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Abstract. A key building block for collaborative filtering recommender systems
is finding users with similar consumption patterns. Given access to the full data
regarding the items consumed by each user, one can directly compute the simi-
larity between any two users. However, for massive recommender systems such
a naive approach requires a high running time and may be intractable in terms
of the space required to store the full data. One way to overcome this is using
sketching, a technique that represents massive datasets concisely, while still al-
lowing calculating properties of these datasets. Sketching methods maintain very
short fingerprints of the item sets of users, which allow approximately computing
the similarity between sets of different users.

The state of the art sketch [22] has a very low space complexity, and a re-
cent technique [14] shows how to exponentially speed up the computation time
involved in building the fingerprints. Unfortunately, these methods are incompati-
ble, forcing a choice between low running time or a small sketch size. We propose
an alternative sketching approach, which achieves both a low space complexity
similar to that of [22] and a low time complexity similar to [14]. We empirically
evaluate our algorithm using the Netflix dataset. We analyze the running time
and the sketch size of our approach and compare them to alternatives. Further,
we show that in practice the accuracy achieved by our approach is even better
than the accuracy guaranteed by the theoretical bounds, so it suffices to use even
shorter fingerprints to obtain high quality results.

1 Introduction

The amount of data generated and processed by computers has shown consistent ex-
ponential growth. There are currently over 20 billion webpages on the internet, and
major phone companies process tens of gigabytes of call data each day. Analyzing such
vast amounts of data requires extremely efficient algorithms, both in terms of running
time and storage. This has given rise to the field of massive datasets processing. We
focus on massive recommender systems, which provide users with recommendations
for items that they are likely to find interesting, such as music, videos, or web pages.
These systems keep a profile of each user and compare it to reference characteristics.
One approach is collaborative filtering (CF), where the stored information is the items
consumed or rated by the user in the past. CF systems predict whether an item is likely
to interest the target user by seeking users who share similar rating patterns with the
target user and then using the ratings from those like-minded users to generate a pre-
diction for the target user. Various user similarity measures have been proposed, the
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most prominent one being the Jaccard similarity [8/4]]. A naive approach, which main-
tains the entire dataset of the items examined by each user and their ratings and directly
computes the similarity between any two users, may not be tractable for big data appli-
cations, both in terms of space and time complexity. A recommender system may have
tens of millions of userd], and may need to handle a possible set of billions of item?. A
tractable alternative requires representing knowledge about users concisely while still
allowing inference on relations between users (e.g. user similarity). One method for
concisely representing knowledge in such settings is sketching (also known as finger-
printing) [2120l9U1]]. Such methods store fingerprints, which are concise descriptions of
the dataset, and can be though of as an extreme lossy compression method. These fin-
gerprints are extremely short, far more concise than traditional compression techniques
would achieve. On the other hand, as opposed to compression techniques, they do not
allow a full reconstruction of the original data (even approximately), but rather only
allow inferring very specific properties of the original dataset. Sketching allows keep-
ing short fingerprints of the item sets of users in recommender systems, that can still
be used to approximately compute similarity measures between any two users [5/413].
Most such sketches use random hashes [2,20/94115].

Our Contribution. The state of the art sketch in terms of space complexity applies many
random hashes to build a fingerprint [22], and stores only a single bit per hash. A draw-
back of this approach is its high running time, caused by the many applications of hashes
to elements in the dataset. The state of the art method in terms of running time is [14],
which exponentially speeds up the computation time for building the fingerprints. Un-
fortunately, the currently best sketching techniques in terms of space complexity [22]
and time complexity [[14] are mutually incompatible, forcing a choice between reducing
space or reducing runtime. Also, the low time complexity method [14] is tailored for
computing Jaccard similarity between users, but is unsuitable for other similarity mea-
sures, such as the more sensitive rank correlation similarity measures [4]. We propose
an alternative general sketching approach, which achieves both a low space complexity
similar to that of [22] and a low time complexity similar to [14]. Our sketch uses random
hashing and has a similar space complexity to [22], storing a single bit per hash, thus out-
performing previous approaches such as [201313]] in space complexity. Similarly to [14],
we get an exponential speedup in one factor of the computation time. Our discussion
focuses on Jaccard similarity [3], but our approach is more general than [14], captur-
ing other fingerprints, such as frequency moments [2], L,, sketches [[17], rarity [13]] and
rank correlations [4]. Our sketch “ties” hashes in a novel way, allowing an exponential
runtime speedup while storing only a single bit per hash. We also make an empirical
contribution and evaluate our method using the Netflix [6] dataset. We analyze the run-
ning time and space complexity of our sketch, comparing it to the above state of the

! For example, Netflix is a famous provider of on-demand internet streaming media and employs
a recommender system with over 20 million users. Our empirical evaluation is based on the
dataset released by Netflix in a challenge to improve their algorithms [6]].

2 An example is a recommender system for webpages. Each such a webpage is a potential infor-
mation item, so there are billions of such items that can potentially be recommended.
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art methods. We show that it in practice the accuracy of our sketch is higher than the
theoretical bounds, so even shorter sketches achieve high quality results.

Related Work. Recent work [5l43]] already suggests sketching for recommender sys-
tems. Rather than storing the full lists of items consumed by each user and their ratings,
they only store fingerprints of the information for each user, designed so that given
the fingerprints of any two users one can accurately estimate the similarity between
them. These fingerprints are constructed using min-wise independent families of hash
functions, MWIF's for short. MWIFs were introduced in [23l8], and are useful in many
applications as they resemble random permutations. Much of the research on sketching
focused on reducing space complexity while accurately computing data stream prop-
erties, but much less attention was given to time complexity. Recent work that does
focus on running time as well as space is [18119] and [12] which propose low runtime
sketches for locally sensitive hashing under the /> norm. Many streaming algorithms
apply many hashes to each element in a very long stream of elements, leading to a high
and sometimes intractable computation time. Similarly to [14]], our method achieves
an exponential speedup in one factor of the computation time for constructing finger-
prints of massive data streams. The heart of the method lies in using a specific family
of pseudo-random hashes shown to be approximately-MWIF [16], and for which we
can quickly locate the hashes resulting in a small value of an element under the hash.
Similarly to [24] we use the fact that family members are pairwise independent be-
tween themselves. Whereas previous models examine only one hash at a time, we read
and process “chunks” of hashes to find important elements in the chunk, exploiting the
chunk’s structure to significantly speed up computation. We show that our technique
is compatible with storing a single bit rather than the full element IDs, improving the
fingerprint size, similarly to [22].

Improving Time and Space Complexity. Rather than storing the full stream of b items
of a universe [u], sketching methods only store a fingerprint of the stream. Any sketch
achieves an estimate that is “probably approximately correct”, i.e. with high probability
the estimation error is small. Thus the size of the fingerprint and the time required to
compute it depend on the accuracy of the method ¢ and its confidence §. The accuracy
e is the allowed error (the difference between the estimated similarity and the true simi-
larity), and the confidence § is the maximal allowed probability of obtaining an estimate
with a “large error”, higher than the allowed error e. Similarly to [22] we store a single
bit per hash function, which results in a fingerprint of length O(h;,é ) bits, rather than
O(logu - 122‘15 ) bits required by previous approaches such as [[14]]. On the other hand,
similarly to [[14], rather than computing the fingerprint of a stream of b items in time of
O( ’ 16112‘15 ) as required by [22]], we can compute it in time O(b - log § - log ! ), achieving
an exponential speedup for the fingerprint construction. In addition to the theoretical
guarantees, in Section 3 we evaluate our approach on the Netflix dataset, contrasting it
with previous approaches in terms of time and space complexity. We also show that a
high accuracy can be obtained even for very small fingerprints. Our theoretical results
relate the required storage to the accuracy of the Jaccard similarity estimates, but only
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provide an upper bound regarding the storage required; we show that in practice the
storage required to achieve a good accuracy can be much lower.

Preliminaries. Let H be a family of hashes over source X and targetY,soh € H is a
function h : X — Y, where Y is ordered. We say H is min-wise independent if when
randomly choosing i € H, for any subset C C X, any z € C has an equal probability
to be minimal after applying h.

Definition 1. H is min-wise independent (MWIF), if for all C C X, for any x € C,
Pricpl[h(xz) = mingech(a)] = Iél'

Definition 2. H is a y-approximately min-wise independent (v-MWIF), if for all C C
X, foranyx € C: ‘PrheH[h(x) = mingech(a)] — Ié‘l < Ig‘l

Definition 3. I is k-wise independent, if for all x1, %2, ..., 2, € X, y1,Y2,...,yr C
Y, Prien[(hM(z1) = y1) Ao A (R(xk) = yi)] = \Yllk

Pseudo-random Family of Hashes. We describe our hashes. Given a universe of item
IDs [u], consider a prime p, such that p > w. Consider taking random coefficients for
a d-degree polynomial in Z,. Let ag, a1, .. .,aq € [p] be chosen uniformly at random
from [p], and the polynomial in Z,: f(x) = ag + a1z + a22? + ... + aq4z?. Denote
by Fj; all d-degree polynomials in Z, with coefficients in Z,. Our method chooses
members of this family uniformly at random. Indyk [[L6] shows that choosing a func-
tion f from Fy uniformly at random results in F; being a y-MWIF for d = O(log }/)
Randomly choosing ayg, . . ., aq is equivalent to choosing a member of F; uniformly at
random, so f(z) = ag + a1 + azz® + ... + agx? is a hash chosen at random from
the v-MWIF F};. Similarly, let bg, b1, ..., bq € [p] be chosen uniformly at random from
[p], and g(x) = by + byw + bax® + ... + bgz?, also a hash chosen at random from
the v-MWIF Fj. Consider the hashes ho(z) = f(x),h1(z) = f(z) + g(x), ha(z) =
(@) +29(2), .. hi(@) = F(@) + ig(@),. ., hai(x) = f(2) + (b — g(a). We
call the construction procedure for f(z), g(z) the base random construction, and the
construction of h; the composition construction. We prove properties of such hashes.
We denote the probability of an event ¥ when the hash h is constructed by choosing
f, g using the base random construction and composing h(z) = f(z) + i - g(z) (for
some ¢ € [p]) as Prp(E). These constructions are similar to the constructions used
in [21]], however our hashes are min-wise independent and pair-wise independent be-
tween themselves.

Lemma 1 (Uniform Minimal Values). Let f, g be constructed using the base con-
struction, using d = O(log }/) For any z € [u], any X C [u] and any value i used to
compose h(z) = f(x) +i- g(x): Prplh(z) < mingex(h(y)] = (1 £7) |)1(\' Proof in
full version.

Lemma 2 (Pairwise Interaction). Let f, g be constructed using the base construction
for d = O(log ,ly) For all x1,x9 € [u] and X1, X2 C [u], and all i # j used to
compose hi(x) = f(x) +i- g(x) and hj(x) = f(x) +j - 9(x): Pryger,[(hi(z1) <
mingex, hi(y)) A (hj(z2) < minyex,hi(y))] = (1 £7)? \Xl\%\Xz\' Proof in full ver-
sion.
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2 Collaborative Filtering Using Pseudo-random Fingerprints

Collaborative filtering systems provide a target user recommendations for items based
on the consumption patterns of other users. Many such systems rank users by their sim-
ilarity to the target user in their past consumption, then find items many such users have
consumed by the target user has not yet consumed and recommend them to the target
user [26427011]. We focus on estimating the similarity between users (see [28] for a
survey of methods for generating recommendations based on similarity information).
A common measure of similarity between two users is Jaccard similarity. Our item
universe consists of the IDs of all items users may consume, [u] = {1,2,3,...,u}.
There are u different items in the universe, but each user only examined some of these.
Consider one user who has consumed the items C; C [u] in the past, and another
user who has consumed the items C C [u] . The Jaccard similarity between the
two users is Jio = }giggzi Several fingerprinting methods were proposed for ap-
proximating relations between massive datasets, including the Jaccard similarity [8]].
We use hashes defined earlier to exponentially speed up such computations. We use
pseudo-random effects, so we must relax the MWIF requirement to a pairwise inde-
pendence requirement (2-wise independence). We briefly review earlier sketches for
estimating Jaccard similarity. Consider a hash h € H chosen from a MWIF H (or
a v-MWIF). We apply & on all elements C; and examine the minimal integer we get,
m? = arg min,ec, h(x). We do the same to Cy and examine m% = arg min,cc, h(z).
Jaccard similarity sketches are based on computing the probability that m; = msa:
Pricg[m? = mb] = Pryeglargmingec, h(x) = argmingec, h(x)]. Theorems [I]
and[2are proven in [7I8] regarding a hash i chosen uniformly at random from a MWIF
H and v-MWIF, correspondingly%

Theorem 1 (Jaccard / Collision Probability (MWIF)). Prycy[m] = m!] = J; ;.

Theorem 2 (Jaccard / Collision Probability (v-MWIF)). |Prycp[m) = m!] —

Jijl <.

Rather than storing the full C;’s, previous approaches [7U8] store their finger-
prints. Given k hashes h, ..., hy randomly chosen from an v-MWIF, we can store
m,...,m!"™. Given C;, Cj, for any = € [k], the probability that m/ = m;“ is

Jij &+ 7. A hash h, where we have m/"* = m;“ is a hash collision. We can estimate

Ji,; by counting the proportion of collision hashes out of all the chosen hashes. In this
approach, the fingerprint contains & item identities in [u], since for any z, m?‘” is in [u].
Thus, the fingerprint requires k logw bits. To achieve an accuracy € and confidence 9,
such approaches require k = O( 122‘5 ).

Our General Approach. We use a “block fingerprint” that estimates J = J; ; with
accuracy € and confidence of g. It stores a single bit per hash (where many previous
approaches store log u bits per hash). Later we show how to get a given accuracy €
and confidence §, by combining several such blocks. To get a single bit per hash, we
use a hash mapping elements in [u] to a single bit — ¢ : [u] — {0,1}, taken from

3 The full version includes a proof for Theorem Il
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a pairwise independent family (PWIF for short) of hashes. Rather than using m/ =
argmingec, h(z) we use m¢’ = ¢(arg mingec, h(x)). Storing mf’ rather than mf
shortens the sketch by a log u factor.

Theorem 3. Prjcp[md" = m¢ M = 2J +5+7.

Proof. PrheH ¢6H/[ wl = m } Prim $h mqS h|m? = m;?] - Prpepmh =
j]+Pr[ o= f# ] PTheH[ #mﬂzl'P?"heH[m?:mﬁJr

5 (1= Praeulm '- =ml}]) = 1+J72’h

The purpose of the ﬁngerprmt block is to estimate of J; ; with accuracy €. We use
k = 892 hashes. Denote o = 210 ,andlety = (1 — a) - € = ,1,e. We construct
a - MWIPH To construct the famlly, consider choosing ay, . .., aq and by, b1, ..., by
uniformly at random from [p], constructing the polynomials f(x) = ag + a1z + a2 +

4 agx?, g(x) = bo + biw + bew?® + ... + bgz?, and using the k hashes h;(x) =
f(z)+ig(x), wherei € {0,1,...,k—1}8. We also use ahash ¢ : [u] — {0, 1} chosen
from the PWIF of such hashes. We say there is a collision on A; if m¢ hi = mj-)’h ', and
denote the random variable Z; where Z; = 1 if there is a collision on h; for users %, j
and Z; = 0 if there is no such collision. Z; = 1 with probability 3 + J + J and
Z; = 0 with probability ; — g + 7. Thus E(Z;) = ; + g + 7. Denote X; = 27; — 1.
E(X;) =2E(Z;) — 1 = J £ . X; can take two values, —1 when Z; = 0, and 1 when
Z; = 1. Thus X} always takes the value of 1, so E(X?2) = 1. Consider X = Y°r | X,
andtake Y = J = k as an estimator for J. We show that for the above k, Y is accurate
up to € with probability at least 7

Theorem 4 (Simple Estimator). Pr(|Y — J| <€) > §. Proof in full version.

Due to Theorem[d] we approximate J with accuracy e and confidence g using a “block
fingerprint” for C;, composed of mhl"ls1 . ,m?k’%, where hq, ..., Iy are random

members of a -MWIF and ¢, . . ., ¢k are chosen from the PWIF of hashes ¢ : [u] —
{0, 1}. It suffices to take k = O( }) to achieve this. Constructing each h; can be done
by choosing f, g using the base random construction and composing h;(z) = f(z) +
i - g(z). The base random construction chooses f, g uniformly at random from F, the
family of d-degree polynomials in Z,, where d = O(log 1) This achieves a y-MWIF
wherey = (1 —a)-e= e

Achieving a Desired Confidence. We combine several independent fingerprints to in-
crease the confidence to a level §. Earlier this section we proposed a fingerprint of length
k to get a confidence of 7 . Consider taking m fingerprints for each stream, each of
length k. Given two streams 1,7, we have m pairs of fingerprints, each approximating
J with accuracy €, and conﬁdence . Denote the obtained estimators by J 1, Jg, ... Jm,

and the median of these values by J . Consider using m > 392 In (15 “blocks”.

* The accuracy 7 is stronger than the e required of the full fingerprint, for reasons examined
later.

5 This is similar to [21]], but here the hashes are MWIF and pair-wise independent between
themselves.
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ho(X)=F(X) ho(x1) ho(x2) ho(x3) ho(x4) ho(xb)

h1(X)=Ff(X)+g(X) h1(x1) hi1(x2) h1(x3) h1(x4) h1(xb) m1

h2(X)=f(X)+2g(X) h2(x1) h2(x2) h2(x3) h2(x4) h2(xb)

h3(X)=F(X)+3g(X) h3(x1) h3(x2) h3(x3) h3(x4) h3(xb) m3

&
x
x
e
iy
X
T

hk(X)=F(X)+kg(X) hk(x1) hk(x2) hk(x3) hk(x4) hk(xb) m

Fig. 1. A fingerprint “chunk” for a stream

Theorem 5 (Median Estimator). Pr(|.J — J| < €) > 1 — 8. Proof in full version.

By Theorem[3] to get |j — J| < e it suffices to take m > 392 In ; blocks, each with

28.451n 1 . In L
k = 392 hashes, or 3?1Int . 392 < > ° hashes in total. Thus, we use O( °)
hash € 9 5 € € €
ashes.

2.1 Fast Fingerprint Computation

We discuss speeding up the fingerprint computation for a set of b items X =
{z1,...,2p} where x; € [u]. The fingerprint has m “block fingerprints”, with block r
constructed using k hashes A7, ..., Ay, built using 2 - d random coefficients in Z,,. The
i’th location in the block is the minimal item in X under h;: m; = arg mingex h;(z),
which is then hashed through a hash ¢ mapping elements in [u] to a single bit. We show
how to quickly compute the block fingerprint (m, ..., mg). A naive way to do this is
applying k - b hashes to compute h;(z;) fori € [k],j € [b]. The values h;(z;) where
i € [k],j € [b] form a matrix, where row ¢ has the values (h;(x1), ..., hi(zp)), shown
in Figure[ll

Once all h;(z;) values are computed for ¢ € [k],j € [b] , for each row ¢ we check
for which column j the row’s minimal value occurs, and store m; = z;. Comput-
ing the fingerprint requires finding the minimal value across the rows (and the value
x; for the column j where this minimal value occurs). To speed up the process, we
use a method similar to [23] as a building block. Recall the hashes h; were defined
as hi(z) = f(z) + ig(x) where f(x),g(x) are d-degree polynomials with random
coefficients in Z,. Our algorithm is based on a procedure that gets a value z € [u]
and a threshold ¢, and returns all elements in (ho(z), h1(z),...,hg—1(x)) which are
smaller than ¢, as well as their locations. Formally, the method returns the index list
I = {ilhi(z) < t} and the value list V; = {h;(x)|i € I,} (note these are lists, so
the j’th location in V4, V;[j], contains hy,(;(x)). We call this the column procedure,
and denote by pr — small — loc(f(z), g(z), k, ,t) the function that returns I, and
by pr — small — val(f(x),g(z), k,z,t) the function that returns V; . We describe
an implementation of these operations later in this section, with a running time of
O(log k+|13|), rather than the naive algorithm which evaluates O(k) hashes. Thus, this
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procedure quickly finds small elements across columns (by “small” we mean smaller
than ¢). Our algorithm keeps a bound for the minimal value for each row. It goes through
the columns, finding the small values in each, and updates the row bounds where these
occur.

block-update ((z1,...,zs), f(x),g(x), k. t) :

1. Letm,; = oo fori € [k] and let p; = 0 for i € [K]
2. Forj=1tob:
(a) Let I; = pr — small —val(f(z), g(x), k,x;,t)
(b) Let V; = pr — small — loc(f(x), g(x), k, z;,t)
(c) Fory € I;: // Indices of the small elements
i. If mp,py > Vi[y] // Update to row x required
A miy) = Vilyl pryy) = 2

If our method updates m;, p; for row i, m; indeed contains the minimal value in that
row, and p; the column where this minimal value occurs, since if even a single update
occurred then the row indeed contains an item that is smaller than ¢, so the minimal
item in that row is smaller than ¢ and an update would occur for that item. On the other
hand, if all the items in a row are bigger than ¢, an update would not occur for that
row. The running time of the column procedure is O(log k + |I;|), which is a random
variable, that depends on the number of elements returned for that column, |I;|. Denote
by L, the number of elements returned for column j (i.e. |I;| for column j). Since we

have b columns, the running time of the block update is O(blog k) + O(Z?.:l L;). The

total number of returned elements is Z?‘:l L, which is the total number of elements

that are smaller than ¢. We denote by Y; = Zs=1 L the random variable which is the
number of all elements in the block that are smaller than ¢. The running time of our
block update is thus O(blog k + Y3). The random variable Y; depends on ¢, since the
smaller ¢ is the less elements are returned and the faster the column procedure runs. On
the other hand, we only update rows whose minimal value is below ¢, so if ¢ is too low
we have a high probability of having rows which are not updated correctly. A certain
compromise ¢ value combines a good running time of the block update with a good
probability of correctly computing the values for all the rows.

Theorem 6. Given the thresholdt = 12'5'”, wherel’ = 80+2 log i (sol' =0(log })),
the runtime of the block — update procedure is O(blog 1 + 612 log 1) Proofin full ver-
sion.

Computing Minimal Elements in the Series. We recursively implement pr — small —
loc(f(z),g9(x), k,z,t) and pr — small — val(f(x), g(x), k, x,t), the procedures for
computing V; and I;. The hashes h; were defined as h;(x) = f(x) + ig(xz) where
f(z), g(x) are d-degree polynomials with random coefficients in Z,,. Consider z € Z,
for which we seek all the values (and indices) in (ho(x), ha(x), ..., hp—1(z)) smaller
than ¢. Given z, we evaluate f(z),g(x) in time O(d) = O(log,ly , and denote a =

® Using multipoint evaluation we can calculate it in amortized time O(log? log ! ). We can use
other constructions for d-wise independent which can be evaluated in O(1) time but use more
space.
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f(x) € Zy, and b = g(x) € Z,. Thus, we seek all values in {a mod p, (a + b)
mod p, (a4 2b) mod p,...,(a+ (k—1)b) mod p} smaller than ¢, and the indices
i where they occur. Consider the series S = (s1, ..., s;) where s; = (a + ib) mod p
and ¢ = {0,1,...,k — 1}. We denote the arithmetic series a + bi mod p for i €
{0,1,...,k — 1} as S(a,b, k,p), so under this notation S = S(a,b, k,p). Given a
value we can find the index where it occurs, and vice versa. To get the value for index
i, we compute (a + ib) mod p. To get the index i where value v occurs, we solve
v = a+ibin Z, (ie. i = °,* mod p). This can be done in O(logp) time using
Euclid’s algorithm. We compute b~! in Z,, once to transform all values to generating
indices. We call a location ¢ where s; < s;—1 a flip location. The first index is a flip
location if @ — b mod p > a. First, consider b < g. If s, is a flip location, we have
si—1 <pbuts; 1 +b>p,s0s; <b. Asb < there’s at least one location that is not
a flip location between any two flip locations. Given S = S(a, b, k, p), denote by f(S)
the flip locations in S. The flip locations of S are f(S). Denote fo(S) = f(S), and by
fi(S) elements occurring 4 places after the closest flip location. Lemmas [3] and H] are
proven in the full version.

Lemma 3 (Flip Locations Are Small). If b < ?, ar most
and all elements that are smaller than b are flip locations.

g elements are flip locations,
Lemma 4 (Element Comparison). Ifb < 1, x € f;(S),y € f;(S) fori > j, then
z >y

The first flip location is [ 7], as to exceed p we add b [, ] times. There are L“J;bkj

flip locations. Denote the first flip location as j = [*}“], with value a’ = (a + jb)

|_ (a+bk)J )

mod p. Denote b" = (b—p) mod b and the number of flip locations as k" = [ ")

The flip locations have an arithmetic progression [25]].

Lemma 5 (Flip Locations Arithmetic Progression). The flip locations of S =
S(a,b, k,p) are also an arithmetic progression S’ = (a', V', k', b).

Using these lemmas, we search for the elements smaller than ¢ by examining the flip lo-
cations series in recursion. If case b < t, given ¢ = [t]b, due to Lemma
f(S), f1(S), ... fa—1(S) are smaller then ¢, and all of their elements must be returned.
We must also scan f,;(.S) and also return all the elements of f,(.S) which are smaller
then ¢. This additional scan requires O(| f,(S)|) time |f,(S)| < |f(S)|- Thus the case
of b < t examines O(|I¢|) elements. By Lemma[3 if b > ¢, all non-flip locations are
bigger than b and thus bigger than ¢, so we need only consider the flip-locations as
candidates. Using Lemma[3 we scan the flip locations recursively, examining the arith-
metic series of the flip locations. If at most half of the elements in each recursion are
flip locations, this gives a logarithmic running time, but if b is high, more than half the
elements are flip locations. When b > © we examine the same flip-location series S’, in
reverse order. The first element in the reversed series is the last element of the current
series, and rather than progressing in steps of b, we progress in steps of p — b. Thus
we obtain the same elements, but in reverse order. In this reversed series, at most half
the elements are flip locations. The procedure below implements our method. It finds
elements smaller then ¢ in time O(log k) = O(log | + |I,|) where |I;| is the number of
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such values. Given the returned indices, we get the values in them. We use the same b
for all | I, so this can be done in time O(clog ¢ + |I3|) (usually ¢ is a constant).
ps-min(a, b, p, k,t) :

1. ifb < t:
(@) Vi = [:ifa < t then V; = V; + [a + ib for i in range ([ *}*])]
(b) j = ["7,“]// First flip (excluding first location)
(¢) while j < k:
i. v=(a+jb) modp
ii. while j < kandv < t:
A. Viappend(v);j=j+L,v=v+b
iii. j = j+ [?,"] //next flip location
iv. return listl
(d) if b > ¥ thenreturn f((a + (k —1)-b) mod p,p —b,p, k,t)
() j=[","Ts newy, = [*47*]
(f) if @ < b then j = 0 and newy, = newy, + 1// get first flip location

(g) return f((a + jb) mod p, —p mod b, b, newy, t)

3 Empirical Analysis

We empirically evaluated our sketch using the Netflix dataset [6]. This is a movie rat-
ings dataset, with 100 million movie ratings, provided by roughly half a million users
on a collection of 17,000 movies. As there are 100 million ratings, even this meduim-
sized dataset is difficult to fit in memory{?], so a massive recommender systems dataset
certainly cannot fit in the main memory, making sketching necessary to handle such
datasets [9]]. The state of the art space complexity is achieved using the sketching tech-
nique of [22]. Consider using it to estimate Jaccard similarity, with a reasonable ac-
curacy of € = 0.01 and confidence level of 6 = 0.001. The approach of [22]] applies
roughly 100,000 hash functions for each entry. Each hash computation requires 20 mul-
tiplication operations, and as there are 100 million entries in the dataset, sketching the
entire dataset requires over than 2 - 10** multiplications. This takes more than a day to
run on a powerful machine. On the other hand, although the approach of [14] allows
a much shorter running time (less than an hour), it requires sacrificing the low space
achieved by the method of [22]]. We first compare our approach with [22/14] in terms
of the running time. Figure [2 shows the running time for generating a fingerprint for a
target with 1,000 items, both under our method (FPRF - Fast Pseudo Random Finger-
prints), and under the sketch of [22] (appearing under “1-bit”, as it maintains a single
bit per hash used) and the sketch of [14] (“FPS”, after the names of the authors). The
Figure indicates the massive saving in computation time our approach offers over the
approach of [22], and shows that the running time of our approach and that of [14] is
very similar.

We now examine the accuracy achieved by our approach, which depends on the
sketch size. To analyze empirical accuracy, we isolated users who provided ratings for

7 The Netflix data can easily be stored on disk. It is even possible to store it in memory on
machine with a large RAM, by compressing it or using a sparse matrix representation.
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Fig. 2. Left: running time of fingerprint computation. Right: accuracy depending on size.

over 1,000 movies. There are over 10,000 such users in the dataset, and as these users
have rated many movies, the Jaccard similarity between two such users is very fine-
grained. We tested the fingerprint size required to achieve a target accuracy level for the
Jaccard similarity. Consider a fingerprint size of k bits. Given two users, denote the true
Jaccard similarity between their lists of rated movies as J. J can be easily computed
using the entire dataset. Alternatively, we can use a fingerprint of size k, resulting in an
estimate .J that has a certain error. The error for a pair of users is e = |J — J |. We can
sample many such user pairs, and examine the average error obtained using a fingerprint
of size k, which we call the empirical inaccuracy. We wish to minimize the error in our
estimates, but to reduce the inaccuracy we must use larger fingerprints. As each user
in our sample rated at least 1,000 movies, storing the full list of rated movies for a
user takes 1,000 integers. The Netflix dataset only has 17,000 movies, so we require at
least 15 bits to store the ID of each movie. Thus the full data for a user takes at least
15,000 bits. The space required for this data grows linearly with the numbers of movies
a user has rated. Increasing the size of the universe of movies also increases the storage
requirements, as more bits would be required to represent the ID of each movie.

Using our sketch, the required space does not depend on the number of ratings per
user, or on the number of movies in the system, but rather on the target accuracy for the
similarity estimate. Earlier sketches [S13] eliminated the dependency on the number of
ratings, but not on the number of movies in the system. Also, our fingerprints are faster
to compute.

We tested how the average accuracy of our Jaccard similarity estimates changes as
we chage the fingerprint size. We have tried fingerprints of different sizes, ranging from
500 bits to 10,000 bits. For each such size we sampled many pairs of users, and com-
puted the average inaccuracy of the Jaccard similarity estimates. The results are given
in Figure 2] for both our approach and for the sketch of [14]] (“FPS”), as well as the “1-
bit” sketch of [22]. Lower numbers indicate better empirical accuracy. Figure 2] shows
that our sketch achieves a very high accuracy in estimating Jaccard similarity, even for
small fingerprints. Even for a fingerprint size of 2500 bits per user, the Jaccard similar-
ity can be estimated with an error smaller than 1.5%. Thus using fingerprints reduces
the required storage to roughly 10% of that of the full dataset, without sacrifising much
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accuracy in estimating user similarity. The figure also indicates that for any sketch size,
the accuracy achieved by our approach is superior to that of the FPS sketch [[14]. This is
predictable since the theoretical accuracy guarantee for our approach is better than that
for the sketch of [14]. The figure shows no significant difference in accuracy between
our sketch and the 1-bit sketch [22].

Figure [2| shows that on the Netflix dataset, our sketch has the good properties of
the mutually exclusive sketches of [22l14]], and outperforms each of these state of the
art methods in either running time or accuracy. The Netflix dataset is a small dataset,
and the saving in space is much greater for larger datasets. A recommender system for
web pages is likely to have several orders of magnitude more users and information
items. While the storage requirements for such a massive recommender system grow
by several orders of magnitude when storing the full data, the required space remains
almost the same using our sketch. Previous approaches [Si3] compute the sketch in
time quadratic in the required accuracy. Using our approach, computing the sketch
only requires time logarithmic in the accuracy, which makes it tractable even when the
required accuracy is very high.

4 Conclusions

We presented a fast method for sketching massive datasets, based on pseudo-random
hashes. Though we focused on collaborative filtering and examined the Jaccard simi-
larity in detail, the same technique can be used for any fingerprint based on minimal
elements under several hashes. Our approach is thus a general technique for exponen-
tially speeding up computation of various fingerprints, while maintaining a single bit
per hash. We showed that even for these small fingerprints which can be quickly com-
puted, the required number of hashes is asymptotically similar to previously known
methods, and is logarithmic in the required confidence and polynomial in the required
accuracy. Our empirical analysis shows that for the Netflix dataset the required storage
is even smaller than the theoretical bounds.

Several questions remain open. Can we speed up the sketch computation further?
Can similar methods be used that are not based on minimal elements under hashes?
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