
SketchML a Representation Language for Novel Sketch
Recognition Approach

Danilo Avola
Univ. of Rome "La Sapienza"
Dept. of Computer Science

Via Salaria 113, 00189
Rome, Italy

avola@di.uniroma1.it

Andrea Del Buono
National Research Center
CSKLab Research Dept.

Via Savoia 84, 00196
Rome, Italy

delbuono@csklab.it

Giorgio Gianforme
Univ. of Rome "Rome 3"

Dept. of Computer Science
Via Vasca Navale 79, 00146

Rome, Italy
gianforme@dia.uniroma3.it

Stefano Paolozzi
Univ. of Rome "Rome 3"

Dept. of Computer Science
Via Vasca Navale 79, 00146

Rome, Italy
paolozzi@dia.uniroma3.it

Rui Wang
Univ. of Germany "Saarland"
Dept. of Computer Science

Saarbrücken, 66041
Saarbrücken, Germany

rwang@coli.uni-sb.de

ABSTRACT

Multimodal interfaces can be profitably used to support in-
creasingly complex services in assistive environments. In
particular, sketch-based interfaces offer users an effortless
and powerful communication way to represent concepts and
commands on different devices. Unlike other modalities,
sketch-based interaction can be easily fitted according to
heterogeneous services. Moreover it can be quickly person-
alized according to the user needs.
Developing a sketch-based interface for a specific service is
a time-consuming operation that requires the re-engineering
and/or the re-designing of the whole recognizer framework.
This paper describes a definitive framework by which the
user, simply by using freehand drawing, can define every
kind of sketch-based interface. The definition of the inter-
face and its recognition process are performed by using our
developed Sketch Modeling Language (SketchML).

Categories and Subject Descriptors

H.5 [Information Interfaces and Presentation]: Mis-
cellaneous; D.2.8 [Pattern Recognition]: Design Method-
ology—feature evaluation and selection, pattern analysis.

General Terms

Algorithms, experimentation.

Keywords

Sketch-based interfaces, sketch-based interaction, sketch recog-
nition, multi-domain, vectorization, segmentation, XML, SVG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PETRA ’09, June 09-13, 2009, Corfu, Greece.
Copyright 2009 ACM ISBN 978-1-60558-409-6 ...$5.00.

1. INTRODUCTION
Multimodal interfaces allow users to interact naturally

with any desktop or mobile device using multiple modali-
ties (e.g. sketch, gesture, speech, gaze). In assistive envi-
ronments these interfaces can be profitably used to support
increasingly complex services able to improve the quality of
life. In particular, sketch-based interfaces enable users to
express concepts, provide commands, and represent ideas in
an immediate, intuitive and simple way. In fact, the users
can access any kind of device and related services by draw-
ing a set of 2D graphical symbols (e.g. arrows, geometric
symbols, or more complex shapes). In this context a set
of 2D graphical symbols is also called library or application
domain. Unlike other modalities, sketch-based interfaces al-
low users easier customization and quick personalization of
the interaction. The first aspect highlights the simplicity
to draw well known standard graphical symbols (e.g. com-
mands) to access specific services. The second aspect focuses
on the suitability to use drawn symbols (e.g. commands
and/or concepts) to access services according to user needs
and/or capacities.
Developing a sketch-based interface able to distinguish each
symbol that makes up a library is a time-consuming opera-
tion that requires the re-engineering and/or the re-designing
of the whole recognizer framework. This paper describes
a definitive framework by which the user, simply by using
freehand drawing, can define every kind of sketch-based in-
terface based on 2D graphical symbols. The definition of the
interface and its recognition process are performed by using
our developed Sketch Modeling Language (SketchML).
The developed framework, compared to the current proto-
types, has three advantageous main features that jointly
put it in the vanguard in the sketch-based interfaces area.
The first regards the ability to define every kind of library.
In fact, several frameworks are designed to properly rec-
ognize only a specific set of symbols: they could also rec-
ognize other kinds of libraries but this step would involve
the arrangement of the recognition engine inside the frame-
works. The second feature regards the library definition,
simply by using freehand drawing. In fact, there are several

frameworks based on multi-domain concept, but to build a
new application domain it is necessary an expert user with
a deep knowledge about standards, vectorial applications,
programming languages and so on. Using our framework
the user, without special knowledge, can create any kind of
2D graphical symbols. The last feature concerns the defi-
nition of the interface and its recognition process which are
performed by using SketchML, a language based on XML
(eXtended Markup Language) standard. This consolidated
W3C (World Wide Web Consortium) standard allows both
compatibility on different devices and cooperation between
different applications/services.
The paper is structured as follows. Section 2 proposes some
remarkable related works in multi-domain sketch-based in-
terfaces area. Section 3 introduces an overview about the
developed framework. Section 4 shows the library editor
environment. Section 5 describes the sketch recognition en-
vironment. Section 6 discusses about the matching between
the library symbols and the user-performed sketch. Section
7 shows experimental results on a wide application domain
designed to meet the needs of assistive environments. Fi-
nally, Section 8 concludes the paper.

2. RELATED WORKS
This section shows some remarkable works about the multi-

domain sketch recognition frameworks. It is important to
observe, once again, that our further contribution, on this
area, is to provide a framework able to create every kind of
library, simply by using the freehand drawing activity. In
this way, without theoretical and technical specific knowl-
edge a user can build, in real time, every kind of simple or
complex library. Moreover, all the libraries are represented
using the developed XML-based language (SketchML) which
allows both compatibility on different devices and coopera-
tion between different applications/services. In this context,
it has to be highlighted that also dedicated devices, in as-
sisted living, tend to integrate XML language interpreters
in order to allow exchange of information and functionali-
ties between different devices and applications and services.
An interesting framework about multi-domain sketch recog-
nition is presented in [3]. In this work the authors show a
free-sketch recognition framework that allows users to draw
shapes in natural way. In particular, the framework is able
to recognize a variety of defaults domains by exploiting sev-
eral well known techniques able to catch information about:
geometric, features, temporal, contextual, multi-modal and
domain. A different approach is provided in [1]. In this work
the authors present a novel form of dynamically constructed
Bayes net, developed for multi-domain sketch recognition.
The proposed sketch recognition engine integrates shape in-
formation and domain knowledge to improve recognition
process. In [4] the authors show a remarkable agent-based
framework for sketched symbol interpretation that heav-
ily exploits contextual information for ambiguity resolution.
In particular, in this work the agents manage the activ-
ity of low-level hand-drawn symbol recognizers and coor-
dinate themselves in order to exchange contextual informa-
tion, thus leading to an efficient and precise interpretation
of sketches. Another interesting feature-based approach is
shown in [7]. In this work the authors present an advanced
heuristic based framework that offers the user more liberty
for free-style sketching as well as for grouping the strokes,
reducing the complexity for recognizing the sketches. Un-

like previous approaches the authors in [10] introduce a
primitive-based engine. In particular, the authors present
a method for interpreting on-line freehand sketch and de-
scribe a human-computer interface prototype system that
is designed to infer designer’s intention and interprets the
input sketch into more exact geometric primitives: straight
lines, poly-lines, circles, circular arcs, ellipses, elliptical arcs,
and parabolas. An important work, tied to our approach, is
explained in [5]. The authors introduce LADDER, the first
language to describe how sketched diagrams in a domain are
drawn, displayed, and edited. Also in this work the difficul-
ties about a suitable choice of a set of predefined entities
that is broad enough to support a wide range of domains
are faced. This language consists of predefined shapes, con-
straints, editing behaviors, and display methods, as well as
a syntax for specifying a domain description sketch gram-
mar and extending the language, ensuring that shapes and
shape groups from many domains can be described. The just
mentioned work has been a real source of inspiration. Our
proposed SketchML has several common points with LAD-
DER language, but SketchML is more general and it can be
used to represent any application domain. Moreover, our
approach allows users to build any kind of library, simply
by using freehand drawing activity. A particular example is
shown in [11], in this work the authors describe a domain-
independent system for sketch recognition. The developed
system allows users to draw sketches as naturally as they do
on paper, and it recognizes the drawing through imprecise
stroke approximation which is implemented in a unified and
incremental procedure. A different approach is shown in [2],
which describes a framework for recognizing of composite
graphic objects, highlighting the important role played by
topological spatial relationships between their components.
In this work the authors introduce a ternary relationship,
which is a complement to a binary relationship, to describe
composite graphic objects. Another remarkable approach is
shown in [9]. In this work the authors describe a statistical
framework based on dynamic Bayesian networks that explic-
itly models the fact that objects can be drawn interspersed.
We conclude this section showing two approaches based on
HMMs (Hidden Markov Models). In fact, a new interesting
tendency on sketch recognition approaches is to use HMM
to overcome several critical duties, such as: personalization,
graphical noise, shape learning, and so on. For example, a
simple and innovative approach is proposed in [8]. In this
work the authors show that it is possible to view sketching as
an interactive process in order to use HMM for sketch recog-
nition modeling. A different approach is proposed in [6], in
this interesting work the authors describe a framework for
on-line multi-stroke sketch recognition. By using the frame-
work, user sketches are modeled to HMM chains, and strokes
are mapped to different HMM states. The authors have in-
troduced a new method to determine HMM state-number,
based on which an adaptive HMM sketch recognizer is con-
structed.
The mentioned approaches depend on a set of default sym-
bols and/or primitives that are tied to specific application
domains, or they are tied to certain statistical models. More-
over, in both cases, the building of a library is a hard task
that has to be performed by skilled user. Our novel approach
overcomes these problems by using very general primitives.
Moreover every kind of library can be built simply by using
freehand sketch activity.

Figure 1: Library Editor Environment.

Figure 2: Sketch Recognition Environment.

3. DEVELOPED FRAMEWORK
The developed framework provides two different environ-

ments. The first is the Library Editor Environment (LEE),
where the user can define the libraries by means of freehand
drawing. The second is the Sketch Recognition Environment
(SRE), where the system performs the recognition activity,
on a user-drawn sketch, after loading the related library. In
order to explain the functionalities of the two just mentioned
environments, in this section we will give a simple example
based on ERD (Entity Relationship Diagram).
As shown in Figure 1 the user has sketched the third symbol

belonging to the ERD domain, and the LEE has built the re-
lated vectorial representation. The process (shown in section
4) for obtaining the vectorial symbol from the sketched sym-
bol is the main aspect of our paper. In Figure 2 a recognition
process (shown in section 5) about a simple ERD example is
given. In order to understand the matching process (shown
in section 6) it is important to observe that both vectorial
representation of the library symbols built in LEE and vecto-
rial diagram obtained by recognition process in SRE are ex-
pressed by our XML-based developed language: SketchML.
The use of sketch-based interfaces allow the users, both in
LEE and SRE, to perform several useful activities, such as:
deletions, restyling of the whole symbol/object (set of sym-
bols) or part of it, and so on.
SRE exploits the knowledge of the symbols that make up the
loaded library to improve the recognition process. In fact,
as just mentioned, the final result of the library definition is
an XML file that describes (by SketchML) each and every
symbol. Also the final result of the recognized user sketch

Figure 3: Correct/Incorrect ERD Example.

is an XML file that describes the whole sketch performed
by the user. But this last file takes into account only the
recognized symbols according to the loaded library. In or-
der to explain the just mentioned concepts it is important
to introduce the example in Figure 3, that is based on the
five symbols belonging to the ERD library.
In Figure 3-a the user has correctly sketched an ERD ex-

ample. More exactly, the user has sketched the following
sequence of ERD symbols: three primary keys, three enti-
ties, two relationships, three attributes and ten associations
(twenty one total objects). In Figure 3-b, all the drawn
objects have been recognized and an XML file (described in
the next section by SketchML) that describes each one of the
twenty one objects has been created. Indeed, as explained
in the next sections too, the situation is more complex than
one just mentioned. In fact, taking into account the sym-
bols belonging to the loaded library, it is possible to observe
that the sketched symbol of association (shown in Figure 3-a
by labels 1 and 2) is not a library symbol. It is recognized
as an association symbol because it results from the com-
positions of two symbols of the ERD library (that is two
association symbols) with a particular constraint (an angle
of ninety degrees). In Figure 3-c is shown the matching pro-
cess (explained in the relative section) of each symbol. This
process allows the framework to map every object sketched
by the user (in SRE) with a symbol belonging to the related
library (defined in LEE). Unlike the previous example, in
Figure 3-d the user has incorrectly sketched an ERD exam-
ple. In fact, as shown in Figure 3-e, seventeen objects have
been recognized and four objects have not been recognized.
In this case the XML file will contain only the description
of the seventeen objects. In Figure 3-f is detailed each one
of the matching process between the objects drawing by the
user and the loaded library. This example highlights that
four objects have not satisfied the matching requirements
(in fact the matched objects are seventeen), this means that
these four objects were not matched with a library symbol
by the matching process, and there is no SketchML descrip-
tion for these objects.
In the next two sections show the approaches and the algo-
rithms behind the two just introduced environments, in a
further section the approach used to perform the matching
process between a loaded library and the sketch performed
by the user is given.

Figure 4: Stroke, Sub-Strokes, Generalized Strokes.

Figure 5: Library Editor Environment Schema.

4. LIBRARY EDITOR ENVIRONMENT
This section details approaches and algorithms that form

the core of the LEE. In order to explain the section content,
the following three definition are introduced.

• Stroke: set of pixels obtained during the following pen
action: pen down, pen drawing, pen up.

• Sub-Stroke: subpart of a Stroke. When two (or more)
strokes are crossed several intersection points are cre-
ated. By these points a lot of sub-strokes can be iden-
tified.

• Generalized Stroke: it is made up from two (or more)
sub-strokes coming from different strokes.

In Figure 4-a an example of stroke is shown. In particular,
the circle indicates the start point of the stroke (pen down),
and the arrowhead indicates the final point of the stroke (pen
up). In Figure 4-b, by two start points, two end points, and
the intersection point (shown by the empty circle) four sub-
strokes are identified (respectively labeled by: 1, 2, 3 and
4). Finally, in Figure 4-c two generalized strokes are shown,
more exactly the generalized stroke made up by sub-strokes
labeled with 1 and 2, and that one made up by sub-strokes
labeled with 3 and 4 (other combinations are available).
In Figure 5 a simple schema about the basic concepts that

drive the making of a general library is given. The first mod-
ule (First Layer Segmentation Algorithm) is used to obtain,
from the strokes performed by the user during sketch activ-
ity, two kind of objects: closed regions and poly-lines. In
the second module (Second Layer Segmentation Algorithm)
each object is analyzed in order to detect the set of primi-
tives that makes it up: ovals and lines. In the third mod-
ule (Constraints Determination) the spatial relationships be-
tween the discovered primitives are evaluated. The role of
the fourth module (SketchML Descriptor) is “to translate”
all the found information in an XML/SVG structure.
Next subsections show each module of the proposed schema.

Besides, the example in Figure 6 will attend each section in
order to explain the involved processes. In particular, Fig-
ure 6-a shows a sketched symbol that the user wants to add
to the library. Figure 6-b shows the related vectorial rep-
resentation added to the library and described inside the
framework by SketchML. Figure 6-c will be explained in the
next subsection.

Figure 6: A Library Symbol Example.

Figure 7: Ambiguity Examples.

Figure 8: Algorithm Interpretation.

4.1 First Layer Segmentation
The aim of the first layer segmentation algorithm is to

provide two different set of objects: closed regions and poly-
lines. This concept is not so simple as it might appear.
In fact, there is not a unique interpretation about the two
sketched strokes (S1 and S2) drawn in Figure 7-a. For exam-
ple, the two strokes could be interpreted as two overlapped
closed regions (A1 and A2, Figure 7-b), otherwise they could
be interpreted as two closed regions and a poly-line (A1,
A2 and P1, Figure 7-c). In another interpretation the two
strokes could be interpreted as three closed regions (A1, A2

and A3, Figure 7-d). Moreover, there are other available
interpretations. This kind of issues, defined as ambiguity
problems, are a crucial point of every sketch recognition sys-
tem. In order to overcome them, the first layer segmentation
algorithm works taking into account the following two char-
acterizations of closed region and poly-line.

• Closed Region: it is the smallest area confined by a
set of strokes and/or sub-Strokes and/or generalized
strokes.

• Poly-Line: it is the smallest stroke or sub-stroke.

With these characterizations, every sketch can be interpreted
in a unique way. To highlight the algorithm approach in Fig-
ure 8 some examples of developed algorithm interpretation
are given. More specifically, the two strokes drawn in Fig-
ure 8-a are interpreted, as shown in Figure 8-b, as three
closed regions (A1, A2, A3). The two strokes drawn in Fig-
ure 8-c are interpreted, as shown in Figure 8-d, as two closed
regions and two poly-lines (A1, A2, P1, P1). The two strokes
drawn in Figure 8-e are interpreted, as shown in Figure 8-
f, as a closed region and a poly-line (A1, P1). Finally, the
stroke drawn in Figure 8-g is interpreted, as shown in Fig-
ure 8-h, as a closed region and two poly-lines (A1, P1, P2).

Figure 9: Closed Regions and Poly-Lines.

Figure 10: Exhaustive Sub-Algorithm.

On the example previously introduced to explain the whole
LEE process (Figure 6) the just mentioned characterizations
provide the following set of objects: five closed regions and
six poly-lines (Figure 6-c).
More formally our algorithm works according to the follow-
ing main process:

Algorithm 4.1.1. The main step is to detect all the in-
tersection points belonging to the sketch performed by the
user. Subsequently, the following two sub-steps have to be
performed:

(i) every stroke, without intersection points, is analyzed
from a simple sub-algorithm able to check if it is closed
or not. The sub-algorithm performs this easy task look-
ing for a relationship of proximity between start and
end points of the stroke.

(ii) every intersection point is used to look for the max-
imum number of disjoined areas. To accomplish this
task an exhaustive sub-algorithm is performed. From
every interaction point each possible closed path is iden-
tified. During this process the exhaustive sub-algorithm
considers, step by step, only the smallest areas that
not overlap (entirely or in part) other detected areas.
In particular, the sub-algorithm will consider only the
smallest closed path (i.e. the smallest length in pixels
of the path that start and end on a same intersection
point).

In order to explain Algorithm 4.1.1, in Figure 9 a brief ex-
plication, about the involved steps, is given. By first point
of the proposed algorithm (i) applied to the sketched symbol
in Figure 9-a two closed regions and two poly-lines are found
(as shown in Figure 9-b, A1, A2 and P1, P1). By the second
step (ii), three intersection points are detected (as shown in
Figure 9-c, 1, 2 and 3). In Figure 10 is shown how the ex-
haustive sub-algorithm, working on the intersection points,
is able to detect the remaining closed regions and poly-lines.
More specifically, in Figure 10-a the two intersection points
about the crossed strokes are shown (1 and 2). As it is pos-
sible to observe in Figure 10-b the first intersection point (1)
is used to detect the smallest path (i.e. the area A3) that
start and end on 1. After this choice the sub-algorithm takes
into account two areas: the U1 area and the union between
the U1 and A3 areas. This second area is discarded because
it covers (in part) a just found area (A3), for this reason

Figure 11: Primitives of a drawn stroke.

only the U1 area, that once definitively detected is called
A4, is considered (as shown in Figure 10-c). A very similar
reasoning can be applied to the involved U2 and A3 areas
(shown in Figure 10-d). In this way the maximum number
of areas (A3, A4, A5) can be detected by the sub-algorithm
(as shown in Figure 10-e). It is important to observe that,
in this case, further analysis of the second intersection point
(2) would not be useful to add other areas, and the sub-
algorithm ends. A similar approach is followed to detect
the objects involved by the third intersection point (3, Fig-
ure 10-f). This time it is not possible to obtain a closed path,
and (as shown in Figure 10-g-h-i-l) four poly-lines (P3, P4,
P5, and P6) are found.

4.2 Second Layer Segmentation
Starting from the set of objects (closed regions and poly-

lines) identified by the previous module, the aim of the sec-
ond layer segmentation algorithm is to recognize, on each
object, the set of primitives that makes it up. In our con-
text, the term primitive means only two specific geometrical
primitives: line and oval (and as particular case every kind
of arc and, obviously, the circle).
The reasoning behind the developed algorithm is that ev-
ery “segment” of a shape can be approximated by the men-
tioned geometrical primitives. In order to explain the just
introduced concept in Figure 12 an example is shown. Delib-
erately the example regards a messy stroke that improbably
can be used to make a symbol. But our intent is to show
that the proposed approach is very general, and it can be
used on every kind of sketch.
As shown in Figure 11-b, the first searched primitives are

the lines (in this case the algorithm detects six lines iden-
tified by L1..L6), the remaining searched primitives are the
ovals or, as in this example, the sub-parts (arcs) of different
ovals (in this case the algorithm finds, as shown in Figure 11-
c, eight arcs O1..O8).
More formally the discussed algorithm works according to
the following main process:

Algorithm 4.2.1. The main step is to analyze every closed-
region and poly-line by the following two sequential sub-steps:

(i) line detection: on every object (closed region and/or
poly-line) the longer set of points having a linearity
property are searched. In this context, the term lin-
earity property is used to indicate a contiguous set of
points (having a prefixed minimum length, called Lfix,
measured in pixels), independently from the orienta-
tion, that can be considered belonging to a same pre-
fixed enclosing rectangle (i.e. a oriented rectangle, as
shown in Figure 13, having a fixed Rheight).

(ii) oval (and sub-parts) detection: every set of points dis-
carded by the previous step is an oval (or arc) candi-
date. For this reason a curvature property, on this set
of points, is checked. In this context, the term cur-
vature property is used to indicate a contiguous set of

Figure 12: Example of Line and Oval Detection.

points, independently from the orientation, in which
the linearity property is true but only on contiguous
sub-set of points having a length lower than Lfix.

It is important to observe that the main parameters (Lfix

and Rheight) can depend on different factors, including: in-
teraction tool, device, pre-processing approach used to ”clean”
the user sketch, and so on. Indeed, the two steps work coop-
eratively for “progressive refinements”. This means that the
algorithm is applied several times until every set of points
has found a suitable collocation as line or oval (or part of
it).
In order to explain the just mentioned algorithm, in Fig-
ure 12 a brief description about the working algorithm is
given. In Figure 12-a the set of points representing a stroke
is given. As shown, the algorithm starts from the first point
(Figure 12-b) and tries to approximate the following points
by a prefixed enclosing rectangle (Figure 12-c, Figure 12-d,
Figure 12-e, Figure 12-f and Figure 12-g). When there is
not an orientation of the enclosing rectangle able to content
all the analyzed points (Figure 12-h), the previous enclos-
ing rectangle is considered, and a new enclosing rectangle is
created to analyze the remaining points (Figure 12-i). This
approach ends when the set of points is entirely analyzed
(Figure 12-l). After this step, all the enclosing rectangle
are used to approximate the related points with a vectorial
line (Figure 12-m). The set of lines which elements have a
length lower (or equal) than a fixed threshold (in this exam-
ple Lfix = 4points) are approximated with an oval or part
of it (Figure 12-n).
Obviously, this kind of reasoning is better applied to real
cases, where the strokes are made up from several points.
Besides, it has to be taken into account that when the al-
gorithm approximates a set of “short” lines with an oval (or
arc) there is the possibility to modify also the elements that
surrounds the oval (the left element and the right element,
in this case L1 and L2). The aim of this refinement step is
to provide the best approximation to the set of points that
makes up the oval (or arc). The modification of these ele-
ments is a very simple task. It consists in the losing of some
points and to provide them to the set of points that makes
up the oval (or arc). At the end of the developed algorithm a
first step toward the vectorization is accomplished. In fact,
the following “substitutions” between the found primitives
and basic SVG (Scalable Vector Graphics, which is an XML
based language) shapes is performed:

• Primitive Line: defined by Line SVG basic shape hav-
ing the following main attributes: x1: the x-axis coor-
dinate of the start of the line (default value is 0), y1:
the y-axis coordinate of the start of the line (default
value is 0), x2: the x-axis coordinate of the end of the
line (default value is 0), and y2: the y-axis coordinate
of the end of the line (default value is 0).

Figure 13: Recognition of: Lines and Ovals.

• Primitive Oval: defined by Ellipse SVG basic shape
(and as particular case the circle) having the follow-
ing main attributes: cx: the x-axis coordinate of the
center of the ellipse (default value is 0), cy: the y-axis
coordinate of the center of the ellipse (default value
is 0), rx (length): the x-axis radius of the ellipse, ry

(length): the y-axis radius of the ellipse.

• Primitive Part of Oval (every kind of Arc): defined by
Path SVG basic shape having the following commands:
M = moveto, L = lineto, H = horizontal lineto, V =
vertical lineto, C = curveto, S = smooth curveto, Q =
quadratic Belzier curve, T = smooth quadratic Belzier
curveto, A = elliptical Arc, Z = closepath.

Figure 13 shows the recognition of the primitives on the
example given in Figure 6. It is possible to observe the
generation of some duplicates lines (for example the line:
L11 and L15) during the algorithmic process, this is correct
because when a line belongs to two different objects (as in
this case that belongs to two different closed regions) the
lines have to be considered separately. In fact, this allows
the general working of the proposed approach.

4.3 Constraints Determination
Starting from the set of primitives (lines and/or ovals (or

arcs)) that makes up every object (closed region and/or
poly-line), the aim of the constraints determination is to
detect, for every object, the spatial relationships between
them. More specifically, the constraints are searched on each
one of the just found vectorial primitives: line, ellipse, and
path. The constraints obtained from our recognizer engine
can be subdivided according to the following classification:

• Individual Constraints: evaluated on each single vec-
torial primitive.

• Internal Constraints: evaluated between primitives of
the same object.

• External Constraints: evaluated between primitives of
different objects.

The following specific measures represent some of the most
common adopted constraints:

• Individual Constraints: orientation (to indicate the
degree orientation of a primitive), closure (to indi-
cate the distance between the start point and the end
point), etc..

• Internal Constraints: coincident (to indicate the ge-
ometrical coincidence (in a point) between two prim-
itives), equalLength (to indicate an equal length be-
tween two primitives), intersect (to indicate the geo-
metrical intersection (in one or more points) between

two primitives), rightAngle (to identify a right angle
(90 degrees) between two lines), etc..

• External Constraints: contain (to indicate the geomet-
rical containment of a set of primitives in another one);
vertical alignment (to identify the vertical alignment of
a set primitives with another), etc..

The just mentioned constraints are able to convey detailed
relationships on both a single primitive and a set of prim-
itive. Indeed, there are several internal and external con-
straints that describe same measures, the difference is that
the first one works on primitives of a same object, while the
second one works on different objects. Every constraint has
several attributes that specify the constraint type. For ex-
ample the individual constraint orientation has an attribute
to identify the orientation degree, in our context this at-
tribute has seventy-two values to indicate, with a tolerance
of step five degrees, the possible orientation of a line. Ob-
viously, if orientation is applied to another primitive (e.g.
path) it assumes a different meaning (it is used to indicate
the concavity and the convexity).

4.4 SketchML Descriptor
Indeed, when the recognition process reaches this module

every hard task has been performed. In fact, according to
the detected constrains, this module has only to “translate”
the just obtained vectorial information (i.e. the SVG basic
shapes and the related constrains) in XML language. This
set of vectorial information, suitably translated, makes up
the main constructs of the SketchML.
The amount of information (i.e. the XML description and
related constraints) needed to represent (by SketchML) a
simple and single symbol is very large, in Figure 14 a real
simplified example of only some individual and internal con-
straints is given. In particular, the shown example is related
to a simple shape representing a square, as the external
square (shown in Figure 13) made up from the lines: L1,
L2, L3 and L4. The first kind of shown constraints (individ-
uals) describe only the orientation of each line, while the sec-
ond kind of shown constraints describe some spatial relation-
ships between the lines. For example, the GreaterLength

constraint (applied respectively to the arguments L1, L2)
describes that the second line (L2) is greater than the first
line (L1) by about 40 percent.
It is important to highlight, once again, that the XML/SVG
structure tends to provide both a suitable way to manage
the symbols and a standard approach to increase interop-
erability between different devices and related applications
and services.

5. SKETCH RECOGNITION ENVIRON.
This environment is used to recognize one or more library

symbol. In the first case (for example when a user expresses
a command) the environment works exactly as the LEE.
Another further step (as shown in the next section) is the
matching process to map the performed sketch with a related
library symbol. In the second case (for example when a
user expresses a concept) it is necessary some sort of pre-
processing (performed by the context, that is, the loaded
library) to recognize (first of all) how many symbols the user
has drawn. After this step, on each “candidate” object, the
matching process can be performed. To accomplish this task

Figure 14: A Brief SketchML Representation.

all the intersection points (of the sketch performed by the
user) are evaluated. After this step the system detects the
intersection points that do not have “correspondence” with
the intersection points used to build the library, in this way
a first evaluation about the number of the sketched objects
can be performed. Obviously, these intersection points may
be absents, and the same library can be made using symbols
without intersection points.

6. MATCHING PROCESS
The final purpose of matching between symbols sketched

by the user in the SRE and the symbols represented in a spe-
cific library (made up by LEE) is to choose the right element
inside the library that provides the suitable interpretation
of the sketched symbols. As mentioned, every symbol of the
loaded library inside the framework is described through an
XML/SVG file. Also the user’s sketch has been represented
using XML/SVG file that contains information comparable
to the symbols of the library. The matching algorithm per-
forms an exhaustive search of the particular patterns created
by the user during sketch activity. Every SVG basic prim-
itive (that is, Line, Ellipse and Path), coming from library
or user’s sketch, is represented by a node and a set of re-
lationships (the constraints) between the nodes. Moreover,
two or more related basic symbols (for example the con-
tainment constraint) are represented by two macro-nodes
between which exist a macro-relation (in this case, the con-
tainment). The matching approach starts from a generic
node (of the sketch representation), it performs a matching
action with every node of the same kind (such as: line, ellipse
or path) presents in the symbol of the loaded library. Obvi-
ously, the process appears exponentially complex specially
when the first nodes are examined. This happen because the
system has more information about the sketch in according
to the amount of the analyzed nodes of the sketch. The next
step is to get the first (not yet examined) node of the sketch
that has to be assigned to another node of the loaded li-
brary. To perform this second step it is necessary to exploit
the relationships between the previous selected node and the
actual selected node. In this way, with the increasing of the
examined nodes decrease the disagreeing probability space.
The process ends when all the nodes are examined. When
this happens several possible configuration will be identified
by the system. Each one will have a rank depending on the
quality of the accomplished matching. Several configuration

will have a very low rank, others will have a suitable rank-
ing profitable to identify the right pattern (i.e. the right
symbol).

7. EXPERIMENTAL RESULTS
This section shows the results obtained on a wide appli-

cation domain designed to meet the needs of heterogeneous
assistive environments. In particular, the domain is made
up from several simple and complex symbols able to ex-
press commands to drive different devices in any context.
As shown in Table 1 the application domain was made up
from 154 different symbols. Several symbols (e.g. arrow) can
have up to eight different orientations (North, East, South,
West, Northeast, Southeast, Southwest, Northwest) each of
which is considered a different symbol. For each symbol, an
average of 75 tracking were performed, for a total of 11.570
tests. The involved population was made up from about 80
people, of these 65% were university students between 25
and 35 years old. The remaining were volunteers (e.g. em-
ployees, researchers) with over 56 years old. The population
was equally divided between males and females and it had
a 15% of left-handed. All people have drawn all symbols
according to a given schema in which was highlighted the
symbol that had to be drawn and the related number of
times.

The percentage of recognition on each symbol is almost
total. Indeed, this percentage tends to be slightly lower
according to the complexity of the symbol. In fact, for sym-
bols made up from more than 7 strokes some constraints
may be ambiguous and misinterpreted. In order to over-
come this problem, it is possible to introduce in the frame-
work a more complex personalization concept. This would
allow the framework to recognize each symbol according on
both the vectorial model created by the framework during
the user activity in LEE and some similarity criteria tied to
the way in which the user has designed the symbol. More-
over, it is possible to consider a new class of constraints (i.e.
control constraints) able to oversee ambiguous potentially
situations. The framework has been also tested on more
traditional domains (i.e. entity relationship diagram, data
flow diagram, electrical schemes, and so on) providing al-
ways a total level of reliability. Ultimately it is important
to highlight that the framework builds the symbol accord-
ing to the user drawing. For this reason, for example, the
symbols shown in the first and fourth row of the Table 1 are
considered different. Indeed, this is a huge advantage for

the personalization of the user libraries. Moreover, if neces-
sary, can always be introduced equivalence criteria between
symbols in order to relax the constraints.

8. CONCLUSIONS
The proposed approach provides a pragmatic sketch-based

framework able to build and to recognize every kind of 2D
graphical library. The key point is that a user, without
special knowledge, can create a personalized library simply
sketching the wanted symbols. The simple and versatile lan-
guage used to represent the sketch activity (SketchML) al-
lows the cooperation of the proposed framework with a large
number of devices and related applications/services. The
framework can be adapted to support also the 3D libraries
(adding another category of 3D-oriented constraints).

9. REFERENCES
[1] C. Alvarado and R. Davis. Dynamically constructed

bayes nets for multi-domain sketch understanding. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses,
page 33. ACM, 2007.

[2] L. W. B. Peng, Y. Liu and G. Huang. Sketch
recognition based on topological spatial relationship.
In Book Series in LNCS, Structural, Syntactic, and
Statistical Pattern Recognition, volume 3138/2004,
pages 434–443. Springer Berlin / Heidelberg, 2004.

[3] T. H. et al. Free-sketch recognition: putting the chi in
sketching. In CHI ’08: CHI ’08 extended abstracts on
Human factors in computing systems, pages
3027–3032. ACM, 2008.

[4] V. M. G. C. G. Casella, V. Deufemia and M. Martelli.
An agent-based framework for sketched symbol
interpretation. Journal of Visual Languages and
Computing, 19(2):225–257, 2008.

[5] T. Hammond and R. Davis. Ladder: a language to
describe drawing, display, and editing in sketch
recognition. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Courses, page 27, New York, NY, USA, 2006.
ACM.

[6] E. Jiang and Z. Sun. Hmm-based on-line multi-stroke
sketch recognition. Proceedings of the Fourth
International Conference on Machine Learning and
Cybernetics, 7:4564–4570, 2005.

[7] G. Sahoo and B. Singh. A new approach to sketch
recognition using heuristic. 8(2):102–108, 2008.

[8] T. Sezgin and R. Davis. Hmm-based efficient sketch
recognition. In IUI ’05: Proceedings of the 10th
international conference on Intelligent user interfaces,
pages 281–283, New York, NY, USA, 2005. ACM.

[9] T. M. Sezgin and R. Davis. Sketch recognition in
interspersed drawings using time-based graphical
models. Comput. Graph., 32(5):500–510, 2008.

[10] S. xia Wang, M. tun Gao, and L. hua Qi. Freehand
sketching interfaces: early processing for sketch
recognition. 4551/2007:161–170, 2007.

[11] B. Yu and S. Cai. A domain-independent system for
sketch recognition. In GRAPHITE ’03: Proc. of the
1st intern. conf. on Computer graph. and interactive
tech. in Australia and South East Asia, pages 141–146,
New York, NY, USA, 2003. ACM.

