 1

)(
k2 · t − (k2 + 1)

)
, and

yi
def
= g`(ηi,k). (4.3)

Note that g`(1 + 1/k2) = 0 and that

−` = g`(−1) ≤ yi ≤ g`(1) = − `

2k2 + 1
. (4.4)

Let ∆ be an upper bound on the error with which we can approximate f , i.e.,

|∆i| = |h∆(yi)| ≤ ∆. Then the polynomial h̃∆(t)
def
= h∆(g`(t))/∆ has the property

|h̃∆(ηi,k)| ≤ 1, that is, h̃∆(t) belongs to Ck. Furthermore, h∆(0) = ∆·h̃∆(g−1
` (0)) = ∆·

h̃∆(1+1/k2). By Fact 77, we then have |h∆(0)| = ∆·|h̃∆(1+1/k2)| ≤ ∆·|Pk(1+1/k2)|.
To finish bounding |h∆(0)|, we use the following standard lemma (in fact even sharper
bounds can be obtained, see [109]).

Lemma 78. Let Pk be the kth Chebyshev polynomial, where k ≥ 1. Then

|Pk(1 + k−c)| ≤
k∏
j=1

(
1 +

2j

kc

)
≤ e2k2−c .

Proof. The proof is by induction and Eq. (4.2). Fix x = 1 + k−c. We will prove for
all j ≥ 1 that

Pj−1(x) ≤ Pj(x) ≤ Pj−1(x)

(
1 +

2j

kc

)
.

99

Additive entropy estimation

1. k ← 2 ·max{ln(8e/ε)/ ln ln(8e/ε), (ln lnm)/(ln ln lnm)}

2. ε̃← ε/(4e3(k + 1)(2k2 + 1) lnmM)

3. Define y0, . . . , yk as in Eq. (4.3), with ` = 1/(e(k + 1) lnmM)

4. For each i ∈ {0, . . . , k}, compute F̃1+yi , a (1 + ε̃)-approximation of F1+yi with
success probability 1− 1/(6(k + 1))

5. Compute F̃1, a (1 + ε̃)-approximation of F1 with success probability 5/6

6. For each i, compute T̃ (yi) =
(
1− F̃1+yi/F̃

1+yi
1

)
/yi

7. Return an estimate of T (0) by polynomial interpolation using the points T̃ (yi)

Figure 4-1: Algorithm for additively approximating empirical entropy.

For the first inequality, we observe Pj−1 ∈ Cj, so we apply Fact 77 together with the
fact that Pj(y) is strictly positive for all y > 1 and all j.

For the second inequality, we induct on j. For the sake of the proof define P−1(x) =
1 so that the inductive hypothesis holds at the base case j = 0. For the inductive
step with j ≥ 1, we use the definition of Pj(x) in Eq. (4.2) and we have

Pj+1(x) = Pj(x)

(
1 +

2

kc

)
+ (Pj(x)− Pj−1(x))

≤ Pj(x)

(
1 +

2

kc

)
+ Pj−1(x)

2j

kc

≤ Pj(x)

(
1 +

2

kc

)
+ Pj(x)

2j

kc

= Pj(x)

(
1 +

2(j + 1)

kc

)
.

�

Therefore, |h∆(0)| ≤ ∆ · e2. Summarizing, our error in estimating f(0) is not signifi-
cantly worsened by having only approximate knowledge of each f(yi).

4.2 Additive Estimation Algorithm

In this section, we apply the noisy extrapolation technique of Section 4.1 to ε-
additive entropy estimation. Our algorithm is in Figure 4-1. There and hence-
forth, we use the notation T (y) to denote T1+y. The algorithm estimates Tsal-
lis entropy with error parameter ε̃ = ε/(4e3(k + 1)(2k2 + 1) lnmM), where k =
2·max{ln(8e/ε)/ ln ln(8e/ε), (ln lnm)/(ln ln lnm)}. We define the points y0, y1, . . . , yk
by setting ` = 1/(e(k + 1) lnmM) and yi = g`(ηi,k), as in Eq. (4.3).

100

The correctness of the algorithm is proven in Section 4.2. For the space require-
ments, we use either of the algorithms in Chapter 3. To compute each estimate
F̃1+yi , the space required is O(ε̃−2 log(mM) log k). The space required for estimat-
ing F1 is O(ε̃−2 log(mM)). Thus, the total space is O(ε−2k6 log k log3(mM)) =
Õ(ε−2 log3mM). Using the faster algorithm from Section 3.3, the update time is
O(k log k log2(1/ε̃) log log(1/ε̃)) = polylog((logmM)/ε).

A Technical Claim

Before showing correctness of our algorithm, we first need a bound on the high order
derivatives of T . When analyzing correctness, we will plug this bound into Fact 75
to bound the first error term in Eq. (4.1) in our approximation by interpolation.

Lemma 79. Let ε be in (0, 1/2]. Then,∣∣∣∣T (k)

(
− ε

(k + 1) ln ‖x‖∞

)∣∣∣∣ ≤ 4 (lnk ‖x‖∞)H/(k + 1).

Before proving Lemma 79, we first define a a family of functions {Gt}∞t=0 and prove
a few lemmas. For any integer t ≥ 0 and real number a ≥ −1, define

Gt(a) =
d∑
i=1

q1+a
i lnk qi,

so G0(a) = F1+a/‖x‖1+a
1 . Note that G

(1)
t (a) = Gt+1(a) for t ≥ 0, and T (a) =

(1−G0(a))/a.

Lemma 80. The tth derivative of the Tsallis entropy has the following expression.

T (t)(a) =
(−1)t t!

(
1−G0(a)

)
at+1

−

(
t∑

j=1

(−1)t−j k!Gj(a)

at−j+1j!

)

Proof. The proof is by induction on t, the case t = 0 being trivial. Now, assume

101

t ≥ 1. Taking the derivative of the expression for T (t)(a) above, we obtain:

T (t+1)(a)

=

(
t∑

j=1

t!(t− j + 1)(−1)(t+1)−jGj(a)

a(t+1)−j+1j!
+
t!(−1)t−jGj+1(a)

at−j+1j!

)

+
(−1)t+1(t+ 1)!(G0(a)− 1)

at+2
+

(−1)tt!G1(a)

at+1

=

(
t∑

j=1

t!(−1)(t+1)−jGj(a)

a(t+1)−j+1(j − 1)!

(
1 +

t− j + 1

j

))

+
Gt+1(a)

a
+

(−1)t+1(t+ 1)!(G0(a)− 1)

at+2

=

(
t+1∑
j=1

(t+ 1)!(−1)(t+1)−jGj(a)

a(t+1)−j+1j!

)
+

(−1)t+1(t+ 1)!(G0(a)− 1)

at+2

as claimed. �

Lemma 81. Define St(a) = at+1T (t)(a). Then, for 1 ≤ j ≤ t+ 1,

S
(j)
t (a) =

j−1∑
i=0

(
j − 1

i

)
t!

(t− j + i+ 1)!
at−j+i+1Gt+1+i(a)

In particular, for 1 ≤ j ≤ t, we have

lim
a→0

S
(j)
t (a) = 0 and lim

a→0
S

(t+1)
t (a) = t!Gt+1(0) so that lim

a→0
T (t)(a) =

Gt+1(0)

t+ 1
.

Proof. We prove the claim by induction on j. First, note

St(a) = (−1)tt!(1−G0(a))−

(
t∑

j=1

aj(−1)t−jt!Gj(a)

j!

)

so that

S
(1)
t (a) = (−1)t−1t!G1(a)

−

(
t∑

j=1

−a
(j+1)−1(−1)t−(j+1)t!Gj+1(a)

((j + 1)− 1)!
+
aj−1(−1)t−jt!Gj(a)

(j − 1)!

)
= att+1(a)

102

Thus, the base case holds. For the inductive step with 2 ≤ j ≤ t+ 1, we have

S
(j)
t (a) =

∂

∂a

(
j−2∑
i=0

(
j − 2

i

)
t!

(t− j + i+ 2)!
at−j+i+2Gt+1+i(a)

)

=

j−2∑
i=0

((
j − 2

i

)
t!

(t− j + i+ 1)!
at−j+i+1Gt+1+i(a)

+

(
j − 2

i

)
t!

(t− j + (i+ 1) + 1)!
at−j+(i+1)+1Gt+1+(i+1)(a)

)

=

j−1∑
i=0

(
j − 1

i

)
t!

(t− j + i+ 1)!
at−j+i+1Gt+1+i(a)

The final equality holds since
(
j−2

0

)
=
(
j−1

0

)
= 1,

(
j−2
j−2

)
=
(
j−1
j−1

)
= 1, and by

Pascal’s formula
(
j−2
i

)
+
(
j−2
i+1

)
=
(
j−1
i+1

)
for 0 ≤ i ≤ j − 3.

For 1 ≤ j ≤ t, every term in the above sum is well-defined for a = 0 and contains
a power of a which is at least 1, so lima→0 S

(j)
t (a) = 0. When j = t+ 1, all terms but

the first term contain a power of a which is at least 1, and the first term is t! ·Gt+1(a),

so lima→0 S
(t+1)
t (a) = t!Gt+1(0). The claim on lima→0 T (t)(a) thus follows by writing

T (t)(a) = St(a)/at+1 then applying L’Hôpital’s rule t+ 1 times. �

To finally finish off our proof of Lemma 79, we need the following form of L’Hôpital’s
rule.

Theorem 82 (see Rudin [112, p.109]). Let f : R→ R and g : R→ R be differentiable
functions such that the following limits exist

lim
α→1

f(α) = 0, lim
α→1

g(α) = 0, and lim
α→1

f ′(α)/g′(α) = L.

Let ε and δ be such that |α−1| < δ implies that |f ′(α)/g′(α)−L| < ε. Then |α−1| < δ
also implies that |f(α)/g(α)− L| < ε.

Proof (of Lemma 79). We will first show that∣∣∣∣T (t)

(
− ε

(t+ 1) ln ‖x‖∞

)
− Gt+1(0)

t+ 1

∣∣∣∣ ≤ 6ε lnt(‖x‖∞)H

t+ 1

Let St(a) = at+1T (t)(a) and note T (t)(a) = St(a)/at+1. By Lemma 80, lima→0 St(a) =

0. Furthermore, lima→0 S
(j)
t = 0 for all 1 ≤ j ≤ t by Lemma 81. Thus, when analyzing

lima→0 S
(j)
t (a)/(at+1)(j) for 0 ≤ j ≤ t, both the numerator and denominator approach

0 and we can apply L’Hôpital’s rule (here (at+1)(j) denotes the jth derivative of the
function at+1). By t+ 1 applications of L’Hôpital’s rule, we can thus say that T (t)(a)

converges to its limit at least as quickly as S
(t+1)
t (a)/(at+1)(t+1) = S

(t+1)
t (a)/(t + 1)!

does (using Theorem 82). We note that Gj(a) is nonnegative for j even and nonpos-
itive otherwise. Thus, for negative a, each term in the summand of the expression

103

for S
(t+1)
t (a) in Lemma 81 is nonnegative for odd t and nonpositive for even t. As

the analyses for even and odd t are nearly identical, we focus below on odd t, in
which case every term in the summand is nonnegative. For odd t, S

(t+2)
t (a) is non-

positive so that S
(t+1)
t (a) is monotonically decreasing. Thus, it suffices to show that

S
(t+1)
t (−ε/((t+ 1) ln ‖x‖∞))/(t+ 1)! is not much larger than its limit.

S
(t+1)
t

(
− ε

(t+1) ln ‖x‖∞

)
(t+ 1)!

=

∑t
i=0

(
t
i

)
t!
i!

(
− ε

(t+1) ln ‖x‖∞

)i
Gt+1+i

(
− ε

(t+1) ln ‖x‖∞

)
(t+ 1)!

≤ 1 + 2ε

t+ 1

t∑
i=0

(
t

i

)(
ε

(t+ 1) ln ‖x‖∞

)i
|Gt+1+i(0)|

≤ 1 + 2ε

t+ 1

t∑
i=0

ti
(

ε

(t+ 1) ln ‖x‖∞

)i
|Gt+1+i(0)|

≤ 1 + 2ε

t+ 1

t∑
i=0

(
ε

ln ‖x‖∞

)i
|Gt+1+i(0)|

≤ 1 + 2ε

t+ 1

t∑
i=0

εi|Gt+1(0)|

≤ (1 + 2ε)|Gt+1(0)|
t+ 1

+
1 + 2ε

t+ 1

t∑
i=1

εi|Gt+1(0)|

≤ (1 + 2ε)|Gt+1(0)|
t+ 1

+
2

t+ 1

t∑
i=1

εi(lnt ‖x‖∞)H

≤ |Gt+1(0)|
t+ 1

+
6ε(lnt ‖x‖∞)H

t+ 1

The first inequality holds since qi ≥ 1/‖x‖∞ for each i with qi 6= 0, so that

q
−ε/((t+1) ln ‖x‖∞)
i ≤ ‖x‖ε/((t+1) ln ‖x‖∞)

∞ ≤ ‖x‖ε/ lnm
∞ ≤ eε ≤ 1 + 2ε for ε ≤ 1/2. The final

inequality above holds since ε ≤ 1/2.
The lemma follows since |Gt+1(0)| ≤ (lnt ‖x‖∞)H. �

Correctness

We now prove correctness of our algorithm. It suffices to bound the two error terms
in Eq. (4.1). We show that both terms are at most ε/2.

To bound the first error term, we use Fact 75. To apply this fact, a bound on
|T (k+1)(y)| is needed. It suffices to consider the interval [−`, 0), since Eq. (4.4) ensures
that yi ∈ [−`, 0) for all i.

Since ` = 1/(e(k + 1) lnmM), Lemma 79 implies that

|T (k+1)(ξ)| ≤ 4 (lnk+1 ‖x‖∞)H

k + 2
∀ξ ∈ [−`, 0). (4.5)

104

Thus, by Fact 75 and Eq. (4.5), and using ‖x‖∞ ≤ mM and H ≤ lnm, we have

|T (0)− hT (0)| ≤ |`|k+1 · 4 lnk+1(mM)H

(k + 1)! (k + 2)

≤ 1

ek+1 lnk+1(mM)
· 4 lnk+1(mM)H

(k + 2)!

≤ 4eH

(k + 2)k+2
≤ ε

2
. (4.6)

We now have to bound the second error term |h∆|, since Figure 4-1 does not com-
pute the exact values T (yi) but rather only computes approximations. The accuracy
of these approximations can be determined as follows.

T̃ (yi) =
1− F̃1+yi/‖x‖

1+yi
1

yi
≤ T (yi) − ε̃ ·

∑d
j=1 q

1+yi
j

yi
. (4.7)

To analyze the last term, recall that qj ≥ 1/mM for each i and yi ≥ −`, so that

qyii ≤ (mM)` = (mM)1/e(k+1) lnmM < 2. Thus
∑d

j=1 q
1+yi
j < 2

∑d
j=1 qj = 2. By

Eq. (4.4),

−2ε̃

yi
≤ 2(2k2 + 1)ε̃

`
≤ ε

2e2
.

Thus, we have

T (yi) ≤ T̃ (yi) ≤ T (yi) +
ε

2e2
. (4.8)

Hence, the additive error |h∆(yi)| = |∆i| on each T (yi) is bounded by ∆ = ε/(2e2).
In Section 4.1, we showed that |h∆(0)| ≤ e2 ·∆ ≤ ε

2
. This completes the analysis.

4.3 Multiplicative Estimation Algorithm

We now discuss how to obtain a multiplicative approximation of entropy. The main
modification that we require is a multiplicative estimate of Tsallis entropy.

Our multiplicative algorithm for entropy estimation is similar to Figure 4-1, though
we make certain modifications. We set the number of interpolation points to be
k = ln(8e/ε)/ ln ln(8e/ε) and keep ` the same. The yi are as in Eq. (4.3). We
then argue as in Eq. (4.6) to have |T (0) − hT (0)| ≤ εH/2, where hT is the interpo-
lated polynomial of degree k at the true Tsallis entropies, without error. We then
let T̃ (yi) be a (1 + ε̃)-multiplicative estimation of T (yi) instead of an ε̃-additive es-
timation by using Theorem 87 below, where we set ε̃ = ε/(8e2). We then have
T (yi) ≤ T̃ (yi) ≤ T (yi) + ε̃T (yi) ≤ T (yi) + εH/(2e2). The final inequality follows from
Lemma 79 with k = 0. We then have

|h(0)−H| ≤ |hT (0)−H|+ |h∆(0)| ≤ εH/2 + e2 · (εH/(2e2)) = εH.

Our algorithm for (1± ε)-approximation of Tp requires O(log(mM)/(|p− 1|2ε2))

105

space and O(log(1/(|p − 1|ε)) log log(1/(|p − 1|ε))) update time (Theorem 87), and
we use error parameter ε/(8e2) and error probability 1/(6(k + 1)). All our values for
the yi give |p−1| = Ω(`/k2). Thus, our overall space is O(k6 log k log2(mM)/ε2), and
our update time is O(k log(log(mM)/ε) log log(log(mM)/ε)). This gives the following
theorem, which is the main theorem of this section.

Theorem 83. There is an algorithm for (1 ± ε)-approximation of entropy with er-
ror probability 1/6 using Õ(ε2 log2(mM)) space, and with Õ(log(log(mM)/ε)) update
time.

We now describe our algorithm for multiplicative estimation of Tsallis entropy.
First we must prove a few facts. The next lemma says that if there is no heavy
element in the empirical distribution, then Tsallis entropy is at least a constant.

Lemma 84. Let q1, q2, . . . , qd be values in [0, 1] of total sum 1. There exists a positive
constant C independent of d such that if qi ≤ 5/6 for all i then, for p ∈ (0, 1)∪ (1, 2],

∣∣∣1− d∑
i=1

qpi

∣∣∣ ≥ C · |p− 1|.

Proof. Consider first p ∈ (0, 1). For y ∈ (0, 5/6],

yp−1 ≥
(

5

6

)p−1

≥ 1 + C1 · (1− p),

for some positive constant C1. The last equality follows from convexity of (5/6)z as
a function of z. Hence,

d∑
i=1

qpi ≥
d∑
i=1

(1 + C1(1− p))qi = 1 + C1(1− p),

and furthermore,∣∣∣∣∣1−
d∑
i=1

qpi

∣∣∣∣∣ =

(
d∑
i=1

qpi

)
− 1 ≥ C1 · (1− p) = C1 · |p− 1|

When p ∈ (1, 2], then for y ∈ (0, 5/6],

yp−1 ≤
(

5

6

)p−1

≤ 1− C2 · (p− 1),

for some positive constant C2. This implies that

d∑
i=1

qpi ≤
d∑
i=1

qi(1− C2 · (p− 1)) = 1− C2 · (p− 1),

106

and ∣∣∣∣∣1−
d∑
i=1

qpi

∣∣∣∣∣ = 1−
d∑
i=1

qpi ≥ C2 · (p− 1) = C2 · |p− 1|.

To finish the proof of the lemma, we set C = min{C1, C2}. �

Corollary 85. There exists a constant C such that if the probability of each element
is at most 5/6, then the pth Tsallis entropy is at least C for any p ∈ (0, 1) ∪ (1, 2].

Proof. We have

Tp =
1−

∑d
i=1 q

p

p− 1
=
|1−

∑d
i=1 q

p
i |

|p− 1|
≥ C.

�

We now show how to deal with the case when there is an element of large proba-
bility. It turns out that in this case we can obtain a multiplicative approximation of
Tsallis entropy by combining two residual moments.

Lemma 86. There is a positive constant C such that if there is an element i of
probability qi ≥ 2/3, then the sum of a multiplicative (1 +C · |1−p| · ε)-approximation
to 1 − qi and a multiplicative (1 + C · |1 − p| · ε)-approximation to

∑
j 6=i q

p
j gives a

multiplicative (1 + ε)-approximation to |1−
∑

i q
p
i |, for any p ∈ (0, 1) ∪ (1, 2].

Proof. We first argue that a multiplicative approximation to |1−qpi | can be obtained
from a multiplicative approximation to 1 − qi. Let g(y) = 1 − (1 − y)p. Note that
g(1 − qi) = 1 − qpi . Since 1 − qi ∈ [0, 1/3], we restrict the domain of g to [0, 1/3].
The derivative of g is g′(y) = p(1 − y)p−1. Note that g is strictly increasing for
p ∈ (0, 1)∪ (1, 2]. For p ∈ (0, 1), the derivative is in the range [p, 3p/2]. For p ∈ (1, 2],
it always lies in the range [2p/3, p]. In both cases, a (1 + 2ε/3)-approximation to y
suffices to compute a (1 + ε)-approximation to g(y).

We now consider two cases:

• Assume first that p ∈ (0, 1). For any y ∈ (0, 1/3], we have

yp

x
≥
(

1

3

)p−1

= 31−p ≥ 1 + C1(1− p),

for some positive constant C1. The last inequality follows from the convexity of
the function 31−p. This means that if qi < 1, then∑

j 6=i q
p
j

1− qi
≥
∑

j 6=i qj(1 + C1(1− p))
1− qi

=
(1− qi)(1 + C1(1− p))

1− qi
= 1 + C1(1− p).

Since qi ≤ qpi < 1, we also have∑
j 6=i q

p
j

1− qpi
≥
∑

j 6=i q
p
j

1− qi
≥ 1 + C1(1− p).

107

This implies that if we compute a multiplicative 1+(1−p)ε/D1-approximations
to both 1 − qpi and

∑
j 6=i q

p
j , for sufficiently large constant D1, we compute a

multiplicative (1 + ε)-approximation of (
∑d

j=1 q
p
j)− 1.

• The case of p ∈ (1, 2] is similar. For any y ∈ (0, 1/3], we have

yp

y
≤
(

1

3

)p−1

≤ 1− C2(p− 1),

for some positive constant C2. Hence,∑
j 6=i q

p
j

1− qi
≤
∑

j 6=i qj(1− C2(p− 1))

1− qi
=

(1− qi)(1− C2(p− 1))

1− qi
= 1− C2(p− 1),

and because qpi ≤ qi, ∑
j 6=i q

p
j

1− qpi
≤
∑

j 6=i q
p
j

1− qi
≤ 1− C2(p− 1).

This implies that if we compute a multiplicative 1+(p−1)ε/D2-approximations
to both 1− qpi and

∑
j 6=i q

p
j , for sufficiently large constant D2, we can compute

a multiplicative (1 + ε)-approximation to 1−
∑d

j=1 q
p
j .

�

We these collect those facts in the following theorem.

Theorem 87. There is a streaming algorithm for multiplicative (1+ε)-approximation
of Tsallis entropy for any p ∈ (0, 1)∪ (1, 2] using O (log(mM)/(|p− 1|2ε2)) space and
O(log(1/(|p− 1|ε)) log log(1/(|p− 1|ε))) update time.

Proof. Using the CountMin sketch of [34], we can decide whether there exists an i
with qi ≥ 2/3, or whether no i has qi > 5/6. By first applying universe reduction to
a universe of size O(1) as discussed in Section 3.3.3 (here the gap between 5/6 and
7/8 is just a constant), the space complexity would be O(logmM), and the update
time would be O(1).

If there is no heavy element, then by Lemma 84 there is a constant C ∈ (0, 1) such
that |1−

∑
i q
p
i | ≥ C|p− 1|. We want to compute a multiplicative approximation to

|1−
∑

i q
p
i |. We know that the difference between

∑
i q
p
i and 1 is large. Therefore, if

we compute a multiplicative (1 + 1
2
|p− 1|Cε)-approximation to

∑
i q
p
i , we obtain an

additive (1
2
|p− 1|Cε

∑
i q
p
i)-approximation to

∑
i q
p
i . If

∑
i q
p
i ≤ 2, then

1
2
|p− 1|Cε

∑
i q
p
i

|1−
∑

i q
p
i |

≤ |p− 1|Cε
C|p− 1|

= ε.

If
∑

i q
p
i ≥ 2, then

1
2
|p− 1|Cε

∑
i q
p
i

|1−
∑

i q
p
i |

≤ 1

2
|p− 1|Cε · 2 ≤ ε.

108

In either case, we obtain a multiplicative (1 + ε)-approximation to |1−
∑

i q
p
i |, which

in turn yields a multiplicative approximation to the pth Tsallis entropy. By using the
algorithm in Section 3.3, the space usage would be O(log(mM)/(|p− 1|2ε2)).

In the case that there is a heavy element, we need to estimate F res
p (q) and F res

1 (q)
with multiplicative error 1± ε, which reduces to multiplicatively estimating F res

p , F res
1

with error 1±O(ε). Here we use F res
p to denote the pth moment of x when restricted

to all coordinates except the one with largest weight (break ties arbitrarily). F res
p (q)

is similar, but for the q vector. For this, we use a a slightly altered version of our
algorithm in Section 3.3. We keep all parts of the algorithm the same, but we change
our definition of Ψ′ in HighEnd to be Ψ′ =

∑
w∈L\{i∗}(x

∗
w)p. That is, we do not include

the contribution from the heaviest element, which we label as having index i∗. The
same analysis shows that this gives an estimate of xL\{i∗} with additive error εF res

p .
Thus again our space and time are the same as in the previous case. �

4.4 Lower Bound

By combining ideas of [25] and our technique of embedding geometrically-growing
hard instances in Section 3.4, we can provide an improved lower bound for additively
estimating the entropy of a stream in the strict turnstile model.1

Theorem 88. Any algorithm for ε-additive approximation of H, the entropy of a
stream, in the strict turnstile model with probability at least 11/12 requires space
Ω(ε−2 log(min{d,m})/ log(1/ε)).

Proof. We reduce from Augmented-Indexing, as in Theorem 70. Alice re-
ceives a string of length s = log(min{d,m})/(2ε2 log(1/ε)), and Bob receives an
index z ∈ [s]. Alice conceptually divides her input into b = ε2s blocks, each of size
1/ε2, and reduces each block using the Indexing→Gap-Hamdist reduction of The-
orem 69 to obtain b Gap-Hamdist instances with strings y1, . . . , yb, each of length
` = Θ(1/ε2). For each 1 ≤ i ≤ b, and 1 ≤ j ≤ ` Alice inserts universe elements
(i, j, 1, (yi)j), . . . , (i, j, ε

−2i, (yi)j) into the stream and sends the state of a streaming
algorithm to Bob.

Bob identifies the block i(z) in which z lands and deletes all stream elements asso-
ciated with blocks with index i > i(z). He then does his part in the Indexing→Gap-
Hamdist reduction to obtain a vector y(Bob) of length `. For all 1 ≤ j ≤ `, he
inserts the universe elements (i(z), j, 1, y(Bob)j), . . . , (i(z), j, ε−2i(z), y(Bob)j) into the
stream.

The number of stream tokens from block indices i < i(z) is A = ε−2
∑i(z)−1

i=0 ε−2i =
Θ(ε−2i(z)). The number of tokens in block i(z) from Alice and Bob combined is
2ε−(2i(z)+2). Define B = ε−2i(z) and C = ε−2. The L1 weight of the stream is R =
A + 2BC. Let ∆ denote the Hamming distance between yi(z) and y(Bob) and H
denote the entropy of the stream.

1The previous proof of [25] though has the advantage of even holding in the weakest insertion-only
model, i.e. no negative frequency updates, but with a weaker lower bound.

109

We have:

H =
A

R
log(R) +

2B(C −∆)

R
log

(
R

2

)
+

2B∆

R
log(R)

=
A

R
log(R) +

2BC

R
log(R)− 2BC

R
+

2B∆

R

Rearranging terms gives

∆ =
HR

2B
+ C − C log(R)− A

2B
log(R) (4.9)

To decide the Gap-Hamdist instance, we must decide whether ∆ < 1/2ε2 − 1/ε
or ∆ > 1/2ε2 + 1/ε. By Eq. (4.9) and the fact that Bob knows A, B, C, and R, it
suffices to obtain a 1/ε-additive approximation to HR/(2B) to accomplish this goal.
In other words, we need a 2B/(εR)-additive approximation to H. Since B/R = Θ(ε2),
it suffices to obtain an additive Θ(ε)-approximation to H. Let A be a streaming
algorithm which can provide an additive Θ(ε)-approximation with probability at least
11/12. Recalling that correctly deciding the Gap-Hamdist instance with probability
11/12 allows one to correctly decide the original Augmented-Indexing instance
with probability 2/3 by Theorem 69, and given Theorem 68, A must use at least
log(min{d,m})/(ε2 log(1/ε)) bits of space. As required, the length of the vector being
updated in the stream is at most

∑s
i=1 ε

−2i = O(min{d,m}) = O(d), and the length
of the stream is exactly twice the vector length, and thus O(min{d,m}) = O(m). �

110

Chapter 5

Johnson-Lindenstrauss Transforms

In this chapter we provide some results on the Johnson-Lindenstrauss transform.
In Section 5.1 we exhibit two distributions over sparse matrices that both yield JL
distributions. Each distribution is over linear mappings that embed into optimal
target dimension O(ε−2 log(1/δ)) to achieve distortion 1± ε with success probability
1− δ, and such that every matrix in the support of the distribution only has an O(ε)-
fraction of its entries non-zero (in fact, every column has at most an O(ε)-fraction of
its entries non-zero).

In Section 5.4 we provide a JL distribution which can be sampled from using few
random bits. More precisely, a matrix can be sampled from the distribution using
O(log d+ log(1/ε) log(1/δ) + log(1/δ) log log(1/δ)) uniform random bits.

Since all our JL families contain embeddings which are are linear, without loss of
generality we henceforth assume that the vector to be embedded, x, has ‖x‖2 = 1.

Bibliographic remarks: Section 5.1 based on joint work with Kane [76], which
used some ideas from a previous work of ours [75] analyzing a scheme of Dasgupta,
Kumar, and Sarlós [35]. Section 5.4 is based on joint work with Kane and Meka [74].

5.1 Sparse JL transforms

We first provide an overview of our approach. For a JL distribution over linear map-
pings, we let s denote the column sparsity of that distribution, i.e. the maximum
number of non-zero entries in any column in any matrix in the support of the dis-
tribution. Our constructions are depicted in Figure 5-1. Figure 5-1(a) represents
the “DKS construction” of [35] in which each item is hashed to s random target co-
ordinates with replacement. Our two schemes achieving s = Θ(ε−1 log(1/δ)) are as
follows. Construction (b) is much like (a) except that we hash coordinates s times
without replacement. In (c), the target vector is divided up into s contiguous blocks
each of equal size k/s, and a given coordinate in the original vector is hashed to a
random location in each block (essentially this is the CountSketch of [29], though we
use higher independence in our hash functions). In all cases (a), (b), and (c), we
randomly flip the sign of a coordinate in the original vector and divide by

√
s before

111

(a) (b)

k/s

(c)

Figure 5-1: Three constructions to project a vector in Rd down to Rk. Figure (a)
is the DKS construction in [35], and the two constructions we give in this work are
represented in (b) and (c). The out-degree in each case is s, the sparsity.

adding it in any location in the target vector.
We give two different analyses for both our constructions (b) and (c). Look at

the random variable Z = ‖Sx‖2
2 − ‖x‖2

2, where S is a random matrix in the JL
family. Our proofs all use Markov’s bound on the `th moment Z` to give Pr[|Z| >
ε‖x‖2

2] < ε−` · E[Z`] for ` = log(1/δ) an even integer. The task is then to bound
E[Z`]. In our first approach, we observe that Z is a quadratic form in the random
signs, and thus its moments can be bounded via the Hanson-Wright inequality [62].
This analysis turns out to reveal that the hashing to coordinates in the target vector
need not be done randomly, but can in fact be specified by any sufficiently good code.
Specifically, in (b) it suffices for the columns of the embedding matrix (ignoring the
random signs and division by

√
s) to be codewords in a constant-weight binary code

of weight s and minimum distance s−O(s2/k). In (c), if for each i ∈ [d] we let Ci be
a length-s vector with entries in [k/s] specifying where coordinate i is mapped to in
each block, it suffices for {Ci}di=1 to be a code of minimum distance s − O(s2/k). It
is fairly easy to see that if one wants a deterministic hash function, it is necessary for
the columns of the embedding matrix to be specified by a code: if two coordinates
have small Hamming distance in their vectors of hash locations, it means they collide
often. Since collision is the source of error, an adversary in this case could ask to
embed a vector which has its mass equally spread on the two coordinates whose hash
locations have small Hamming distance, causing large error with large probability
over the choice of random signs. What our analysis shows is that not only is a good
code necessary, but it is also sufficient.

In our second analysis approach, we expand Z` to obtain a polynomial with
roughly d2` terms. We view its monomials as being in correspondence with graphs,
group monomials whose graphs are isomorphic, then do some combinatorics to make
the expectation calculation feasible. In this approach, we assume that the random
signs as well as the hashing to coordinates in the target vector are done 2 log(1/δ)-
wise independently. This graph-based approach played a large role in the analysis in
[75], and was later also used in [18]. We point out here that Figure 5-1(c) is some-

112

what simpler to implement than Figure 5-1(b), since there are simple constructions
of 2 log(1/δ)-wise hash families [24]. Figure 5-1(b) on the other hand requires hashing
without replacement, which amounts to using random permutations. We thus deran-
domize Figure 5-1(b) using almost 2 log(1/δ)-wise independent permutation families
[80].

Our analyses in the case that the hash functions are specified by codes require
the following moment bound due to Hanson and Wright [62]. We also include a proof

in Section 5.3. Recall that the Frobenius norm ‖B‖F of a matrix B is
√∑

i,j B
2
i,j,

and its operator norm ‖B‖2 (when B is real and symmetric) is the magnitude of B’s
largest eigenvalue.

Theorem 89 (Hanson-Wright inequality). There is a universal constant C > 0 such
that for z = (z1, . . . , zn) a vector of i.i.d. Bernoulli ±1 random variables, B ∈ Rn×n

symmetric, and integer ` ≥ 2,

E
[∣∣zTBz − trace(B)

∣∣`] ≤ C` ·max
{√

` · ‖B‖F , ` · ‖B‖2

}`
.

In Section 5.1.1, as a warmup we show how to use the Hanson-Wright inequality
to show that the distribution over dense sign matrices (appropriately scaled) is a JL
distribution. Then, in Section 5.1.2, we show how to use the Hanson-Wright inequality
to analyze our schemes Figure 5-1(b) and Figure 5-1(c). In Section 5.1.3, we provide
alternative analyses to our schemes in which the hash functions are pseudorandom,
and not fixed by any specific code. In Section 5.1.4 we show that our analyses are
tight and that column sparsity Ω(ε−1 log(1/δ)) is required, even if the hash functions
used are completely random.

5.1.1 A Warmup Proof of the JL Lemma

Note that for y = Sx,

‖y‖2
2 = ‖Sx‖2

2 =
k∑
r=1

∑
i,j

xixjSr,iSr,j.

That is, for any fixed x, ‖y‖2
2 is a quadratic form in the random variables Sr,j. In the

case that the entries of S are (scaled) Bernoulli random variables, we show how to
use Theorem 89 to show that any distribution over such matrices with 2 log(1/δ)-wise
independent entries satisfies the JL lemma. This was initially shown by Achlioptas
[2], and can also be derived from [9].

Theorem 90. For d > 0 an integer and any 0 < ε, δ < 1/2, let S be a k× d random
matrix with ±1/

√
k entries that are r-wise independent for k = Ω(ε−2 log(1/δ)) and

r = Ω(log(1/δ)). Then for any x ∈ Rd with ‖x‖2 = 1,

PrS[|‖Sx‖2
2 − 1| > ε] < δ.

113

Proof. We have

‖Sx‖2
2 =

1

k
·

k∑
i=1

 ∑
(s,t)∈[d]×[d]

xsxtσi,sσi,t

 , (5.1)

where σ is a kd-dimensional vector formed by concatenating the rows of
√
k · S.

Define the matrix T ∈ Rkd×kd to be the block-diagonal matrix where each block
equals xxT/k. Then, ‖Sx‖2

2 = σTTσ. Furthermore, trace(T) = ‖x‖2
2 = 1. Thus, we

would like to argue that σTTσ is concentrated about trace(T), for which we can use
Theorem 89. Specifically, if ` ≥ 2 is even,

Pr[|‖Sx‖2
2 − 1| > ε] = Pr[|σTTσ − trace(T)| > ε] < ε−` · E[(σTTσ − trace(T))`]

by Markov’s inequality. To apply Theorem 89, we also ensure 2` ≤ r so that the `th
moment of σTTσ − trace(T) is determined by r-wise independence of the σ entries.
We also must bound ‖T‖F and ‖T‖2. Direct computation gives ‖T‖2

F = (1/k) ·
‖x‖4

2 = 1/k. Also, x is the only eigenvector of xxT/k with non-zero eigenvalue, and
furthermore its eigenvalue is ‖x‖2

2/k = 1/k, and thus ‖T‖2 = 1/k. Therefore,

Pr[|‖Sx‖2
2 − 1| > ε] < C` ·max

{
ε−1

√
`

k
, ε−1 `

k

}`

, (5.2)

which is at most δ for ` = log(1/δ) and k ≥ 4 · C2 · ε−2 log(1/δ). �

Remark 91. The conclusion of Theorem 89 holds even if the zi are not necessarily
Bernoulli but rather have mean 0, variance 1, and subGaussian tails. Thus, the
above proof of Theorem 90 carries over unchanged to show that S could instead have
Ω(log(1/δ))-wise independent such zi as entries. We also direct the reader to an older
proof of this fact by Matousek [89], without discussion of independence requirements
(though independence requirements can most likely be calculated from his proof, by
converting the tail bounds he uses into moment bounds via integration).

5.1.2 Code-Based Sparse JL Constructions

In this section, we provide analyses of our constructions (b) and (c) in Figure 5-1
when the hash locations are determined by some fixed error-correcting code. We give
the full argument for (c) below, then discuss in Remark 97 how essentially the same
argument can be applied to analyze (b).

Define k = C ·ε−2 log(1/δ) for a sufficiently large constant C. Let s be some integer
dividing k satisfying s ≥ 2ε−1 log(1/δ). Let C = {C1, . . . , Cd} be any (s, logk/s d, s−
O(s2/k))k/s code. We specify our JL family by describing the embedded vector y.
Define hash functions σ : [d] × [s] → {−1, 1} and h : [d] × [s] → [k/s]. The former
is drawn at random from a 2 log(1/δ)-wise independent family, and the latter has
h(i, j) being the jth entry of the ith codeword in C. We conceptually view y ∈ Rk as
being in Rs×(k/s). Our embedded vector then has yr,j =

∑
h(i,r)=j σ(i, r)xi/

√
s. This

describes our JL family, which is indexed by σ. Note the column sparsity is s.

114

Remark 92. It is important to know whether an (s, logk/s d, s − O(s2/k))k/s code
exists. By picking h at random from an O(log(d/δ))-wise independent family and
setting s ≥ Ω(ε−1

√
log(d/δ) log(1/δ)), it is not too hard to show via the Chernoff

bound (or more accurately, Markov’s bound applied with the O(log(d/δ))th moment
bound implied by integrating the Chernoff bound) followed by a union bound over
all pairs of

(
d
2

)
vectors that h defines a good code with probability 1 − δ. We do

not perform this analysis here since Section 5.1.3 obtains better parameters. We also
point out that we may assume without loss of generality that d = O(ε−2/δ). This
is because there exists an embedding into this dimension with sparsity 1 using only
4-wise independence with distortion (1 + ε) and success probability 1 − δ [29, 118].
It is worth noting that in the construction in this section, potentially h could be
deterministic given an explicit code with our desired parameters.

Analysis of Figure 5-1(c) code-based construction: We first note

‖y‖2
2 = ‖x‖2

2 +
1

s

∑
i 6=j

s∑
r=1

ηi,j,rxixjσ(i, r)σ(j, r),

where ηi,j,r is 1 if h(i, r) = h(j, r), and ηi,j,r = 0 otherwise. We thus would like that

Z =
1

s

∑
i 6=j

s∑
r=1

ηi,j,rxixjσ(i, r)σ(j, r) (5.3)

is concentrated about 0. Note Z is a quadratic form in σ which can be written as
σTTσ for an sd×sd block-diagonal matrix T . There are s blocks, each d×d, where in
the rth block Tr we have (Tr)i,j = xixjηi,j,r/s for i 6= j and (Tr)i,i = 0 for all i. Now,
Pr[|Z| > ε] = Pr[|σTTσ| > ε]. To bound this probability, we use the Hanson-Wright
inequality combined with a Markov bound. Specifically, we prove our construction
satisfies the JL lemma by applying Theorem 89 with z = σ,B = T .

Lemma 93. ‖T‖2
F = O(1/k).

Proof. We have that ‖T‖2
F is equal to

1

s2
·
∑
i 6=j

x2
ix

2
j ·

(
s∑
r=1

ηi,j,r

)
=

1

s2
·
∑
i 6=j

x2
ix

2
j · (s−∆(Ci, Cj)) ≤ O(1/k) · ‖x‖4

2 = O(1/k).

�

Lemma 94. ‖T‖2 ≤ 1/s.

Proof. Since T is block-diagonal, its eigenvalues are the eigenvalues of each block.
For a block Tr, write Tr = (1/s) · (Sr−D). D is diagonal with Di,i = x2

i , and (Sr)i,j =
xixjηi,j,r, including when i = j. Since Sr and D are both positive semidefinite, we
have ‖T‖2 ≤ (1/s) ·max{‖Sr‖2, ‖D‖2}. We have ‖D‖2 = ‖x‖2

∞ ≤ 1. For Sr, define ut

115

for t ∈ [k/s] by (ut)i = xi if h(i, r) = t, and (ut)i = 0 otherwise. Then u1, . . . , uk/s are
eigenvectors of Sr each with eigenvalue ‖ut‖2

2, and furthermore they span the image
of Sr. Thus ‖Sr‖2 = maxt ‖ut‖2

2 ≤ ‖x‖2
2 = 1. �

Theorem 95. Prσ[|‖y‖2
2 − 1| > ε] < δ.

Proof. By a Markov bound applied to Z` for ` an even integer,

Prσ[|Z| > ε] < ε−` · Eσ[Z`].

Since Z = σTTσ and trace(T) = 0, applying Theorem 89 with B = T , z = σ, and
` ≤ log(1/δ) gives

Prσ[|Z| > ε] < C` ·max

{
O(ε−1) ·

√
`

k
, ε−1 `

s

}`

. (5.4)

since the `th moment is determined by 2 log(1/δ)-wise independence of σ. We con-
clude the proof by noting that the expression in Eq. (5.4) is at most δ for ` = log(1/δ)
and our choices for s, k. �

Remark 96. Only using that C has sufficiently high minimum distance, it is impos-
sible to improve our analysis further. For example, for any (s, logk/s d, s−O(s2/k))k/s
code C, create a new code C ′ which simply replaces the first letter of each codeword
with “1”; C ′ then still has roughly the same minimum distance. However, in our con-
struction this corresponds to all indices colliding in the first chunk of k/s coordinates,
which creates an error term of (1/s) ·

∑
i 6=j xixjσ(i, r)σ(j, r). Now, suppose x consists

of t = (1/2) · log(1/δ) entries each with value 1/
√
t. Then, with probability

√
δ � δ,

all these entries receive the same sign under σ and contribute a total error of Ω(t/s)
in the first chunk alone. We thus need t/s = O(ε), which implies s = Ω(ε−1 log(1/δ)).

Remark 97. It is also possible to use a code to specify the hash locations in Figure 5-
1(b). In particular, let the jth entry of the ith column of the embedding matrix be
the jth symbol of the ith codeword (which we call h(i, j)) in a weight-s binary code of
minimum distance s−O(s2/k) for s ≥ 2ε−1 log(1/δ). Define ηi,j,r for i, j ∈ [d], r ∈ [s]
as an indicator variable for h(i, r) = h(j, r) = 1. Then, the error is again exactly as
in Eq. (5.3). The Frobenius norm proof is identical, and the operator norm proof is
nearly identical except that we have k blocks in our block-diagonal matrix instead
of s. Also, as in Remark 96, such a code can be shown to exist via the probabilistic
method (the Chernoff bound can be applied using negative dependence, followed by
a union bound) as long as s = Ω(ε−1

√
log(d/δ) log(1/δ)). We omit the details since

Section 5.1.3 obtains better parameters.

5.1.3 Random Hashing Sparse JL Constructions

In this section, we show that if the hash functions h described in Section 5.1.2 and Re-
mark 97 are not specified by fixed codes, but rather are chosen at random from some

116

family of sufficiently high independence, then one can achieve sparsity O(ε−1 log(1/δ))
(in the case of Figure 5-1(b), we actually need almost k-wise independent permuta-
tions). Recall our bottleneck in reducing the sparsity in Section 5.1.2 was actually
obtaining the codes, discussed in Remark 92 and Remark 97.

Block Construction

Here we analyze the construction of Figure 5-1(c), except rather than let C be an
arbitrary code, we let the underlying hash function h : [d]× [s]→ [k/s] be randomly
selected from a 2 log(1/δ)-wise independent family. Note that one can sample a
random matrix from this family using a O(log(1/δ) log d)-length seed.

We perform our analysis by bounding the `th moment of Z from first principles
for ` = log(1/δ) an even integer (for this particular scheme, it seems the Hanson-
Wright inequality does not simplify any details of the proof). We then use Markov’s
inequality to give Prh,σ[|Z| > ε] < ε−` · Eh,σ[Z`].

Let Zr =
∑

i 6=j ηi,j,rxixjσ(i, r)σ(j, r) so that Z = (1/s) ·
∑s

r=1 Zr. We first bound
the tth moment of each Zr for 1 ≤ t ≤ `. As in the Frobenius norm moment bound of
[75], and also used later in [18], the main idea is to observe that monomials appearing
in the expansion of Zt

r can be thought of in correspondence with graphs. Notice

Zt
r =

∑
i1 6=j1,...,it 6=jt

t∏
u=1

ηiu,ju,rxiuxjuσ(iu, r)σ(ju, r) (5.5)

Each monomial corresponds to a directed multigraph with labeled edges whose ver-
tices correspond to the distinct iu and ju. An xiuxju term corresponds to a directed
edge with label u from the vertex corresponding to iu to the vertex corresponding to
ju. The main idea to bound Eh,σ[Zt

r] is then to group monomials whose corresponding
graphs are isomorphic, then do some combinatorics.

Lemma 98. For t ≤ log(1/δ), Eh,σ[Zt
r] ≤ 2O(t) ·

{
s/k t < log(k/s)

(t/ log(k/s))t otherwise
.

Proof. Let Gt be the set of isomorphism classes of directed multigraphs with t labeled
edges with distinct labels in [t], where each edge has positive and even degree (the
sum of in- and out-degrees), and the number of vertices is between 2 and t. Let G ′t be
similar, but with labeled vertices and connected components as well, where vertices
have distinct labels between 1 and the number of vertices, and components have
distinct labels between 1 and the number of components. Let f map the monomials
appearing in Eq. (5.5) to the corresponding graph isomorphism class. By 2t-wise
independence of σ, any monomial in Eq. (5.5) whose corresponding graph does not
have all even degrees has expectation 0. For a graph G, we let v denote the number
of vertices, and m the number of connected components. Let du denote the degree of
a vertex u. Then,

Eh,σ[Zt
r] =

∑
i1 6=j1,...,it 6=jt

(
t∏

u=1

xiuxju

)
· E

[
t∏

u=1

σ(iu, r)σ(ju, r)

]
· E

[
t∏

u=1

ηiu,ju,r

]

117

=
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
· E

[
t∏

u=1

ηiu,ju,r

]

=
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f((iu,ju)tu=1)=G

(s
k

)v−m
·

(
t∏

u=1

xiuxju

)
(5.6)

≤
∑
G∈Gt

(s
k

)v−m
· v! · 1(

t
d1/2,...,dv/2

) (5.7)

=
∑
G∈G′t

(s
k

)v−m
· 1

m!
· 1(

t
d1/2,...,dv/2

) . (5.8)

We now justify these inequalities. The justification of Eq. (5.6) is similar to that in the
Frobenius norm bound in [75]. That is,

∏t
u=1 ηiu,ju,r is determined by h(iu, r), h(ju, r)

for each u ∈ [t], and hence its expectation is determined by 2t-wise independence
of h. This product is 1 if iu and ju hash to the same element for each u and is
0 otherwise. Every iu, ju pair hashes to the same element if and only if for each
connected component of G, all elements of {i1, . . . , it, j1, . . . , jt} corresponding to
vertices in that component hash to the same value. We can choose one element
of [k/s] for each component to be hashed to, thus giving (k/s)m possibilities. The
probability of any particular hashing is (k/s)−v, and this gives that the expectation
of the product is (s/k)v−m.

For Eq. (5.7), note that (‖x‖2
2)t = 1, and the coefficient of

∏v
u=1 x

du
au in its ex-

pansion for
∑

u du = t is
(

t
d1/2,...,dv/2

)
. Meanwhile, the coefficient of this monomial

when summing over all i1 6= j1, . . . , it 6= jt for a particular G ∈ G` is at most v!. For
Eq. (5.8), we move from isomorphism classes in Gt to those in G ′t. For any G ∈ Gt,
there are v! ·m! ways to label vertices and connected components.

We now bound the sum of the 1/
(

t
d1/2,...,dv/2

)
term. Fix v1, . . . , vm, t1, . . . , tm

(where there are vi vertices and ti edges in the ith component Ci), and the assignment
of vertex and edge labels to connected components. We upper bound Eq. (5.8) by
considering building G edge by edge, starting with 0 edges. Let the initial graph be
G0, and we form G = Gt by adding edges in increasing label order. We then want
to bound the sum of 1/

(
t

d1/2,...,dv/2

)
over G ∈ G ′` which satisfy the quantities we have

fixed. Note 1/
(

t
d1/2,...,dv/2

)
equals 2O(t) · t−t ·

∏v
u=1 ·

(√
du

du
)

. Initially, when t = 0,

our sum is S0 = 1. When considering all ways to add the next edge to Gu to form
Gu+1, an edge i → j contributes Su ·

√
didj/t to Su+1. Since we fixed assignments

of edge labels to connected components, this edge must come from some particular
component Cw. Summing over vertices i 6= j in Cw and applying Cauchy-Schwarz,

∑
i 6=j∈Cw

√
didj/t ≤

1

t
·

(∑
i∈Cw

√
di

)2

≤ (viti)/t,

Since there are
(

v
v1,...,vm

)(
t

t1,...,tm

)
ways to assign edge and vertex labels to components,

118

Eq. (5.8) gives

Eh,σ[Zt
r] ≤ 2O(t) ·

t∑
v=2

v/2∑
m=1

∑
v1,...,vm

∑
t1,...,tm

(s
k

)v−m
· 1

mm
·
(

v

v1, . . . , vm

)
×
(

t

t1, . . . , tm

)
· (
∏m

i=1(viti)
ti)

tt
(5.9)

≤ 2O(t) ·
t∑

v=2

v/2∑
m=1

(s
k

)v−m
·
(
vv

mm

)
· vt−v (5.10)

≤ 2O(t) ·
t∑

v=2

v/2∑
m=1

(s
k

)v−m
· (v −m)t (5.11)

≤ 2O(t) ·
t∑

v=2

v/2∑
q=1

(s
k

)q
· qt.

Eq. (5.10) holds since there are at most 2v+t ways to choose the vi, ti and ti ≥ vi.
Eq. (5.11) follows since v ≥ 2m and thus v = O(v −m).Setting q = v −m and under
the constraint q ≥ 1, (s/k)q · qt is maximized when q = max{1,Θ(t/ log(k/s))}. The
lemma follows. �

Theorem 99. Our construction in this section gives a JL family with sparsity s =
O(ε−1 · log(1/δ)).

Proof. We have

Eh,σ[Z`] =
1

s`
·
∑

r1<...<rq
`1,...,`q
∀i `i>1∑
i `i=`

(
`

`1, . . . , `q

)
·

q∑
i=1

Eh,σ[Z`i
ri

]

≤ 1

s`
· 2O(`) ·

`/2∑
q=1

(
s

q

)
· ``∏q

i=1 `
`i
i

·
(s
k

)q
·

q∏
i=1

⌈
`i

log(k/s)

⌉`i
(5.12)

≤ 1

s`
· 2O(`) ·

`/2∑
q=1

(
s

q

)
· `` ·

(s
k

)q
≤ 1

s`
· 2O(`) ·

`/2∑
q=1

`` ·
(
s2

qk

)q
Eq. (5.12) follows since there are

(
s
q

)
ways to choose the ri, and there are at

most 2`−1 ways to choose the `i. Furthermore, even for the `i > log(k/s), we have
2O(`i) · (`i/ log(k/s))`i = 2O(`i) · (s/k)2 · (`i/ log(k/s))`i , so that the (s/k)q term is
valid. Taking derivatives shows that the above is maximized for q = s2/(ek) < `/2,
which gives a summand of 2O(`) · ``. Thus, we have that the above moment is at

119

most (ε/2)` when k = C ′`/ε2 for sufficiently large C ′. The claim then follows since
Prh,σ[|Z| > ε] < ε−` · Eh,σ[Z`] by Markov’s inequality, and we set ` = log(1/δ). �

Graph Construction

In this section, we analyze the construction in Figure 5-1(b) when the hashing is done
randomly. Our analysis for this construction is quite similar to that of Figure 5-1(c).

The distribution over matrices S is such that each column of S has exactly s =
Θ(ε−1 log(1/δ)) of its entries, chosen at random, each randomly set to ±1/

√
s. All

other entries in S are 0. That is, we pick a random bipartite graph with d vertices
in the left vertex set and k in the right, where every vertex on the left has degree s.
The matrix S is the incidence matrix of this graph, divided by

√
s and with random

sign flips.
We realize the distribution over S via two hash functions h : [d] × [k] → {0, 1}

and σ : [d] × [s] → {−1, 1}. The function σ is drawn from from a 2 log(1/δ)-wise
independent family. The function h has the property that for any i, exactly s distinct
r ∈ [k] have h(i, r) = 1; in particular, we pick d seeds log(1/δ)-wise independently to
determine hi for i = 1, . . . , d, and where each hi is drawn from a γ-almost 2 log(1/δ)-
wise independent family of permutations on [d] for γ = (εs/(d2k))Θ(log(1/δ)). The
seed length required for any one such permutation is O(log(1/δ) log d + log(1/γ)) =
O(log(1/δ) log d) [80], and thus we can pick d such seeds 2 log(1/δ)-wise independently
using total seed length O(log2(1/δ) log d). We then let h(i, r) = 1 iff some j ∈ [s] has
hi(j) = r.

If y = Sx, then we have

‖y‖2
2 = ‖x‖2

2 +
1

s
·

∑
i 6=j∈[d],r∈[s]

xixjσ(i, r)σ(j, r)h(i, r)h(j, r),

Define

Z =
1

s
·
∑
r

∑
i 6=j

xixjσ(i, r)σ(j, r)h(i, r)h(j, r) =
1

s
·
∑
r

Zr.

We would like to show that Prh,σ[|Z| > ε] < δ, which we show by via the Markov
bound Prh,σ[|Z| > ε] < ε−` · Eh,σ[Z`] for some sufficiently large even integer `. We
furthermore note Eh,σ[Z`] < Eσ[Y `] where

Y =
1

s
·
∑
r

∑
i 6=j

xixjσ(i, r)σ(j, r)δi,rδj,r =
1

s
·
∑
r

Yr,

where the δi,r are independent 0/1 random variables each with mean s/k. This is
because, when expanding Z` into monomials, the expectation over h (after taking the
expectation over σ) only term-by-term increases by replacing the random variables
h(i, r) with δi,r. We analyze moments of the Yr to then obtain an upper bound on
the Eσ[Y `] for ` = log(1/δ), which in turns provides an upper bound on Eh,σ[Z`].

We carry out our analysis assuming h is perfectly random, then describe in Re-

120

mark 102 how to relax this assumption by using γ-almost 2 log(1/δ)-wise permutations
as discussed above.

Lemma 100. For t > 1 an integer, Eσ[Y t
r] ≤ 2O(t) ·

{
(s/k)2 t < log(k/s)

(t/ log(k/s))t otherwise
.

Proof. We have

Eσ[Y t
r] =

∑
i1 6=j1,...,it 6=jt

(
t∏

u=1

xiuxju

)
·E

[
t∏

u=1

σ(iu, r)σ(ju, r)

]
·E

[
t∏

u=1

δiu,rδju,r

]
. (5.13)

Define Gt as the set of isomorphism classes of directed multigraphs with t edges
having distinct labels in [t] and no self-loops, with between 2 and t vertices (inclusive),
and where every vertex has an even and positive sum of in- and out-degrees. Let f
map variable sequences to their corresponding graph isomorphism class. For a graph
G, let v be its number of vertices, and let du be the sum of in- and out-degrees of
vertex u. Then,

Eσ[Y t
r] =

∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f((iu,ju,))tu=1=G

(∏
u

xiuxuu

)
· E

[∏
u

ηiu,ju,ru,r′u

]

≤ 2O(t) ·
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f((iu,ju))tu=1=G

(∏
u

xiuxju

)
·
(s
k

)v

≤ 2O(t) ·
∑
G∈Gt

(s
k

)v
· v! · 1(

t
d1/2,...,dv/2

)
≤ 2O(t) ·

∑
G∈G′t

(s
k

)v
· 1(

t
d1/2,...,dv/2

)
≤ 2O(t) ·

∑
v

(s
k

)v
· 1

tt
·

(∑
G

v∏
u=1

√
du

du

)
, (5.14)

where G ′t is the set of all isomorphism classes of directed multigraphs as in Gt, but
in which vertices are labeled as well, with distinct labels in [v]. The summation over
G in Eq. (5.14) is over the G ∈ G ′t with v vertices. We bound this summation. We
start with a graph with zero edges with vertices labeled 1, . . . , v then consider how
our summation increases as we build the graph edge by edge. Initially set S0 = 1. We
will think each Si as a sum of several terms, where each term corresponds to some
graph obtained by a sequence of i edge additions, so that the summation in Eq. (5.14)
is bounded by St. When we add the (i+ 1)st edge, we have

Si+1/Si ≤

(∑
u6=w

√
du ·

√
dw

)
≤

(
v∑

u=1

√
du

)2

≤ 2tv,

121

with the last inequality following by Cauchy-Schwarz. It thus follows that the sum-
mation in Eq. (5.14) is at most (2tv)t, implying

Eσ[Y t
r] ≤ 2O(t) ·

∑
v

(s
k

)v
· vt.

The above is maximized for v = max {2, t/ ln(k/s)} (recall v ≥ 2), giving our lemma.
�

Theorem 101. Prh,σ[|Z| > ε] < δ.

Proof. We have

Eσ[Y `] =
1

s`
·
∑

r1<...<rq
`1,...,`q
∀i `i>1∑
i `i=`

(
`

`1, . . . , `q

)
·

q∑
i=1

Eσ[Y `i
ri

]

≤ 1

s`
· 2O(`) ·

`/2∑
q=1

(
k

q

)
· `` ·

(s
k

)2q

(5.15)

≤ 1

s`
· 2O(`) ·

`/2∑
q=1

`` ·
(
s2

qk

)q
The above expression is then identical to that in the proof of Theorem 99, and

thus it is at most (ε/2)`. We then set set ` = log(1/δ) an even integer so that, by
Markov’s inequality,

Prh,σ[|Z| > ε] < ε−` · Eh,σ[Z`] ≤ ε−` · Eσ[Y `] < 2−` = δ.

�

Remark 102. As mentioned in Section 5.1.3, we can specify h via d hash functions hi
chosen log(1/δ)-wise independently where each hi is drawn at random from a γ-almost
2 log(1/δ)-wise independent family of permutations, and where the seeds used to gen-
erate the hi are drawn log(1/δ)-wise independently. Here, γ = (εs/(d2k))Θ(log(1/δ)). In
general, a γ-almost `-wise independent family of permutations from [d] onto itself is a
family of permutations F where the image of any fixed ` elements in [d] has statistical
distance at most γ when choosing a random f ∈ F when compared with choosing a
uniformly random permutation f . Now, there are (kd2)` monomials in the expansion
of Z`. In each such monomial, the coefficient of the E[

∏
u h(iu, ru)h(ju, ru)] term is at

most s−`. In the end, we want Eh,σ[Z`] < O(ε)` to apply Markov’s inequality. Thus,
we want (kd2/s)` · γ < O(ε)`.

Remark 103. It is worth noting that if one wants distortion 1± εi with probability
1−δi simultaneously for all i in some set S, our proofs of Theorem 99 and Theorem 101
reveal that it suffices to set s = C ·supi∈S ε

−1
i log(1/δi) and k = C ·supi∈S ε

−2
i log(1/δi)

in both our constructions Figure 5-1(b) and Figure 5-1(c).

122

5.1.4 Tightness of Analyses

In this section we show that sparsity Ω(ε−1 log(1/δ)) is required in Figure 5-1(b) and
Figure 5-1(c), even if the hash functions used are completely random. We also show
that sparsity Ω̃(ε−1 log2(1/δ)) is required in the DKS construction (Figure 5-1(a)),
nearly matching the upper bounds of [18, 75]. Interestingly, all three of our proofs
of (near-)tightness of analyses for these three constructions use the same hard input
vectors. In particular, if s = o(1/ε), then we show that a vector with t = b1/(sε)c
entries each of value 1/

√
t incurs large distortion with large probability. If s = Ω(1/ε)

but is still not sufficiently large, we show that the vector (1/
√

2, 1/
√

2, 0, . . . , 0) incurs
large distortion with large probability (in fact, for the DKS scheme in Figure 5-1(a)
one can even take the vector (1, 0, . . . , 0)).

Near-tightness for DKS Construction

The main theorem of this section is the following.

Theorem 104. The DKS construction requires sparsity Ω(ε−1·
⌈
log2(1/δ)/ log2(1/ε)

⌉
)

to achieve distortion 1± ε with success probability 1− δ.

Before proving Theorem 104, we recall the DKS construction (Figure 5-1(a)).
First, we replicate each coordinate s times while preserving the `2 norm. That is,
we produce the vector x̃ = (x1, . . . , x1, x2, . . . , x2, . . . , xd, . . . , xd)/

√
s, where each

xi is replicated s times. Then, pick a random k × ds embedding matrix A for
k = Cε−2 log(1/δ) where each column has exactly one non-zero entry, in a loca-
tion defined by some random function h : [ds] → [k], and where this non-zero entry
is ±1, determined by some random function σ : [ds] → {−1, 1}. The value C > 0 is
some fixed constant. The final embedding is A applied to x̃. We are now ready to
prove Theorem 104. The proof is similar to that of Theorem 107.

Our proof will use the following standard fact.

Fact 105 ([94, Proposition B.3]). For all t, n ∈ R with n ≥ 1 and |t| ≤ n,

et(1− t2/n) ≤ (1 + t/n)n ≤ et.

Proof (of Theorem 104). First suppose s ≤ 1/(2ε). Consider a vector with t =
b1/(sε)c non-zero coordinates each of value 1/

√
t. If there is exactly one pair {i, j}

that collides under h, and furthermore the signs agree under σ, the `2 norm squared
of our embedded vector will be (st− 2)/(st) + 4/(st). Since 1/(st) ≥ ε, this quantity
is at least 1+2ε. The event of exactly one pair {i, j} colliding occurs with probability(

st

2

)
· 1

k
·
st−2∏
i=0

(1− i/k) ≥ Ω

(
1

log(1/δ)

)
· (1− ε/2)1/ε

= Ω(1/ log(1/δ)),

123

which is much larger than δ/2 for δ smaller than some constant. Now, given a collision,
the colliding items have the same sign with probability 1/2.

We next consider the case 1/(2ε) < s ≤ 4/ε. Consider the vector x = (1, 0, . . . , 0).
If there are exactly three pairs {i1, j1}, . . . , {i3, j3} that collide under h in three distinct
target coordinates, and furthermore the signs agree under σ, the `2 norm squared of
our embedded vector will be (s−6)/(s) + 12/(s) > 1 + 3ε/2. The event of three pairs
colliding occurs with probability(

s

2

)(
s− 2

2

)(
s− 4

2

)
· 1

3!
· 1

k3
·
s−4∏
i=0

(1− i/k) ≥ Ω

(
1

log3(1/δ)

)
· (1− ε/8)4/ε

= Ω(1/ log3(1/δ)),

which is much larger than δ/2 for δ smaller than some constant. Now, given a collision,
the colliding items have the same sign with probability 1/8.

We lastly consider the case 4/ε < s ≤ 2cε−1 log2(1/δ)/ log2(1/ε) for some constant
c > 0 (depending on C) to be determined later. First note this case only exists when
δ = O(ε). Define x = (1, 0, . . . , 0). Suppose there exists an integer q so that

1. q2/s ≥ 4ε

2. q/s < ε

3. (s/(qk))q(1− 1/k)s > δ1/3.

First we show it is possible to satisfy the above conditions simultaneously for our
range of s. We set q = 2

√
εs, satisfying item 1 trivially, and item 2 since s > 4/ε.

For item 3, Fact 105 gives

(s/(qk))q · (1− 1/k)s ≥
(
s

qk

)q
· e−s/k ·

(
1− s

k2

)
.

The e−s/k · (1− (s/k2)) term is at least δ1/6 by the settings of s, k, and the (s/(qk))q

term is also at least δ1/6 for c sufficiently small.
Now, consider the event E that exactly q of the s copies of x1 are hashed to 1 by

h, and to +1 by σ. If E occurs, then coordinate 1 in the target vector contributes
q2/s ≥ 4ε to `2

2 in the target vector by item 1 above, whereas these coordinates
only contribute q/s < ε to ‖x‖2

2 by item 2 above, thus causing error at least 3ε.
Furthermore, the s − q coordinates which do not hash to 1 are being hashed to a
vector of length k− 1 = ω(1/ε2) with random signs, and thus these coordinates have
their `2

2 contribution preserved up to 1±o(ε) with constant probability by Chebyshev’s

124

inequality. It thus just remains to show that Pr[E]� δ. We have

Pr[E] =

(
s

q

)
· k−q ·

(
1− 1

k

)s−q
· 1/2q

≥
(
s

qk

)q
·
(

1− 1

k

)s
· 1

2q

> δ1/3 · 1

2q
.

The 2−q term is ω(δ1/3) and thus overall Pr[E] = ω(δ2/3)� δ. �

We will next show tightness of analysis for our constructions in Figure 5-1(b) and
Figure 5-1(c). The arguments given there apply with very minor modification to
the DKS construction as well, and thus Ω(ε−1 log(1/δ)) is also a lower bound on the
sparsity of the DKS construction.

Tightness of Figure 5-1(b) analysis

Theorem 106. For δ smaller than a constant depending on C for k = Cε−2 log(1/δ),
the scheme of Section 5.1.3 requires s = Ω(ε−1 log(1/δ)) to obtain distortion 1 ± ε
with probability 1− δ.

Proof. First suppose s ≤ 1/(2ε). We consider a vector with t = b1/(sε)c non-zero
coordinates each of value 1/

√
t. If there is exactly one set i, j, r with i 6= j such

that Sr,i, Sr,j are both non-zero for the embedding matrix S (i.e., there is exactly
one collision), then the total error is 2/(ts) ≥ 2ε. It just remains to show that this
happens with probability larger than δ. The probability of this occurring is

s2 ·
(
t

2

)
· 1

k
· k − s
k − 1

· · · k − 2s+ 2

k − s+ 1
·
(

(k − 2s+ 1)!

(k − ts+ 1)!

)
·
(

(k − s)!
k!

)t−2

≥ s2t2

2k
·
(
k − st
k

)st
≥ s2t2

2k
·
(

1− s2t2

k

)
= Ω(1/ log(1/δ)).

Now consider the case 1/(2ε) < s < c · ε−1 log(1/δ) for some small constant c.
Consider the vector (1/

√
2, 1/
√

2, 0, . . . , 0). Suppose there are exactly 2sε collisions,
i.e. 2sε distinct values of r such that Sr,i, Sj,r are both non-zero (to avoid tedium we
disregard floors and ceilings and just assume sε is an integer). Also, suppose that
in each colliding row r we have σ(1, r) = σ(2, r). Then, the total error would be
2ε. It just remains to show that this happens with probability larger than δ. The
probability of signs agreeing in exactly 2εs chunks is 2−2εs > 2−2c log(1/δ), which is

125

larger than
√
δ for c < 1/4. The probability of exactly 2εs collisions is(

s

2εs

)
·

(
2εs−1∏
i=0

s− i
k − i

)
·

(
s−2εs−1∏
i=0

k − i− s
k − i− 2εs

)

≥
(

1

2ε

)2εs

·
(

(1− 2ε)s

k

)2εs

·
(

1− s

k − s

)s−2εs

(5.16)

≥
(s

4εk

)2εs

·
(

1− 2s

k

)s
. (5.17)

It suffices for the right hand side to be at least
√
δ since h is independent of σ,

and thus the total probability of error larger than 2ε would be greater than
√
δ

2
= δ.

Taking natural logarithms, it suffices to have

2εs ln

(
4εk

s

)
− s ln

(
1− 2s

k

)
≤ ln(1/δ)/2.

Writing s = q/ε and a = 4C log(1/δ), the left hand side is 2q ln(a/q) + Θ(s2/k).
Taking a derivative shows 2q ln(a/q) is monotonically increasing for q < a/e. Thus
as long as q < ca for a sufficiently small constant c, 2q ln(a/q) < ln(1/δ)/4. Also, the
Θ(s2/k) term is at most ln(1/δ)/4 for c sufficiently small. �

Tightness of Figure 5-1(c) analysis

Theorem 107. For δ smaller than a constant depending on C for k = Cε−2 log(1/δ),
the scheme of Section 5.1.3 requires s = Ω(ε−1 log(1/δ)) to obtain distortion 1 ± ε
with probability 1− δ.

Proof. First suppose s ≤ 1/(2ε). Consider a vector with t = b1/(sε)c non-zero
coordinates each of value 1/

√
t. If there is exactly one set i, j, r with i 6= j such that

h(i, r) = h(j, r) (i.e. exactly one collision), then the total error is 2/(ts) ≥ 2ε. It just
remains to show that this happens with probability larger than δ.

The probability of exactly one collision is

s

[
t! ·
(
k/s
t

)
(k/s)t

]s−1(
t

2

)(
k

s

)[
(t− 2)!

(
k/s−1
t−2

)
(k/s)t

]

≥ s

(
1− st

k

)t(s−1)(
t

2

)(s
k

)(
1− st

k

)t−2

(5.18)

=
s2t(t− 1)

2k
·
(

1− st

k

)st−2

≥ s2t(t− 1)

2k
·
(

1− s2t2

k

)
= Ω(1/ log(1/δ)),

126

which is larger than δ for δ smaller than a universal constant.
Now consider 1/(2ε) < s < c ·ε−1 log(1/δ) for some small constant c. Consider the

vector x = (1/
√

2, 1/
√

2, 0, . . . , 0). Suppose there are exactly 2sε collisions, i.e. 2sε
distinct values of r such that h(1, r) = h(2, r) (to avoid tedium we disregard floors
and ceilings and just assume sε is an integer). Also, suppose that in each colliding
chunk r we have σ(1, r) = σ(2, r). Then, the total error would be 2ε. It just remains
to show that this happens with probability larger than δ. The probability of signs
agreeing in exactly 2εs chunks is 2−2εs > 2−2c log(1/δ), which is larger than

√
δ for

c < 1/4. The probability of exactly 2εs collisions is(
s

2εs

)(s
k

)2εs (
1− s

k

)(1−2ε)s

≥
(s

2εk

)2εs (
1− s

k

)(1−2ε)s

The above is at most
√
δ, by the analysis following Eq. (5.17). Since h is indepen-

dent of σ, the total probability of having error larger than 2ε is greater than
√
δ

2
= δ.

�

5.2 Numerical Linear Algebra Applications

The works of [30, 113] gave algorithms to solve various approximate numerical linear
algebra problems given small memory and a only one or few passes over an input
matrix. They considered models where one only sees a row or column at a time of
some matrix A ∈ Rd×n. Another update model considered was the turnstile streaming
model. In this model, the matrix A starts off as 0. One then sees a sequence of m
updates (i1, j1, v1), . . . , (im, jm, vm), where each update (i, j, v) triggers the change
Ai,j ← Ai,j +v. The goal in all these models is to compute some functions of A at the
end of seeing all rows, columns, or turnstile updates. The algorithm should use little
memory (much less than what is required to store A explicitly). Both works [30, 113]
solved problems such as approximate linear regression and best rank-r approximation
by reducing to the problem of sketches for approximate matrix products. Before
delving further, first we give a definition.

Definition 108. Distribution D over Rk×d has (ε, δ)-JL moments if for ` = log(1/δ)
and ∀x ∈ Sd−1,

ES∼D

[∣∣‖Sx‖2
2 − 1

∣∣`] ≤ (ε/2)`.

Now, the following theorem is a generalization of [30, Theorem 2.1]. The theorem
states that any distribution with JL moments also provides a sketch for approximate
matrix products. A similar statement was made in [113, Lemma 6], but that statement
was slightly weaker in its parameters because it resorted to a union bound, which we
avoid by using Minkowski’s inequality.

Theorem 109. Given 0 < ε, δ < 1/2, let D be any distribution over matrices with d
columns with the (ε, δ)-JL moment property. Then for A,B any real matrices with d

127

rows and ‖A‖F = ‖B‖F = 1,

PrS∼D
[
‖ATSTSB − ATB‖F > 3ε/2

]
< δ.

Proof. Let x, y ∈ Rd each have `2 norm 1. Then

〈Sx, Sy〉 =
‖Sx‖2

2 + ‖Sy‖2
2 − ‖S(x− y)‖2

2

2

so that

E
[
|〈Sx, Sy〉 − 〈x, y〉|`

]
=

1

2`
·
(
E
[∣∣(‖Sx‖2

2 − 1) + (‖Sy‖2
2 − 1)− (‖S(x− y)‖2

2 − ‖x− y‖2
2)
∣∣`])

≤ 3`

2`
·max

{
E
[∣∣‖Sx‖2

2 − 1
∣∣`] ,E [∣∣‖Sy‖2

2 − 1
∣∣`] ,E [∣∣‖S(x− y)‖2

2 − ‖x− y‖2
2

∣∣`]}
≤
(

3ε

4

)`
with the middle inequality following by Minkowski’s inequality. Now, if A has n
columns and B has m columns, label the columns of A as x1, . . . , xn ∈ Rd and the
columns of B as y1, . . . , ym ∈ Rd. Define the random variable Xi,j = 1/(‖xi‖2‖yj‖2) ·
(〈Sxi, Syj〉 − 〈xi, yj〉). Then ‖ATSTSB − ATB‖2

F =
∑

i 6=j ‖xi‖2
2 · ‖yj‖2

2 · X2
i,j. Then

again by Minkowski’s inequality,

E
[(
‖ATSSB − ATB‖2

F

)`/2]
= E

∣∣∣∣∣∑
i 6=j

‖xi‖2
2 · ‖yj‖2

2 ·X2
i,j

∣∣∣∣∣
`/2


≤

(∑
i 6=j

‖xi‖2
2 · ‖yj‖2

2 · E[|Xi,j|`]2/`
)`/2

≤

(∑
i 6=j

‖xi‖2
2 · ‖yj‖2

2 · (3ε/4)2

)`/2

≤ (3ε/4)` · (‖A‖2
F · ‖B‖2

F)`/2

= (3ε/4)`.

For ` = log(1/δ),

Pr
[
‖ATSSB − ATB‖F > 3ε

/
2] < (2ε/3)−` · E

[
‖ATSSB − ATB‖`F

]
≤ δ.

�

Remark 110. Often when one constructs a JL distribution D over k × d matrices,

128

it is shown that

∀x ∈ Sd−1 ∀ε > 1/
√
k PrS∼D

[∣∣‖Sx‖2
2 − 1

∣∣ > ε
]
< e−Θ(ε2k)

Any such distribution automatically satisfies the (ε, e−Θ(ε2k))-JL moment property for
any ε > 1/

√
k by converting the tail bound into a moment bound via integration by

parts.

Now we arrive at the main point of this section. Several algorithms for approxi-
mate linear regression and best rank-r approximation in [30] simply maintain SA as
A is updated, where S comes from the JL distribution with Ω(log(1/δ))-wise indepen-
dent ±1/

√
k entries. In fact though, their analyses of their algorithms only use the

fact that this distribution satisfies the approximate matrix product sketch guarantees
of Theorem 109. Due to Theorem 109 though, we know that any distribution sat-
isfying the (ε, δ)-JL moment condition gives an approximate matrix product sketch.
Thus, random Bernoulli matrices may be replaced with our sparse JL distributions
in this work. We now state some of the algorithmic results given in [30] and describe
how our constructions provide improvements in the update time (the time to process
new columns, rows, or turnstile updates).

As in [30], when stating our results we will ignore the space and time complexities
of storing and evaluating the hash functions in our JL distributions. We discuss this
issue later in Remark 113.

5.2.1 Linear regression

In this problem we have a A ∈ Rd×n and b ∈ Rd. We would like to compute a vector
x̃ such that ‖Ax̃−b‖F ≤ (1+ε) ·minx∗ ‖Ax∗−b‖F with probability 1−δ. In [30], it is
assumed that the entries of A, b require O(log(nd)) bits of precision to store precisely.
Both A, b receive turnstile updates.

Theorem 3.2 of [30] proves that such an x̃ can be computed with probability 1− δ
from SA and Sb, where S is drawn from a distribution that simultaneously satisfies
both the (1/2, η−rδ) and (

√
ε/r, δ)-JL moment properties for some fixed constant

η > 1, and where rank(A) ≤ r ≤ n. Thus due to Remark 103, we have the following.

Theorem 111. There is a one-pass streaming algorithm for linear regression in the
turnstile model where one maintains a sketch of size O(n2ε−1 log(1/δ) log(nd)). Pro-
cessing each update requires O(n +

√
n/ε · log(1/δ)) arithmetic operations and hash

function evaluations.

Theorem 111 improves upon the update complexity of O(nε−1 log(1/δ)) in [30].

5.2.2 Low rank approximation

In this problem, we have an A ∈ Rd×n of rank ρ with entries that require precision
O(log(nd)) to store. We would like to compute the best rank-r approximation Ar

to A. We define ∆r
def
= ‖A − Ar‖F as the error of Ar. We relax the problem by

129

only requiring that we compute a matrix A′r such that ‖A− A′r‖F ≤ (1 + ε)∆r with
probability 1− δ over the randomness of the algorithm.

Two-pass algorithm: Theorem 4.4 of [30] gives a 2-pass algorithm where in the
first pass, one maintains SA where S is drawn from a distribution that simultaneously
satisfies both the (1/2, η−rδ) and (

√
ε/r, δ)-JL moment properties. It is also assumed

that ρ ≥ 2r + 1. The first pass is thus sped up again as in Theorem 111.

One-pass algorithm for column/row-wise updates: Theorem 4.5 of [30] gives
a one-pass algorithm in the case that A is seen either one whole column or row
at a time. The algorithm maintains both SA and SAAT where S is drawn from
a distribution that simultaneously satisfies both the (1/2, η−rδ) and (

√
ε/r, δ)-JL

moment properties. This implies the following.

Theorem 112. There is a one-pass streaming algorithm for approximate low rank
approximation with row/column-wise updates where one maintains a sketch of size
O(rε−1(n+d) log(1/δ) log(nd)). Processing each update requires O(r+

√
r/ε·log(1/δ))

amortized arithmetic operations and hash function evaluations per entry of A.

This improves the amortized update complexity of O(rε−1 log(1/δ)) in [30].

Three-pass algorithm for row-wise updates: Theorem 4.6 of [30] gives a three-
pass algorithm using less space in the case that A is seen one row at a time. Again,
the first pass simply maintains SA where S is drawn from a distribution that satisfies
both the (1/2, η−rδ) and (

√
ε/r, δ)-JL moment properties. This pass is sped up using

our sparser JL distribution.

One-pass algorithm in the turnstile model, bi-criteria: Theorem 4.7 of [30]
gives a one-pass algorithm under turnstile updates where SA and RAT are maintained
in the stream. S is drawn from a distribution satisfying both the (1/2, η−r log(1/δ)/εδ)
and (ε/

√
r log(1/δ), δ)-JL moment properties. R is drawn from a distribution satis-

fying both the (1/2, η−rδ) and (
√
ε/r, δ)-JL moment properties. Theorem 4.7 of [30]

then shows how to compute a matrix of rank O(rε−1 log(1/δ)) which achieves the
desired error guarantee given SA and RAT .

One-pass algorithm in the turnstile model: Theorem 4.9 of [30] gives a one-
pass algorithm under turnstile updates where SA and RAT are maintained in the
stream. S is drawn from a distribution satisfying both the (1/2, η−r log(1/δ)/ε2δ) and
(ε
√
ε/(r log(1/δ)), δ)-JL moment properties. R is drawn from a distribution satisfying

both the (1/2, η−rδ) and (
√
ε/r, δ)-JL moment properties. Theorem 4.9 of [30] then

shows how to compute a matrix of rank r which achieves the desired error guarantee
given SA and RAT .

Remark 113. In the algorithms above, we counted the number of hash function
evaluations that must be performed. We use our construction in Figure 5-1(c), which

130

uses 2 log(1/δ)-wise independent hash functions. Standard constructions of t-wise
independent hash functions over universes with elements fitting in a machine word
require O(t) time to evaluate [24]. In our case, this would blow up our update time by
factors such as n or r, which could be large. Instead, we use fast multipoint evaluation
of polynomials. The standard construction [24] of our desired hash functions mapping
some domain [z] onto itself for z a power of 2 takes a degree-(t − 1) polynomial p
with random coefficients in Fz. The hash function evaluation at some point y is then
the evaluation p(y) over Fz. Theorem 55 states that p can be evaluated at t points
in total time Õ(t). We note that in the theorems above, we are always required
to evaluate some t-wise independent hash function on many more than t points per
stream update. Thus, we can group these evaluation points into groups of size t then
perform fast multipoint evaluation for each group. We borrow this idea from [77],
which used it to give a fast algorithm for moment estimation in data streams.

5.3 A proof of the Hanson-Wright inequality

In this section we provide a proof of the Hanson-Wright inequality. First, we reminder
the reader of its statement.
Theorem 89 (restatement). There is a universal constant C > 0 such that for z =
(z1, . . . , zn) a vector of i.i.d. Bernoulli ±1 random variables, B ∈ Rn×n symmetric,
and integer ` ≥ 2,

E
[∣∣zTBz − trace(B)

∣∣`] ≤ C` ·max
{√

` · ‖B‖F , ` · ‖B‖2

}`
.

First, we need the following lemma.

Lemma 114. If X, Y are independent with E[Y] = 0 and if ` ≥ 2, then E[|X|`] ≤
E[|X − Y |`].

Proof. Consider the function f(y) = |X − y|`. Since f (2) is nonnegative on R, the
claim follows by Taylor’s theorem since |X − Y |` ≥ |X|` − `Y (sgn(X) ·X)`−1. �

Proof (of Theorem 89). Without loss of generality we can assume tr(B) = 0. This
is because if one considers B′ = B − (tr(B)/n) · I, then zTBz − tr(B) = zTB′z,
and we have ‖B′‖F ≤ ‖B‖F and ‖B′‖2 ≤ 2‖B‖2. We now start by proving our
theorem for ` a power of 2 by induction on `. For ` = 2, E[(zTBz)2] = 4

∑
i<j B

2
i,j

and ‖B‖2
F =

∑
iB

2
i,i + 2

∑
i<j B

2
i,j. Thus E[(zTBz)2] ≤ 2‖B‖2

F . Next we assume the
statement of our Theorem for `/2 and attempt to prove it for `.

We note that by Lemma 114,

E[|zTBz|`] ≤ E[|zTBz − yTBy|`] = E[|(z + y)TB(z − y)|`],

where y ∈ {−1, 1}n is random and independent of z. Notice that if we swap zi with yi
then z+y remains constant as does |zj−yj| and that zi−yi is replaced by its negation.
Consider averaging over all such swaps. Let ξi = ((z + y)TB)i and ηi = zi − yi. Let

131

νi be 1 if we did not swap and −1 if we did. Then (z + y)TB(z − y) =
∑

i ξiηiνi.
Averaging over all swaps,

Ez[|(z + y)TB(z − y)|`] ≤

(∑
i

ξ2
i η

2
i

)`/2

· ``/2 ≤ 2```/2 ·

(∑
i

ξ2
i

)`/2

.

The first inequality is by Lemma 45, and the second uses that |ηi| ≤ 2. Note that∑
i

ξ2
i = ‖B(z + y)‖2

2 ≤ 2‖Bz‖2
2 + 2‖By‖2

2,

and hence

E[|zTBz|`] ≤ 2`
√
`
`
E[(2‖Bz‖2

2 + 2‖By‖2
2)`/2] ≤ 4`

√
`
`
E[(‖Bz‖2

2)`/2],

with the final inequality using Minkowski’s inequality (namely that |E[|X+Y |p]|1/p ≤
|E[|X|p]|1/p + |E[|Y |p]|1/p for any random variables X, Y and any 1 ≤ p <∞).

Next note ‖Bz‖2
2 = 〈Bz,Bz〉 = zTB2z. Let A = B2 − tr(B2)

n
I. Then tr(A) = 0.

Also, ‖A‖F ≤ ‖B‖F‖B‖2 and ‖A‖2 ≤ ‖B‖2
2. The former holds since

‖A‖2
F =

(∑
i

λ4
i

)
−

(∑
i

λ2
i

)2/
n ≤

∑
i

λ4
i ≤ ‖B‖2

F‖B‖2
2,

where B has eigenvalues λ1, . . . , λn. The latter holds since the eigenvalues of A are
λ2
i − (

∑n
j=1 λ

2
j)/n for each i ∈ [n]. The largest eigenvalue of A is thus at most that of

B2, and since λ2
i ≥ 0, the smallest eigenvalue of A cannot be smaller than −‖B‖2

2.
We then have

E[(‖Bz‖2
2)`/2] = E

[∣∣‖B‖2
F + zTAz

∣∣`/2] ≤ 2` max
{
‖B‖`F ,E[|zTAz|`/2]

}
.

Hence employing the inductive hypothesis on A we have that

E[|zTBz|`] ≤ 8` max
{√

`‖B‖F , C`/2`3/4‖A‖F , C`/2`
√
‖A‖2

}`
≤ 8`C`/2 max

{√
`‖B‖F , `3/4

√
‖B‖F‖B‖2, `‖B‖2

}`
= 8`C`/2 max

{√
`‖B‖F , `‖B‖2

}`
,

with the final equality holding since the middle term above is the geometric mean
of the other two, and thus is dominated by at least one of them. This proves our
hypothesis as long as C ≥ 64.

To prove our statement for general `, set `′ = 2dlog2 `e. Then by the power mean
inequality and our results for `′ a power of 2,

E[|zTBz|`] ≤ (E[|zTBz|`′])`/`′ ≤ 128` max
{√

`‖B‖F , `‖B‖2

}`
.

132

�

5.4 Derandomizing the JL lemma

The main theorem of this section is the following.

Theorem 115. For any 0 < ε, δ < 1/2 and integer d > 0, there exists a JL dis-
tribution with optimal target dimension k = O(ε−2 log(1/δ)) such that a random
matrix can be sampled from this distribution using O(log d + log(1/ε) log(1/δ) +
log(1/δ) log log(1/δ)) uniform random bits. Given x ∈ Rd and the random seed spec-
ifying a matrix, we can compute the embedding of x in dO(1) time.

The main idea in our proof of Theorem 115 is to gradually reduce the dimen-
sion. In particular, note that in Eq. (5.2) in the proof of Theorem 90, we could
embed into the optimal target dimension k = O(ε−2 log(1/δ)) and set ` = log(1/δ)
to obtain a JL-distribution, but then we would need the entries of the sign matrix
to be 2` = 2 log(1/δ)-wise independent. The seed length required would then be
O(log(1/δ) log d). On the other hand, we could instead embed into suboptimal di-
mension k = O(ε−2δ−1) then set ` = 2, requiring only 4-wise independent entries and
thus seed length only O(log d).

We exploit the above tradeoff between target dimension and independence re-
quired by gradually reducing the dimension. In particular, consider values ε′, δ′ > 0
which we will pick later. Define tj = δ′−1/2j . We embed Rd into Rk1 for k1 =
ε′−2t1. We then embed Rkj−1 into Rkj for kj = ε′−2tj until the point j = j∗ =
O(log(1/δ′)/ log log(1/δ′)) where tj∗ = O(log3(1/δ′)). We then embed Rkj∗ into Rk

for k = O(ε′−2 log(1/δ′)).
The embeddings into each kj are performed by picking a Bernoulli matrix with rj-

wise independent entries, as in Theorem 90. To achieve error probability δ′ of having
distortion larger than (1 + ε′) in the jth step, Eq. (5.2) in the proof of Theorem 90
tells us we need rj = O(logtj(1/δ

′)). Thus, in the first embedding into Rk1 we need

O(log d) random bits. Then in the future embeddings except the last, we need O(2j ·
(log(1/ε′)+2−j log(1/δ′))) random bits to embed into Rkj . In the final embedding we
require O(log(1/δ′) · (log(1/ε′) + log log(1/δ′)) random bits. Thus, in total, we have
used O(log d+log(1/ε′) log(1/δ′)+log(1/δ′) log log(1/δ′)) bits of seed to achieve error
probability O(δ′ ·j∗) of distortion (1+ε′)j

∗
. Theorem 115 thus follows by applying this

argument with error probability δ′ = δ/(j∗+1) and distortion parameter ε′ = Θ(ε/j∗).

Remark 116. One may worry that along the way we are embedding into potentially
very large dimension (e.g. 1/δ may be 2Ω(d)), so that our overall running time could
be exponentially large. However, we can simply start the above iterative embedding
at the level j where ε−2tj < d.

133

Chapter 6

Conclusion

In this thesis we presented several efficient solutions for estimating the number of
distinct elements, the Hamming norm, moments, and entropy for a vector being
updated in a turnstile data stream. We also presented a more time-efficient algorithm
for performing dimensionality reduction in `2 in a data stream, by designing a family
of sparse embedding matrices. Several natural questions remain open from the work
described here.

The distinct elements algorithm in Chapter 2 requires multiplication to achieve
constant update time. For example, the final algorithm in Figure 2-2 performs least
significant bit computations, which uses multiplication to achieve a constant time
algorithm in the word RAM [20].

OPEN: Is there an algorithm for simultaneously achieving O(ε−2 +log d) space and
O(1) update and reporting times for F0-estimation which only uses AC0 operations?

In the work [72], Jayram and Woodruff showed that F0-estimation with success
probability 1− δ requires Ω(ε−2 log 1/δ+ log d) space. Näıvely using our algorithm to
achieve such success probability would give space O((ε−2 + log d) log(1/δ)), although
some slight improvement to this upper bound is known to be possible [72].

OPEN: Is there an algorithm for F0 estimation with success probability 1−δ using
space O(ε−2 log(1/δ) + log d)?

Our algorithm for `0 estimation requires space O(ε−2 log d(log 1/ε+ log logmM)),
whereas the best known lower bound is Ω(ε−2 log d+ log logmM).

OPEN: Is there an algorithm for `0 estimation using spaceO(ε−2 log d+log logmM)?

Regarding Fp estimation for 0 < p < 2, we now understand the space requirements,
however there is still room for improvement in the update and reporting times. It
is known that optimal space and O(1) update/reporting times are simultaneously
achievable for the case p = 2 [29, 118].

134

OPEN: Is there an algorithm for Fp estimation for all 0 < p < 2 which simultane-
ously achieves optimal space and O(1) update and reporting times?

In our reduction from entropy estimation to moment estimation, although we were
able to achieve near-optimal dependence on ε in the space, our dependence on logmM
is suboptimal. Furthermore, the polylogarithmic factors in our bound are large.

OPEN: Is there an algorithm for empirical entropy estimation usingO(ε−2 logmM+
log log d) space in the turnstile model?

Regarding the Johnson-Lindenstrauss transform, perhaps the most tantalizing
open question is whether we can embed sparse vectors in (near)-linear time.

OPEN: Devise a JL-distribution over Rk×d for optimal k such that for any matrix S
in the support of the distribution and x ∈ Rd, we can compute Sx in time Õ(‖x‖0+k).

Two perhaps easier open problems are the following.

OPEN: Determine the best column sparsity achievable in a JL distribution.

OPEN: Devise a JL-distribution over Rk×d for optimal k such that for any matrix
S in the support of the distribution and x ∈ Rd, we can compute Sx in time Õ(d).

Also, we saw in Section 5.4 that it is possible to devise a JL-distribution over
k × d matrices for k = O(ε−2 log(1/δ)) such that a matrix can be drawn from the
distribution using only O(log d + log(1/ε) log(1/δ) + log(1/δ) log log(1/δ)) uniform
random bits. As we saw in Section 1.5.2, a JL-distribution exists which can be
sampled from using O(log(d/δ)) random bits.

OPEN: Give an explicit JL-distribution which can be sampled from using s =
O(log(d/δ)) random bits. Two interesting degrees of explicitness to consider are
as follows: (1) given a seed representing some matrix S and given some x ∈ Rd,
there should be a deterministic algorithm to compute Sx in dO(1) time, and the more
stringent (2) given a seed and (i, j) ∈ [k] × [d], one should be able to compute the
(i, j) entry of the embedding matrix specified by s in sO(1) time.

135

Bibliography

[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. The Aqua approximate query answering system. In SIGMOD Con-
ference, pages 574–576, 1999.

[2] Dimitris Achlioptas. Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[3] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
Johnson-Lindenstrauss transform. In Proceedings of the 38th ACM Symposium
on Theory of Computing (STOC), pages 557–563, 2006.

[4] Nir Ailon and Edo Liberty. Fast dimension reduction using Rademacher series
on dual BCH codes. Discrete Comput. Geom., 42(4):615–630, 2009.

[5] Nir Ailon and Edo Liberty. Almost optimal unrestricted fast Johnson-
Lindenstrauss transform. In Proceedings of the 22nd Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 185–191, 2011.

[6] Aditya Akella, Ashwin Bharambe, Mike Reiter, and Srinivasan Seshan. Detect-
ing DDoS attacks on ISP networks. In ACM SIGMOD/PODS Workshop on
Management and Processing of Data Streams (MPDS), 2003.

[7] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking
join and self-join sizes in limited storage. J. Comput. Syst. Sci., 64(3):719–747,
2002.

[8] Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Ap-
proximating the Frequency Moments. J. Comput. Syst. Sci. (see also STOC
1996), 58(1):137–147, 1999.

[9] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Ro-
bust concepts and random projection. Machine Learning, 63(2):161–182, 2006.

[10] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. The
sketching complexity of pattern matching. In 8th International Workshop on
Randomization and Computation (RANDOM), pages 261–272, 2004.

136

[11] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information
statistics approach to data stream and communication complexity. In Pro-
ceedings of the 43rd Symposium on Foundations of Computer Science (FOCS),
pages 209–218, 2002.

[12] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In Randomization and Approxima-
tion Techniques, 6th International Workshop (RANDOM), pages 1–10, 2002.

[13] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming al-
gorithms, with an application to counting triangles in graphs. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 623–632, 2002.

[14] Bonnie Berger. The fourth moment method. SIAM J. Comput., 26(4):1188–
1207, 1997.

[15] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. On synopses for distinct-value estimation under multiset operations.
In SIGMOD Conference, pages 199–210, 2007.

[16] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data
streams. In Proceedings of the 14th Annual European Symposium on Algorithms
(ESA), pages 148–159, 2006.

[17] Daniel K. Blandford and Guy E. Blelloch. Compact dictionaries for variable-
length keys and data with applications. ACM Transactions on Algorithms, 4(2),
2008.

[18] Vladimir Braverman, Rafail Ostrovsky, and Yuval Rabani. Rademacher chaos,
random Eulerian graphs and the sparse Johnson-Lindenstrauss transform.
CoRR, abs/1011.2590, 2010.

[19] Andrei Z. Broder. On the resemblence and containment of documents. In
Compression and Complexity of Sequences, 1997.

[20] Andrej Brodnik. Computation of the least significant set bit. In Proceedings of
the 2nd Electrotechnical and Computer Science Conference (ERK), 1993.

[21] Joshua Brody and Amit Chakrabarti. A multi-round communication lower
bound for gap hamming and some consequences. In Proceedings of the 23rd
Annual IEEE Conference on Computational Complexity (CCC), pages 358–368,
2009.

[22] Paul Brown, Peter J. Haas, Jussi Myllymaki, Hamid Pirahesh, Berthold Rein-
wald, and Yannis Sismanis. Toward automated large-scale information integra-
tion and discovery. In Data Management in a Connected World, pages 161–180,
2005.

137

[23] CAIDA analysis of Code Red, 2001. http://www.caida.org/analysis/security/code-
red/.

[24] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.
J. Comput. Syst. Sci., 18(2):143–154, 1979.

[25] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal
algorithm for estimating the entropy of a stream. ACM Transactions on Algo-
rithms, 6(3), 2010.

[26] Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating Entropy
and Entropy Norm on Data Streams. In Proceedings of the 23rd Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), pages 196–205,
2006.

[27] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower
bounds on the multi-party communication complexity of set disjointness. In
Proceedings of the 18th Annual IEEE Conference on Computational Complex-
ity (CCC), pages 107–117, 2003.

[28] John M. Chambers, Colin L. Mallows, and B. W. Stuck. A method for simu-
lating stable random variables. J. Amer. Statist. Assoc., 71:340–344, 1976.

[29] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent
items in data streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[30] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the
streaming model. In Proceedings of the 41st ACM Symposium on Theory of
Computing (STOC), pages 205–214, 2009.

[31] Edith Cohen. Size-estimation framework with applications to transitive closure
and reachability. J. Comput. Syst. Sci., 55(3):441–453, 1997.

[32] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Compar-
ing data streams using Hamming norms (how to zero in). IEEE Trans. Knowl.
Data Eng., 15(3):529–540, 2003.

[33] Graham Cormode, Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Fast
mining of massive tabular data via approximate distance computations. In
ICDE, pages 605–, 2002.

[34] Graham Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[35] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-
Lindenstrauss transform. In Proceedings of the 42nd ACM Symposium on The-
ory of Computing (STOC), pages 341–350, 2010.

138

[36] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[37] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav
Shkapenyuk. Mining database structure; or, how to build a data quality
browser. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, pages 240–251, 2002.

[38] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence
fools degree-2 threshold functions. In Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 11–20, 2010.

[39] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for
the Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[40] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative
dependence. Random Struct. Algorithms, 13(2):99–124, 1998.

[41] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinali-
ties (extended abstract). In 11th Annual European Symposium on Algorithms
(ESA), pages 605–617, 2003.

[42] Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimension-
ality reduction with applications. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 705–712, 2002.

[43] Funda Ergün, Hossein Jowhari, and Mert Saglam. Periodicity in streams. In
14th International Workshop on Randomization and Computation (RANDOM),
pages 545–559, 2010.

[44] Cristian Estan, George Varghese, and Michael E. Fisk. Bitmap algorithms for
counting active flows on high-speed links. IEEE/ACM Trans. Netw., 14(5):925–
937, 2006.

[45] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh
Viswanathan. An approximate L1-difference algorithm for massive data
streams. SIAM J. Comput. (see also FOCS 1999), 32(1):131–151, 2002.

[46] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff.
Coresets and sketches for high dimensional subspace problems. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 630–649, 2010.

[47] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. Physical database
design for relational databases. ACM Trans. Database Syst., 13(1):91–128, 1988.

[48] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyper-
loglog: The analysis of a near-optimal cardinality estimation algorithm. Discrete
Mathematics and Theoretical Computer Science (DMTCS), AH:127–146, 2007.

139

[49] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for
data base applications. J. Comput. Syst. Sci. (see also FOCS 1983), 31(2):182–
209, 1985.

[50] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma and the
sphericity of some graphs. J. Comb. Theory. Ser. B, 44(3):355–362, 1988.

[51] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with O(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[52] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic
bound with fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.

[53] Sumit Ganguly. Estimating frequency moments of data streams using random
linear combinations. In Proceedings of the 8th International Workshop on Ran-
domization and Computation (RANDOM), pages 369–380, 2004.

[54] Sumit Ganguly. Counting distinct items over update streams. Theor. Comput.
Sci., 378(3):211–222, 2007.

[55] Sumit Ganguly and Graham Cormode. On estimating frequency moments of
data streams. In Proceedings of the 11th International Workshop on Random-
ization and Computation (RANDOM), pages 479–493, 2007.

[56] Sumit Ganguly, Abhayendra N. Singh, and Satyam Shankar. Finding frequent
items over general update streams. In Proceedings of the 20th International
Conference on Scientific and Statistical Database Management (SSDBM), pages
204–221, 2008.

[57] Phillip B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In VLDB, pages 541–550, 2001.

[58] Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on
the union of data streams. In Proceedings of the 13th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 281–291, 2001.

[59] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrish-
nan, and Martin Strauss. Fast, small-space algorithms for approximate his-
togram maintenance. In Proceedings on 34th Annual ACM Symposium on The-
ory of Computing (STOC), pages 389–398, 2002.

[60] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Stream-
ing and sublinear approximation of entropy and information distances. In Pro-
ceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 733–742, 2006.

[61] Uffe Haagerup. The best constants in the Khintchine inequality. Studia Math.,
70(3):231–283, 1982.

140

[62] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities
for quadratic forms in independent random variables. Ann. Math. Statist.,
42(3):1079–1083, 1971.

[63] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and
streaming entropy via approximation theory. In Proceedings of the 49th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pages
489–498, 2008.

[64] Aicke Hinrichs and Jan Vyb́ıral. Johnson-Lindenstrauss lemma for circulant
matrices. arXiv, abs/1001.4919, 2010.

[65] Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings.
In Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 10–33, 2001.

[66] Piotr Indyk. Algorithms for dynamic geometric problems over data streams.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 373–380, 2004.

[67] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and
data stream computation. J. ACM, 53(3):307–323, 2006.

[68] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards re-
moving the curse of dimensionality. In Proceedings of the 30th ACM Symposium
on Theory of Computing (STOC), pages 604–613, 1998.

[69] Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct ele-
ments problem. In Proceedings of the 44th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 283–, 2003.

[70] T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication
complexity of gap hamming distance. Theory of Computing, 4(1):129–135, 2008.

[71] T. S. Jayram and David P. Woodruff. The data stream space complexity of
cascaded norms. In Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 765–774, 2009.

[72] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-
Lindenstrauss transforms and streaming problems with low error. In Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1–10, 2011.

[73] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz map-
pings into a Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[74] Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit
Johnson-Lindenstrauss transformations. Manuscript, 2011.

141

[75] Daniel M. Kane and Jelani Nelson. A derandomized sparse Johnson-
Lindenstrauss transform. CoRR, abs/1006.3585, 2010.

[76] Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms.
CoRR, abs/1012.1577, 2011.

[77] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment
estimation in data streams in optimal space. In Proceedings of the 43rd ACM
Symposium on Theory of Computing (STOC), to appear, 2011.

[78] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space
complexity of sketching and streaming small norms. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1161–
1178, 2010.

[79] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm
for the distinct elements problem. In Proceedings of the 29th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
pages 41–52, 2010.

[80] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of
k-wise (almost) independent permutations. Algorithmica, 55(1):113–133, 2009.

[81] Zohar Karnin, Yuval Rabani, and Amir Shpilka. Explicit dimension reduction
and its applications. In Proceedings of the 26th Annual IEEE Conference on
Computational Complexity (CCC), to appear, 2011.

[82] Felix Krahmer and Rachel Ward. New and improved Johnson-Lindenstrauss
embeddings via the Restricted Isometry Property. arXiv, abs/1009.0744, 2010.

[83] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen.
Sketch-based change detection: methods, evaluation, and applications. In
Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement
(IMC), pages 234–247, 2003.

[84] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge
University Press, 1997.

[85] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using
traffic feature distributions. In Proceedings of the ACM SIGCOMM Conference,
pages 217–228, 2005.

[86] Cornelius Lanczos. A precision approximation of the Gamma function. J. Soc.
Indus. Appl. Math.: Series B, 1:76–85, 1964.

[87] Ping Li. Estimators and tail bounds for dimension reduction in lp (0 < p ≤ 2)
using stable random projections. In Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 10–19, 2008.

142

[88] Ping Li. Compressed counting. In Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 412–421, 2009.

[89] Jiŕı Matousek. On variants of the Johnson-Lindenstrauss lemma. Random
Struct. Algorithms, 33(2):142–156, 2008.

[90] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial
threshold functions. In Proceedings of the 42nd Annual ACM Symposium on
Theory of Computing (STOC), (see also CoRR abs/0910.4122), pages 427–436,
2010.

[91] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data
structures and asymmetric communication complexity. J. Comput. Syst. Sci.,
57(1):37–49, 1998.

[92] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error Lp sam-
pling with applications. In Proceedings of the 21st Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1143–160, 2010.

[93] Robert Morris. Counting large numbers of events in small registers. Commun.
ACM, 21(10):840–842, 1978.

[94] Rajeev Motwani and Prabakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[95] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage.
In Proceedings of the 19th Annual Symposium on Foundations of Computer
Science (FOCS), pages 253–258, 1978.

[96] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations
and Trends in Theoretical Computer Science, 1(2):117–236, 2005.

[97] Jelani Nelson and David P. Woodruff. A near-optimal algorithm for L1-
difference. CoRR, abs/0904.2027, 2009.

[98] Jelani Nelson and David P. Woodruff. Fast manhattan sketches in data streams.
In Proceedings of the 29th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems(PODS), pages 99–110, 2010.

[99] Noam Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4):449–461, 1992.

[100] Krzysztof Oleszkiewicz. On p-pseudostable random variables, rosenthal spaces
and lnp ball slicing. Geometric Aspects of Functional Analysis, 1807:188–210,
2003.

[101] Mark H. Overmars. The Design of Dynamic Data Structures. Springer, 1983.

143

[102] Sriram Padmanabhan, Bishwaranjan Bhattacharjee, Timothy Malkemus, Leslie
Cranston, and Matthew Huras. Multi-dimensional clustering: A new data lay-
out scheme in db2. In SIGMOD Conference, pages 637–641, 2003.

[103] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal
space. SIAM J. Comput., 38(1):85–96, 2008.

[104] Christopher R. Palmer, George Siganos, Michalis Faloutsos, Christos Faloutsos,
and Phillip B. Gibbons. The connectivity and fault-tolerance of the internet
topology. In NRDM Workshop, 2001.

[105] Vipin Kumar Pang-Ning Tan, Michael Steinbach. Introduction to Data Mining.
Addison-Wesley, 2005.

[106] George McArtney Phillips. Interpolation and Approximation by Polynomials.
Springer-Verlag, New York, 2003.

[107] George McArtney Phillips and Peter John Taylor. Theory and Applications of
Numerical Analysis. Academic Press, 2nd edition, 1996.

[108] Theodore J. Rivlin. An Introduction to the Approximation of Functions. Dover
Publications, New York, 1981.

[109] Theodore J. Rivlin. Chebyshev Polynomials. John Wiley and Sons Co., 2
edition, 1990.

[110] Theodore J. Rivlin. Chebyshev Polynomials: From Approximation Theory to
Algebra and Number Theory. John Wiley & Sons, 2nd edition, 1990.

[111] Werner Wolfgang Rogosinski. Some elementary inequalities for polynomials.
The Mathematical Gazette, 39(327):7–12, 1955.

[112] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition,
1976.

[113] Tamás Sarlós. Improved approximation algorithms for large matrices via ran-
dom projections. In Proceedings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 143–152, 2006.

[114] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. Access path selection in a relational database
management system. In SIGMOD Conference, pages 23–34, 1979.

[115] Amit Shukla, Prasad Deshpande, Jeffrey F. Naughton, and Karthikeyan Ra-
masamy. Storage estimation for multidimensional aggregates in the presence of
hierarchies. In Proc. VLDB, pages 522–531, 1996.

[116] Alan Siegel. On universal classes of extremely random constant-time hash func-
tions. SIAM J. Computing, 33(3):505–543, 2004.

144

[117] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceed-
ings of the 34th Annual ACM Symposium on Theory of Computing (STOC),
pages 619–626, 2002.

[118] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with
applications to second moment estimation. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 615–624, 2004.

[119] Santosh Vempala. The random projection method, volume 65 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science. American Mathe-
matical Society, 2004.

[120] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 1999.

[121] Jan Vyb́ıral. A variant of the Johnson-Lindenstrauss lemma for circulant ma-
trices. arXiv, abs/1002.2847, 2010.

[122] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola,
and Josh Attenberg. Feature hashing for large scale multitask learning. In
Proceedings of the 26th Annual International Conference on Machine Learning
(ICML), pages 1113–1120, 2009.

[123] Man Wah Wong. Complex Analysis, volume 2. World Scientific, 2008.

[124] David P. Woodruff. Optimal space lower bounds for all frequency moments. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 167–175, 2004.

[125] David P. Woodruff. Efficient and Private Distance Approximation in the Com-
munication and Streaming Models. PhD thesis, Massachusetts Institute of Tech-
nology, 2007.

[126] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling Internet back-
bone traffic: behavior models and applications. In Proceedings of the ACM
SIGCOMM Conference, pages 169–180, 2005.

[127] Makoto Yamazato. Unimodality of infinitely divisible distribution functions of
class L. Ann. Probability, 6:523–531, 1978.

[128] Vladimir Mikhailovich Zolotarev. One-dimensional Stable Distributions. Vol. 65
of Translations of Mathematical Monographs, American Mathematical Society,
1986.

145

