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Abstract

We propose a deep hashing framework for sketch re-

trieval that, for the first time, works on a multi-million scale

human sketch dataset. Leveraging on this large dataset,

we explore a few sketch-specific traits that were otherwise

under-studied in prior literature. Instead of following the

conventional sketch recognition task, we introduce the novel

problem of sketch hashing retrieval which is not only more

challenging, but also offers a better testbed for large-scale

sketch analysis, since: (i) more fine-grained sketch feature

learning is required to accommodate the large variations in

style and abstraction, and (ii) a compact binary code needs

to be learned at the same time to enable efficient retrieval.

Key to our network design is the embedding of unique char-

acteristics of human sketch, where (i) a two-branch CNN-

RNN architecture is adapted to explore the temporal order-

ing of strokes, and (ii) a novel hashing loss is specifically

designed to accommodate both the temporal and abstract

traits of sketches. By working with a 3.8M sketch dataset,

we show that state-of-the-art hashing models specifically

engineered for static images fail to perform well on tem-

poral sketch data. Our network on the other hand not only

offers the best retrieval performance on various code sizes,

but also yields the best generalization performance under

a zero-shot setting and when re-purposed for sketch recog-

nition. Such superior performances effectively demonstrate

the benefit of our sketch-specific design.

1. Introduction

Sketches are different to photos. They exhibit a high-

level of abstraction yet are surprisingly illustrative. With

just a few strokes, they are able to encode an appropri-

ate level of semanticness that depicts objects and commu-

nicate stories (e.g., ancient cave drawings). Such unique
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characteristics of sketches, together with the prevalence of

touchscreen devices, to a large extent drove the recent surge

of sketch research. Problems studied so far range from

sketch recognition [3, 11, 33], sketch-based image retrieval

(SBIR) [32, 20, 29, 31, 23, 30, 22, 10], to sketch synthe-

sis [12].

Despite great strides made, a major obstacle facing all

sketch research is the lack of freely available sketch data.

Compared with photos where million-scale datasets had

been readily accessible for almost a decade (e.g., ImageNet

[2]), all aforementioned research worked with sub-million

level crowd-sourced sketch datasets (20k for TU-Berlin [3]

and 75k for Sketchy [20]). These datasets served as key en-

ablers for the community, though have very recently started

to bottleneck the progress of sketch research – sketch recog-

nition performance had already gone far beyond human-

level [33] on TU-Berlin [3], and steadily approaching hu-

man performance [18] for the problem of SBIR on Sketchy

[20].

In particular, two unique traits of human sketches had

been mostly overlooked: (i) sketches are highly abstract

and iconic, whereas photos are pixel perfect depictions, (ii)

sketching is a dynamic process other than a mere collec-

tion of static pixels. Such oversights can be partially at-

tributed to the lack of a large and diverse dataset of stroke-

level human sketches, since more data samples are required

to broadly capture (i) the substantial variances on visual ab-

straction, and (ii) the highly complex temporal stroke con-

figurations – an apple might look like an apple once drawn

(though more abstract than photos), there is more than one

way of drawing it. The seminal work of [33] on sketch

recognition tackled these problems to some extent yet were

limited in that (i) sketches are treated as static pixelmaps,

where deep architecture for feature learning is limited to

variants of photo CNNs, and (ii) temporal ordering infor-

mation is modeled coarsely by temporally segmenting one

sketch into three separate pixelmaps, which are then en-

coded using a multi-branch CNN. The very recent work of
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Figure 1. Sample sketches from QuickDraw-3.8M and TU-Berlin.

[5] was the first to fully acknowledge the temporal nature

of sketches, and proposed a RNN-based generative model

to synthesize novel sketches from scratch. In this paper, we

combine RNN stroke modeling with conventional CNN un-

der a dual-branch setting to learn better sketch feature rep-

resentations. However, the problem of visual abstraction,

especially how it can be accommodated under a large-scale

retrieval setting remains unsolved.

In this paper, for the first time, we leverage on a newly

released multi-million human sketch dataset [5], and intro-

duce the novel problem of sketch hashing retrieval (SHR).

Different to the conventional task of sketch recognition

where classification is usually performed by computing fea-

ture distances in Euclidean space [33], given a query sketch,

SHR aims to compute an exhaustive ranking of all sketches

in a very large test gallery. It is thus a more difficult problem

than sketch recognition, since (i) more discriminative fea-

ture representations are needed to accommodate the much

larger variations on style and abstraction, and meanwhile

(ii) a compact binary code needs to be learned to facili-

tate efficient large-scale retrieval. Importantly, the avail-

ability of such a large dataset enables us to better explore

the aforementioned sketch-specific traits of being highly ab-

stract and sequential in nature. In particular, we fully exam-

ine the temporal ordering of strokes through a two-branch

CNN-RNN network, and address the abstraction problem

by proposing a novel hashing loss that enforces more com-

pact feature clusters for each sketch category in Hamming

space.

More specifically, we first construct a dataset of

3,829,500 human sketches, by randomly sampling from ev-

ery category of the Google QuickDraw dataset [5], which

we term as “QuickDraw-3.8M”. This dataset is highly noisy

when compared with TU-Berlin, for that (i) users had only

20 seconds to draw, and (ii) no specific post-processing was

performed. Figure 1 offers a visual comparison between

the two datasets. We then analyze the intrinsic data traits of

sketch and design a novel end-to-end deep hashing model

to conduct fast retrieval.

The main contributions of this paper can be summa-

rized as: (i) For the first time, we introduce the problem

of sketch hashing retrieval on a multi-million scale human

sketch dataset, and propose a deep hashing network that

directly accommodates the key characteristics of human

sketch. We show that our network is able to outperform

state-of-the-art alternatives specifically designed for photo-

photo and sketch-photo retrieval, highlighting the advantage

of our sketch-specific design. Moreover, our network also

achieves state-of-the-art performance when re-purposed for

the task of sketch recognition, and generalizes well un-

der a zero-shot setting. (ii) We propose a novel multi-

branch CNN-RNN architecture that specifically encodes the

temporal ordering information of sketches to learn a more

fine-grained feature representation. We find that stroke-

level temporal information is indeed helpful in sketch fea-

ture learning in that it alone can outperform CNN features

for the sketch recognition task, and offers the best perfor-

mance when combined with CNN features. (iii) We design

a novel hashing loss to accommodate the abstract nature of

sketches, especially on such a large dataset where noise is

also present. More specifically, we propose a sketch center

loss to learn more compact feature clusters for each object

category and in turn improve retrieval performance.

The rest of the paper is organized as follows: Section 2

briefly summarizes related work. Section 3 describes our

proposed deep hashing model for large-scale sketch re-

trieval. Experimental results and discussion are presented

in Section 4. Finally, we draw some conclusions in Sec-

tion 5.

2. Related Work

Sketch Dataset Collecting human sketches is naturally

a cumbersome process – they have to be drawn one by

one other than crawled for free (as for photos). This

largely contributed to the lack of large-scale human sketch

datasets to date, especially those comparable to the scale of

mainstream photo datasets [2]. Few medium-scale sketch

datasets exist [3, 32, 24, 20]. They were mainly collected by

resorting to crowd-sourcing platforms (e.g., Amazon Me-

chanical Turk) and asking the participant to either draw by

hand or using a mouse. Albeit being large enough to train

deep neutral networks, their sizes normally range from hun-

dreds to thousands, thus inappropriate for large-scale deep

hashing exploration that are inherently data-hungry. Very

recently, this problem has been alleviated by Ha and Eck

[5], who contributed a large-scale dataset containing 50 mil-

lions of sketches crossing 345 categories. These sketches

are collected as part of a drawing game where participants

has only 20 seconds to draw, hence are often very abstract

and noisy. In this paper, we leverage on this dataset and

study the novel problem of sketch hashing retrieval while

proposing means of tackling the sketch-specific traits of ab-

straction and temporal ordering.

Sketch Recognition A few shallow hand-crafted feature
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Figure 2. An illustration of our two-branch CNN-RNN deep sketch hashing retrieval network. Best viewed in color.

representations [3, 11] have been proposed for sketch recog-

nition. Albeit seeing some sketch-specific design, they are

largely built from popular photo feature representations.

The ground-breaking work of Yu et al. [34], for the first time

beats human performance on sketch recognition task by uti-

lizing the discriminative power of a deep convolutional neu-

ral network. Subsequent work further exploited stroke-level

temporal information by applying heuristic data augmenta-

tion [33]. Our approach jointly explores static sketch visual

characteristics and dynamic temporal sketching information

in a single deep model. We show that it is superior to all ex-

isting models when re-purposed for the sketch recognition

task.

Deep Hashing Learning Hashing is an important re-

search topic for fast image retrieval. Conventional hashing

methods [1, 26, 4] mainly utilize hand-crafted features as

image representations and propose various projections and

quantization strategies to learn the hashing codes. Recently,

deep hashing learning has shown superiority on better pre-

serving the semantic information when compared with shal-

low methods [28, 14, 21]. In the initial attempt, feature

representation and hashing codes were learned in separate

stages [28], where subsequent work [14, 35, 15] suggested

superior practice through joint end-to-end training. To our

best knowledge, only one previous work [16] has specifi-

cally designed a deep hashing framework targeted on sketch

data. They introduced a semi-heterogeneous deep archi-

tecture by incorporating cross-view similarity and a cross-

category semantic loss. Despite its superior performance,

sketch specific traits such as stroke ordering and drawing

abstraction were not accommodated for. The dataset [20]

they evaluated on is also arguable too small to truly show

for the practical value of a deep hashing framework. We

address these issues by working with a much larger human

sketch dataset, and designing sketch-specific solutions that

are crucial for million-scale retrieval.

3. Methodology

3.1. Problem Formulation

Let K = {Kn = (Pn,Sn)}
N
n=1 be N sketch sample

pairs crossing L possible categories and Y = {yn}
N
n=1 be

their respective category labels. Each sketch sample Kn

consists of a sketch Pn in raster pixel space and a corre-

sponding sketch segment sequence Sn. We aim to learn a

mapping M : K → {0, 1}D×N , which represents sketches

as D-bit binary codes B = {bn}
N
n=1 ∈ {0, 1}D×N , while

maintaining relevancy in accordance with the semantic and

visual similarity.

3.2. Two­branch CNN­RNN Network

Overview As previously stated, learning discriminative

sketch features is a very challenging task due to the high

degree of variations in style and abstraction. This problem

is made worse under a large-scale retrieval setting since bet-

ter feature representations are needed for more fine-grained

feature comparison. Despite shown to be successful on

a much smaller sketch dataset [33], CNN-based network

completely abandons the inherent stroke-level temporal in-

formation of human sketches, which can now be modeled

by a RNN network thanks to the seminal work by [5]. In

this work, we for the first time, propose to combine the best

from the both world for human sketches – utilizing CNN to

extract abstract visual concepts and RNN to model human

sketching temporal orders. With additional discriminative

power (temporal cue) injected in, we expect this can lead to

better feature learning.

Two-branch Late-fusion As illustrated in Figure 2, our

two-branch encoder consists of three sub-modules: (1) a

CNN encoder takes in a raster pixel sketch and translates

into a high-dimensional space; (2) a RNN encoder takes in a

vector sketch and outputs its final time-step state; (3) branch

interaction via a late-fusion layer by concatenation. This
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(a) cross entropy loss (b) cross entropy loss + common center

loss

(c) cross entropy loss + sketch center

loss

Figure 3. Geometric interpretation of sketch feature layout obtained by different loss function. The dashed line denotes the softmax decision

boundary. See details in text.

enables our learned feature to benefit from both vector and

raster sketch.

Quantization Encoding layer After the final fusion

layer, we have to encode that deep feature into the low-

dimensional real-valued hashing feature fn (one fully con-

nected layer with sigmoid activation), which will be further

transformed to the hashing code, bn. The transformation

function goes as follows:

bn = sgn(fn − 0.5), n ∈ (1, N). (1)

Learning Objective To obtain the hashing feature fn and

hashing code bn, we could train the network end-to-end

using two common losses similar to those found in image

hashing networks [14]. The first comes with the cross en-

tropy loss (CEL) for K calculated on L-way softmax:

Lcel =
1

N

N∑

n=1

− log
eW

T
yn

fn+b̂yn

∑L

j=1
eW

T
j
fn+b̂j

, (2)

where Wj ∈ R
D is the jth column of the weights W ∈

R
D×L between the quantization-encoding layer and L-way

softmax outputs. b̂j is the jth term of the bias b̂ ∈ R
L.

Quantization loss (QL) is used to reduce the error caused

by quantization-encoding:

Lql =
1

N

N∑

n=1

‖bn − fn‖
2
2, s.t. bn ∈ {0, 1}D. (3)

3.3. Sketch Center Loss

In theory, these two losses should perform reasonably

well on discriminating category-level semantics, however,

our large-scale sketch dataset presents an unique challenges

– sketch are highly abstract, often making semantically dif-

ferent categories to exhibit similar appearance (see Figure

3(a) for an example of ‘dog’ vs. ‘pig’). We need to make

sure such abstract nature of sketches do not hinder overall

retrieval performance. The common center loss (CL) was

proposed in [27] to tackle such a problem by introducing the

concept of class center, cyn
, to characterize the intra-class

variations. Class centers should be updated as deep fea-

tures change, in other words, the entire training set should

be taken into account and features of every class should be

averaged in each iteration. This is clearly unrealistic and

normally compromised by updating only within each mini-

batch. This problem is even more salient under our sketch

hashing retrieval setting – (1) for million-scale hashing, up-

dating common center within each mini-batch can be highly

inaccurate and even misleading (as shown in later experi-

ments), and this problem is worsened by the abstract nature

of sketches in that only seeing sketches within one training

batch doesn’t necessarily provide useful and representative

gradients for class centers; (2) despite of more compact in-

ternal category structures (Figure 3(b) with common center

loss, there is no explicit constraint to set apart between each,

as a direct comparison with Figure 3(c).

These issues call for a sketch-specific center loss that is

able to deal with million-scale hashing retrieval. For sketch

hashing, we need compact and discriminative features to

aggregate samples belonging to the same category and seg-

regate the visually confusing categories. Thus, an natural

intuition would be: is it possible if we can find a fixed but

representative center feature for each class, so to avoid the

computational complexity during training, and meanwhile

enforcing semantics between sketch categories.

We propose sketch center loss that is specifically de-

signed for million-scale sketch hashing retrieval. This is

done by (i) first pretraining CNN-RNN separately for sketch

recognition task and then fine-tuning with our full model,

both with softmax cross entropy loss only; (ii) obtain class

feature center cyn
by calculating the mean of the hashing

feature fn for the noise-removal sketches (detailed later) of

that class based on the pretrained model. By doing so, in

the final fine-tuning stage, we train end-to-end with a fixed

center for each class, thus providing meaningful gradients

during each training iteration, and we empirically find a sig-

nificant performance boost under this sketch-specific center
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Figure 4. Image entropy histogram of ‘stars’ in our training set.

The blue bars denote the bin counts within different entropy

ranges. Some representative sketches corresponding to different

entropy value ranges are illustrated. See details in text.

loss. We hence define our sketch center loss as:

Lscl =
1

N

N∑

n=1

‖fn − cyn
‖22 , (4)

Noise Removal with Image Entropy Key ingredient to a

successful sketch center loss is the guarantee of non-noisy

data (outliers), as it will significantly affect the class feature

centers. However, sketch data collected with crowdsourc-

ing are inevitable to noise, where we propose a noisy data

removal technique to alleviate such issue by resorting to im-

age entropy. Given a category of sketch, we can get entropy

for each sketch and the overall entropy distribution on a cat-

egory basis. We empirically find that keeping the middle

90% of each category as normal samples gives us best re-

sults. In Figure 4, we visualize the entropy histogram of

star samples in our training set. If we choose the middle

90% samples as normal samples for star category, we can

calculate and get the 0.05 and 0.95 percentiles of star im-

ages entropy as 0.1051 and 0.1721, respectively. We then

treat the remaining samples as outliers or noise points (en-

tropy ∈ [0, 0.1051)
⋃

(0.1721, 1]). It can be observed that

low entropy sketches tend to be overly-abstract, yet high en-

tropy ones being messy, sometimes with meaningless scrib-

bles. Nevertheless, sketch data falling into middle entropy

range present more consistent and reasonable drawings.

Full Learning Objective By combining the above, our

full objective becomes:

Lfull = Lcel + λsclLscl + λqlLql, (5)

where λscl, λql control the relative importance of each loss.

The detailed training and optimization procedures are de-

scribed in Algorithm 1.

Algorithm 1 Algorithm for the proposed deep sketch hash-

ing model via multiple staged-pretraining.

Input: K = {Kn = (Pn,Sn)}
N
n=1, Y = {yn}

N
n=1.

1: Train CNN from scratch using {Pn}
N
n=1,Lcel.

2: Train RNN from scratch using {Sn}
N
n=1,Lcel.

3: Parallelly connect pretrained RNN and CNN branches

via hashing quantization-encoding layer. Fine-tune the

fused model using Lcel without binary constraint.

4: Calculate class feature centers basing on the pretrained

model in step 3. Fine-tune the whole network using

Lcel + λsclLscl.

5: Finally, train the model subjected to our full learning

objective, Lfull, with procedures as following (t repre-

sents current iteration):

6: for number of training iterations do

7: for a fixed number of iterations do

8: Fix b
t
n, update Θcnn,Θrnn using (5).

9: end for

10: Fix Θcnn,Θrnn, calculate b
t+1
n using (1).

11: end for

Output: Network parameters: Θcnn and Θrnn. Binary

hash code matrix B ∈ R
D×N .

4. Experiments

4.1. Datasets and Settings

Dataset Splits and Preprocessing Google QuickDraw

dataset [5] contains 345 object categories with more than

100,000 free-hand sketches for each category. Despite the

large-scale sketches publicly available, we empirically find

out that a number of around 10,000 sketches suffices for

a sufficient representation of each category and thus ran-

domly choose 9000, 1000 from which for training and val-

idation, respectively. For evaluation, we form our query

and retrieval gallery set by randomly choosing 100 and

1000 sketches from each category. A detailed illustration

of the dataset split can be found at Table 3. Overall, this

constitutes an experimental dataset of 3,829,500 sketches,

standing itself on a million-scale analysis of sketch spe-

cific hashing problem, an order of magnitude larger than

previous state-of-the-art research [16], which we term as

“QuickDraw-3.8M”. We scale the raster pixel sketch to

224 × 224 × 3, with each brightness channel tiled equally,

while processing the vector sketch same as with [5], with

one critical exception – rather than treating pen state as a

sequence of three binary switches, i.e., continue ongoing

stroke, start a new stroke and stop sketching, we reduce

to two states by eliminating the sketch termination signal

for faster training, leading each time-step input to the RNN

module a four-dimensional input.

Implementation Details Our RNN-based encoder uses

bidirectional Gated Recurrent Units with two layers, with
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No. Model
Mean Average Precision Precision @200

16 bits 24 bits 32 bits 64 bits 16 bits 24 bits 32 bits 64 bits

1 DLBHC [14] 0.5453 0.5910 0.6109 0.6241 0.5142 0.5917 0.6169 0.6403

2 DSH-Supervised [15] 0.0512 0.0498 0.0501 0.0531 0.0510 0.0512 0.0501 0.0454

3 DSH-Sketch [16] 0.3855 0.4459 0.4935 0.6065 0.3486 0.4329 0.4823 0.6040

4 Our+CEL 0.5969 0.6196 0.6412 0.6525 0.5817 0.6292 0.6524 0.6730

5 Our+CEL+CL 0.5567 0.5856 0.5911 0.6136 0.5578 0.6038 0.6140 0.6412

6 Our+CEL+SCL 0.6016 0.6371 0.6473 0.6767 0.5928 0.6298 0.6543 0.6875

7 Our+CEL+SCL+QL (Full) 0.6064 0.6388 0.6521 0.6791 0.5978 0.6324 0.6603 0.6882

Table 1. Comparison with state-of-the-art deep hashing methods and our model variants on on QuickDraw-3.8M retrieval gallery.

Unsupervised Supervised

PCA-ITQ [4] LSH [1] SH [26] SKLSH [19] DSH [7] PCAH [25] SDH [21] CCA-ITQ [4]

HOG

16 bits 0.0222 0.0110 0.0166 0.0096 0.0186 0.0166 0.0160 0.0185

24 bits 0.0237 0.0121 0.0161 0.0105 0.0183 0.0161 0.0186 0.0195

32 bits 0.0254 0.0128 0.0156 0.0108 0.0224 0.0155 0.0219 0.0208

64 bits 0.0266 0.0167 0.0157 0.0127 0.0243 0.0146 0.0282 0.0239

deep feature

16 bits 0.4414 0.3327 0.4177 0.0148 0.3451 0.4375 0.5781 0.3638

24 bits 0.5301 0.4472 0.5102 0.0287 0.4359 0.5224 0.6045 0.4623

32 bits 0.5655 0.5001 0.5501 0.0351 0.4906 0.5576 0.6133 0.5168

64 bits 0.6148 0.5801 0.5956 0.0605 0.5718 0.6056 0.6273 0.5954

Table 2. Comparison with shallow hashing competitors on QuickDraw-3.8M retrieval gallery.

Splits Number per category Amount

Training 9000 9000× 345 = 3105000

Validation 1000 1000× 345 = 345000

Retrieval 1000 1000× 345 = 345000

Query 100 100× 345 = 34500

Table 3. Dataset splits on QuickDraw [5] for our experiments.

a hidden size of 512 for each layer, and the CNN-based

encoder follows the AlextNet [9] architecture with major

difference at removing the local response normalization for

faster training. We implement our model on one single Pas-

cal TitanX GPU card, where for each pretraining stage, we

train for 20, 5, 5 epochs, taking about 20, 10, 10 hours re-

spectively. We set the importance weights λscl = 0.01 and

λql = 0.0001 during training and find this simple strategy

works well. The model is trained end to end using the Adam

optimizer [8]. The learning rate starts at 0.01 and decays

exponentially every 10 epochs by one order of magnitude.

We report the mean average precision (MAP) and preci-

sion at top-rank 200 (precision@200), same with previous

deep hashing methods [14, 35, 15, 16] for a fair compari-

son. Both the dataset and code will be made available from

the SketchX website: http://sketchx.eecs.qmul.

ac.uk/downloads/.

4.2. Competitors

We compare our deep sketch hashing model with several

state-of-the-art deep hashing approaches and for a fair com-

parison, we evaluate all competitors under same base net-

work if applicable. DLBHC [14] replaces our two-branch

CNN-RNN module with a single-branch CNN module, with

softmax cross entropy loss used for joint feature and hash-

ing code learning. DSH-Supervised [15] corresponds to a

single-branch CNN model, but with noticeable difference in

how to model the category-level discrimination, where pair-

wise contrastive loss is used based on the semantic pairing

labels. We generate online image pairs within each training

batch. DSH-Sketch [16] is proposed to specifically target

on modeling the sketch-photo cross-domain relations with a

semi-heterogeneous network. To fit in our setting, we adopt

the single-branch paradigm and their semantic factorization

loss, where word vector is assumed to represent the visual

category. We keep other settings the same.

We compare with six unsupervised (Principal Com-

ponent Analysis Iterative Quantization (PCA-ITQ) [4],

Locality-Sensitive Hashing (LSH) [1], Spectral Hash-

ing (SH) [26], Locality-Sensitive Hashing from Shift-

Invariant Kernels (SKLSH) [19], Density Sensitive Hash-

ing (DSH) [7], Principal Component Analysis Hashing

(PCAH) [25]) and two supervised (Supervised Discrete

Hashing (SDH) [21], Canonical Correlation Analysis Iter-

ative Quantization (CCA-ITQ) [4]) shallow hashing meth-

ods, where deep features are fed into directly for learning.

It’s noteworthy that running each of the above eight tasks

needs about 100 − 200 GB memory. Limited by this, we

train a smaller model and use 256d deep feature (extracted

from the fusion layer) as inputs.

4.3. Results and Discussions

Comparison against Deep Hashing Competitors We

compare our full model and the three state-of-the-art deep

hashing methods. Table 1 shows the results for sketch hash-
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(d) Precision-Recall curves @64 bits

Figure 5. Precision recall curves on QuickDraw-3.8M retrieval

gallery. Best viewed in color.

ing retrieval under both metrics. We make the following

observations: (i) Our model consistently outperforms pre-

vious state-of-the-art deep hashing methods by a significant

margin, with 6.11/8.36 and 5.50/4.79 percent improvements

(MAP/Precision@200) over the best performing competi-

tor at 16-bit and 64-bit respectively. (ii) The gap between

our model and DLBHC suggests the benefits of combin-

ing segment-level temporal information exhibited in a vec-

tor sketch with static pixel visual cues, the basis forming

our CNN-RNN two-branch network, which may credit to

(1) despite human tends to draw abstractly, they do share

certain category-level coherent drawing styles, i.e., starting

with a circle when sketching a sun, such that introducing ad-

ditional discriminative power; (2) CNN suffers from sparse

pixel image input [34] but prevails at building conceptual

hierarchy [17], where RNN-based vector input brings the

complements. (iii) DSH-Supervised is unsuitable for re-

trieval across a large number of categories due to the in-

cident imbalanced input of positive and negative pairs [13].

This shows the importance of metric selection under uni-

versal (hundreds of categories) million-scale sketch hashing

retrieval, where softmax cross entropy loss generally works

better, while pairwise contrastive loss hardly constrains the

feature representation space and word vector can be mis-

leading, i.e., basketball and apple are similar in terms of

shape abstraction, but pushing further away under semantic

distance.

Comparison against Shallow Hashing Competitors In

Table 2, we report the performance on several shallow hash-

ing competitors, as a direct comparison with the deep hash-

ing methods in Table 1, where we can observe that (i) shal-

len dist

model
Our+CEL Our+CEL+CL Our+CEL+SCL Our+CEL+SCL+QL (Full)

16 bits

d1 0.7501 0.5297 0.5078 0.5800

d2 4.9764 3.2841 4.2581 4.8537

d1/d2 0.1665 0.1721 0.1257 0.1290

MAP 0.5969 0.5567 0.6016 0.6064

24 bits

d1 1.2360 0.8285 0.6801 0.8568

d2 6.1266 4.0388 5.0221 6.2243

d1/d2 0.2017 0.2051 0.1354 0.1377

MAP 0.6196 0.5856 0.6374 0.6388

32 bits

d1 2.0066 1.5124 1.0792 1.2468

d2 8.9190 7.3120 7.5340 8.6675

d1/d2 0.2250 0.2068 0.1432 0.1439

MAP 0.6412 0.5911 0.6473 0.6521

64 bits

d1 4.7040 3.5828 1.6109 2.5231

d2 15.4719 14.1112 11.6815 17.6179

d1/d2 0.3040 0.2539 0.1379 0.1432

MAP 0.6525 0.6136 0.6767 0.6791

Table 4. Statistic analysis for distances in the feature space of

QuickDraw-3.8M under our model variants. d1 and d2 denote

intra-class distance and inter-class distance, respectively.

16 bit 24 bit 32 bit 64 bit

Retrieval time per query (s) 0.089 0.126 0.157 0.286

Memory load (MB) 345,000 gallery sketches 612 667 732 937

Table 5. Retrieval time (s) per query and memory load (MB) on

QuickDraw-3.8M retrieval gallery.

low hashing learning generally fails to compete with joint

end-to-end deep learning, where supervised shallow meth-

ods outperform unsupervised competitors; (ii) Under the

shallow hashing learning context, deep features outperform

shallow hand crafted features by one order of magnitude.

Component Analysis We have evaluated the effective-

ness of different components of our model in Table 1.

Specifically, we construct our model training with dif-

ferent loss combinations, including softmax cross en-

tropy loss (Our+CEL), softmax cross entropy plus com-

mon center loss (Our+CEL+CL), softmax cross entropy

plus sketch center loss (Our+CEL+SCL), softmax cross

entropy plus sketch center loss plus quantization loss

(Our+CEL+SCL+QL), which arrives our full model. We

find that with cross entropy loss alone under our two-branch

CNN-RNN model suffices to outperform best competitor,

where by adding sketch center loss and quantization loss

further boost the performance. It’s noteworthy that adding

common center loss harms the performance quite signifi-

cantly, validating our sketch-specific center loss design. In

Figure 5, we plot the precision-recall curves for all above-

mentioned methods under 16, 24, 32 and 64 bit hashing

codes respectively, which further matched our hypothesis.

Further Analysis on Sketch Center Loss To statistically

illustrate the effectiveness of our sketch center loss, we cal-

culate the average ratio of the intra-class distance d1 and

inter-class distance d2, termed as d1/d2, among our 345
training categories. A lower value of such score indicates

a better feature space learning, since the objects within the

same category tend to cluster tighter and push further away

with those of different semantic labels, as forming a more
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Figure 6. Qualitative comparison of top 36 retrieval results of our model and state-of-the-art deep hashing methods for query (dog) at 64

bits on QuickDraw-3.8M retrieval gallery. Red sketches indicates false positive sketch. The retrieval precision is obtained by computing

the proportion of true positive sketch. Best viewed in color.

Model Sketch-a-Net [33] ResNet 50 [6] our RNN branch our CNN branch our RNN&CNN + CEL our RNN&CNN + CEL + SCL

Accuracy 0.6871 0.7864 0.7788 0.7376 0.7949 0.8051

Table 6. Comparison with state-of-the-art methods and our model variants on sketch recognition task on QuickDraw-3.8M retrieval gallery.

discriminative feature space. In Table 4, we witness sig-

nificant improvement on the category structures brought

by the sketch center loss across all hashing length setting

(Our+CEL vs. Our+CEL+SCL), where on contrary, com-

mon center even undermines the performance (Our+CEL

vs. Our+CEL+CL), which in accordance with what we’ve

observed in Table 1.

Qualitative Evaluation In Figure 6, we qualitatively com-

pare our full model with DLBHC [14] and DSH-Sketch [16]

on the dog category. It’s interesting to observe (i) how our

model makes less semantic mistakes; (ii) how our mistake

is more reasonably understandable, i.e., sketch is confusing

in itself in most of our falsely-retrieved sketches, while in

other methods some clear semantic errors take place (e.g.,

pigs and rabbits).

Running Cost We report the running cost as retrieval time

(s) per query and memory load (MB) on QuickDraw-3.8M

retrieval gallery (345,000 sketches) in Table 5, which even

on million-scale can still achieve real-time retrieval perfor-

mance.

4.4. Generalization to Sketch Recognition

To validate the generality of our sketch-specific design,

we apply our two-branch CNN-RNN network to sketch

recognition task, by directly adding a 2048d fully con-

nected layer after joint fusion layer and before the 345-

way classification layer. We compare with two state-

of-the-art classification networks – Sketch-a-net [33] and

ResNet-50 [6], where all above experiments are evaluated

on the QuickDraw-3.8M retrieval gallery set. We demon-

strate the results in Table 6, where following conclusion

can be drawn: (i) Exploiting the sketching temporal or-

ders is important, and by combining the traditional static

pixel representation, more discriminative power is obtained

(79.49%vs.68.71%). (ii) Sketch center loss generalizes to

sketch recognition task, bringing additional benefits.

4.5. Generalization to Zero­Shot Sketch Hashing

We randomly pick 20 categories from QuickDraw-3.8M

and exclude them from training. We follow the same ex-

perimental procedures on 32bit hash codes and report the

MAP performance on the unseen categories. Under such

challenging seen-unseen split, our method’s MAP of 0.7547
outperforms that of DLBHC (0.7094) and DSH-Sketch

(0.5334), by a clear margin.

5. Conclusion

In this paper, we set out to study the novel problem of

sketch hashing retrieval. By leveraging on a large-scale

dataset of 3.8M human sketches, we explore the unique

traits of sketches that were otherwise understudied in prior

art. In particular, we show the benefit of stroke ordering in-

formation by encoding it in a CNN-RNN architecture, and

we introduce a novel hashing loss that accommodates the

abstract nature of sketches. Our hashing model outperforms

all shallow and deep alternatives, and yields superior gen-

eralization performance under a zero-shot setting and when

re-purposed for sketch recognition.
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