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Digitalization of handwritten documents has created a greater need for accurate online recognition of hand-drawn sketches.
However, the online recognition of hand-drawn diagrams is an enduring challenge in human-computer interaction due to the
complexity in extracting and recognizing the visual objects reliably from a continuous stroke stream. +is paper focuses on the
design and development of a new, efficient stroke-based online hand-drawn sketch recognition scheme named SKETRACK for
hand-drawn arrow diagrams and digital logic circuit diagrams. +e fundamental parts of this model are text separation, symbol
segmentation, feature extraction, classification, and structural analysis. +e proposed scheme utilizes the concepts of normal-
ization and segmentation to isolate the text from the sketches. +en, the features are extracted to model different structural
variations of the strokes that are categorized into the arrows/lines and the symbols for effective processing. +e strokes are
clustered using the spectral clustering algorithm based on p-distance and Euclidean distance to compute the similarity between the
features and minimize the feature dimensionality by grouping similar features. +en, the symbol recognition is performed using
modified support vector machine (MSVM) classifier in which a hybrid kernel function with a lion optimized tuning parameter of
SVM is utilized. Structural analysis is performed with lion-based task optimization for recognizing the symbol candidates to form
the final diagram representations. +is proposed recognition model is suitable for simpler structures such as flowcharts, finite
automata, and the logic circuit diagrams. +rough the experiments, the performance of the proposed SKETRACK scheme is
evaluated on three domains of databases and the results are compared with the state-of-the-art methods to validate its
superior efficiency.

1. Introduction

Communications between humans have been performed in
many modes over the generations. Sketches are the basic
form of communication that has been prevalent from the
ancient human civilizations since the prehistoric periods.
Many remains of this communication are still found in cave
arts and pictograms which are widely considered as a
benchmark to study the development of civilizations. Recent
years have seen many works initiated to capture and rec-
ognize the handwritten documents including the hand-
drawn sketches [1–3]. Digitalization of these handwritten

documents has gained considerable research interest for
historical documentation applications. +ese applications
are merely focussed on processing the images or photo-
graphs of such handwritten documents and sketches.
However, the main challenge lies in automatically recog-
nizing these freehand contents in a machine such as com-
puter. +is challenge forms the fundamental process of
digitalization [4]. Apart from historical freehand sketches
and writings, today’s digital era has paved the way for de-
veloping applications to follow freehand writing and
sketching experience for the users. +e rapid emergence of
portable touch screen gadgets and smartphones has also
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contributed significantly to the users to draw the hand-
drawn sketches on their screens using their fingers. Rec-
ognition of these freehand sketches is still challenging due to
the nonuniform sketch patterns and noncompliance with
rule books. +is significantly increases the complexity in
recognizing the freehand sketches but has also increased the
research on digitalizing the handwritten documents [5]. In
this modern era, the sketches, both online and offline drawn
diagrams, play a greater role in gaming, animation, archi-
tects, designers, and programmers to design their reference
models. In such cases, the need for recognizing these
sketches is necessary for efficient and time-saving working
environments. +is has increased the popularity in studying
the freehand sketches in the recent years, with more focus
intended towards the sketch recognition, sketch-based data
retrieval, and sketch abstraction for other applications. +e
freehand sketches in virtual mediums can be stored in image
or web documents and can be recognized effectively through
suitable tools [6, 7]. However, there are more challenges in
acquiring the best results when the quality of input data
decreases.

+e task of automatically recognizing the freehand
sketches is a nontrivial problem compared to automatically
recognizing the normal image and traditional sketch pro-
cessing models such as computer-aided design (CAD). +e
major difference is the relatively large intraclass variations
and interclass uncertainties in the automatic recognition
procedure [8]. +e sketches are composed of complex
structures that are represented in abstract forms and more
free-style drawing where the complete process is un-
constrained. +ese freehand sketches are entirely different
from the conventional images in which the recognition is
performed based on image features or visual cues such as
colour and texture [9]. Likewise, the freehand sketches do
not have similar properties with textual drawing where the
sketches are composed of uniform and constrained struc-
tures. +ese unique features of the freehand sketches make it
inappropriate to use the traditional contour matching
schemes for recognition [10, 11].

+e offline recognition of freehand sketches is for
working on images that are scanned by scan devices or
pictures that are taken by cameras. Time or ordering in-
formation of traces or the points in traces is not included.

+e online recognition of freehand sketches for images is
drawn by gadgets like smartphones or tablets [12, 14]. Online
handwriting data can be inspected based on strokes. +e
ordering or time information of strokes and the points in
strokes is given. Our work is an example of online freehand
sketch recognition. As such, the databases we use have time
and ordering information of the traces and points in them.

+ere have been many research works focussed on some
of the sketch-related fields, such as sketch-based image
retrieval [15], video retrieval [16], action analysis [17],
segmentation [7], and recognition [18]. +e interest in
modelling and developing accurate sketch recognition
models has been increasing massively especially after the
recent advancements in soft computing techniques. +e
simpler freehand sketches consisting of strokes include the
arrow-based diagrams and the line-based diagrams are

highly employed for evaluating these models due to the
application of these diagrams in wider domains. Even these
sketches are challenging to recognize due to their varying
representations by the users [18]. +is work is focussed on
resolving this complexity by developing a mode that can
recognize the arrow-based online sketches and the simpler
logic circuit sketches. +is work utilizes the strokes to
recognize the lines, arrows, and symbols in the sketches and
then detects the relations between them. +ese results are
merged by the structural analysis component to recreate the
sketches with accurate recognition.

+ere are three contributions in this work. First, a feature
extraction is formulated to store and encode the different
structural variations of different shape strokes in the input
freehand sketches. Secondly, the p-distance and Euclidean
distance are utilized to reduce dimensions of the stroke
features and are clustered using the spectral clustering al-
gorithm. +ird, the major contribution is the development
of modified SVM (MSVM) classifier for the recognition
process. +e SVM is modified by utilizing the classification
concept of k-nearest neighbours (KNN) algorithm for
assigning the boundary limits based on which a hybrid
kernel is presented and the task is optimized using the lion
optimization algorithm. +is modification of the SVM al-
gorithm enhances the overall performance of the recogni-
tion of online freehand sketches. +e remainder of this
article is organized as follows: Section 2 presents a discussion
on recent related works. Section 3 describes the sketch
structure and supported formats. Section 4 explains the
proposed recognition scheme of SKETRACK. +e experi-
ments and the analysis results are given in Section 5 while the
conclusions are discussed in Section 6.

2. Related Works

Recognition of handwritten documents and freehand
sketches has been a popular research domain in the recent
years. Many researchers have tried to develop efficient and
accurate recognition models of which some of the prom-
inent works are discussed here. Li et al. [19] suggested the
concept of utilizing star graph-based ensemble matching
and unified ensemble matching with multi-SVM classifi-
cation-based categorization of structured features for sketch
recognition. +ese ensemble approaches exploit the local
and global feature representations and provide accurate
sketch recognition by overcoming the limitations of SVM.
Li et al. [20] also developed a freehand sketch recognition
approach using the multikernel feature learning concept that
fuses several common features of sketches to recognize
them. However, this approach has quality limitations in
matching some common features due to the fault of users
drawing different shapes in a similar manner.+is limitation
requires the application of uniform attributes to super-
categorize and form subcategories that create branching
processing and become ineffective. Li et al. [21] also pre-
sented another freehand sketch synthesis approach using
deformable stroke model which consists of standard
drawing format and varying formats of each shape and
symbol. Based on these strokes’ knowledge, the generative
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data-driven model detects the diverse sketch objects
without any training or additional alignments. However,
this feature extraction model detects the sketches using
perception grouping results of many similar sketches, but
when the recognition is for single sketch, the results may
be not promising. Likewise, the unsupervised nature of
this model makes it difficult to recognize the complex
structured sketches. Huang et al. [22] developed an ap-
proach for data-driven segmentation and labelling of
freehand sketches for accurate recognition. +is approach
initially models the sketch segmentation problem using
mixed integer programming to optimize the local features
and global features of the connected structures in a sketch.
However, the accuracy can still be improved if the se-
mantic features are considered. Schneider and Tuytelaars
[23] employed the Fisher vectors to enable the sketch
classification for highly accurate recognition of freehand
sketches. +is data-driven approach also modified the
standards to match the semantic similarity of the sketches
irrespective of the humans who drew the sketch. However,
the overall performance is not perfect due to the greedy
nature of recognition.

Bresler et al. [24] provided an approach to detect the
arrows in online sketched diagrams using the concept of
relative stroke positioning for arrowhead classification. +is
approach is highly effective for the recognition of arrows in
flowchart and finite automata sketches. However, this ap-
proach provides slightly worst results in terms of relative
positioning as the fuzzy positioning principle is not used.
Bresler et al. [25] also presented an online recognition model
for sketched arrow-connected flowcharts and finite
automata diagrams. +is approach employed the concept of
symbol candidate selection based on evaluation relations
between them using a knowledge domain. +is system is
efficient in recognizing the arrow-based diagrams accurately,
but the recognition time is high as the recognition process
utilizes all the past knowledge before providing the result.
Similarly, there is a common possibility of error when the
input sketch is of different style than the past knowledge.
Zheng et al. [26] proposed an approach for discovering
discriminative patches of the freehand sketches for im-
proved analysis results. +e presented approach belongs to
weakly supervised learning approaches and utilizes the
pyramid histogram of oriented gradient to represent the
discriminative patches which are further analysed using an
iterative detection process for accurate discovery. However,
this approach supports only qualitative analysis and does not
support efficient sketch recognition.

Kleffmann et al. [27] developed a traceability approach
for recognizing the informal hand-drawn sketches by cre-
ating the relationships between sketch elements. +is is
achieved by Augmented Interaction Room (AugIR), a
combination model of fuzzy search and information re-
trieval technique of vector space model (VSM). +is
traceability approach achieves a precision of 92.74% and a
recall of 90.04%. However, the relationships between the
elements of sketches may sometimes create faults, thus
causing trace link recovery and decrease in recall values.
Wang et al. [28] designed and developed SketchPointNet, a

novel point-based deep network with a compact architecture
for highly robust sketch recognition. +is approach con-
siderably reduces the model space and the computation
complexity and ensures a high accuracy of 74.22% with
minimal network parameters. Seddati et al. presented three
models of DeepSketch [29–31], a deep convolutional neural
network (CNN) based approach for sketch recognition with
similarity search using KNN. DeepSketch [29] approach
provided recognition accuracy of 75.42% which is high
enough for effective similar image search applications.
DeepSketch 2 [30] was an enhanced model of DeepSketch
for the partial sketch recognition with an accuracy of 77.69%
while DeepSketch 3 [31] was also developed with the use of
different layered features of deep CNN for sketch-based
image retrieval application with a sketch recognition ac-
curacy of 79.18%.

Sarvadevabhatla and Kundu [32] proposed the use of a
deep gated recurrent neural network-based framework for
recognizing the sketches by controlling the deep features and
weighted timestamp loss. +is approach provided satisfac-
tory results, yet the accuracy of deep feature extraction is still
not perfect. Jahani-Fariman et al. [33] proposed a block
sparse Bayesian learning approach called MATRACK for
sketch recognition with an average accuracy of 96.6%. +is
approach has higher accuracy and is robust, but the only
limitation is the slower recognition time due to the extended
learning process. He et al. [34] proposed the use of deep
visual-sequential fusion model for sketch recognition. +is
model captures the intermediate stroke states using the
spatial and temporal features using layers of sequential
networks by residual long short-term memory (R-LSTM)
units. +e fusion of the visual and sequential features in-
creases the accuracy of sketch recognition. But the problem
with this approach is that the semiconstrained sketches were
only detected while inaccurate sketches with rough strokes
were filtered before recognition to avoid accuracy
degradation.

Boyaci and Sert [35] developed a feature-level fusion of
CNN for sketch recognition in smartphones. +is approach
employed the multiple layers of CNN to extract the features
of sketches using Alex-Net and VGG19 CNN architectures
with a fusion operator. +e abstraction of the sketches is
captured, and the best fusion scheme is used in client-server
application with an average accuracy of 69.175%. However,
these results are second best to the Sketch-a-Net scheme by
Yu et al. [36]. Sketch-a-Net employs the deep neural net-
works for effective recognition of sketches by exploiting the
sequential ordering information and designing a de-
formation model to synthesize new sketches. +is approach
has better recognition performance due to the consideration
of the unique properties of the sketches. In order to out-
perform Sketch-a-Net, Sert and Boyacı [37] proposed an
efficient freehand sketch recognition approach using
transfer learning models based on the feature-level fusion of
CNN along with CNN-SVM pipeline architecture. +e
principal component analysis (PCA) is utilized to reduce the
fused deep feature dimensions and increase the overall
recognition accuracy to 73.1% on the TU-Berlin dataset [1]
for smartphone applications. Zhang et al. [38] proposed a
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hybrid CNN approach for sketch recognition. +is hybrid
CNN consists of two CNN, namely, Alex-Net and S-Net for
considering the features of both appearance and shape,
respectively. Compared to other models, this hybrid CNN is
efficient in extracting discriminative shape features which
increases the accuracy of sketch recognition and sketch-
based image retrieval processes. +is approach increased the
recognition accuracy by 2–5%, but the drawback of this
supervised hybrid CNN is the requirement of expensive
labelled data and the semisupervised CNN models may
reduce this limitation.

From the literature, it can be inferred that the deep
learning models, especially the CNN, have been exploited
most for the freehand sketch recognition. However, there are
limitations and room for development in these models.
Another aspectual concept is the utilization of machine
learning algorithms for recognition which has been of
greater importance in image processing-based sketch rec-
ognition. SVM is one such algorithm, but due to its long
training time and inability to select a perfect kernel, the SVM
model has provided below-par performance. In this work, a
modified SVM is presented to overcome these limitations. A
hybrid kernel is developed for this purpose along with the
lion optimization algorithm to reduce the training time.+is
model of modified SVM is deemed to exceed the perfor-
mance of SVM and is incorporated into the proposed
SKETRACK recognition scheme.

3. Sketch Structures and Formats

+e SKETRACK sketch recognition system has been de-
veloped to support several domains, and for achieving this
objective, small modifications in retraining the classifiers are
required. +e domains employed in this research for eval-
uation of the proposed SKETRACK and the online databases
used are described. +e line-based diagrams and the arrow-
based diagrams are utilized in which the symbols are con-
nected by lines and arrows. +e main reason for selecting
these sketches is due to their uniform structures of arrows
and symbols. +e sketches consist of arbitrary strokes and
text labels with uniform symbols and domain syntax. +ree
diagram domains, namely, flowcharts (FC), finite automata
(FA), and digital logic circuits (DLC), are utilized in this
work. FC, FA, and DLC sketches are utilized in the SKE-
TRACK with specified features of these sketches derived for
the evaluation. +ese sketches are employed as online input
to the recognition system.

3.1. Flowcharts. Flowcharts are arrow-based sketches con-
sisting of five uniform symbol classes, namely, data, decision,
process, connection, and terminator. FC databases are
widely available in different formats for research purposes.
As annotations are mainly required for extracting the im-
portant properties of FC, the database is selected based on
annotations and temporal information. +e FC database
utilized for evaluation is available in [25]. +e database
contains a total of 672 sample sketches of 28 sketch patterns
drawn by 24 users. +ese sketches are classified into subsets

for training and testing. +e database contains annotation of
symbols and relations between them while the arrows with
connection points and heads are also provided.+emeaning
of each text block is also provided.

3.2. Finite Automata. Finite automata are also arrow-based
sketches which consist of three uniform symbol classes,
namely, state denoted by a single circle, final state denoted by
two concentric circles, and arrows. +e FA database also
contains text blocks of single-letter names for the states. +e
FA database is available at [24]. +e database contains a total
of 300 sample sketches of 12 sketch patterns drawn by 25
users which are categorized for training and testing
separately.

3.3. Digital Logic Circuits. Digital logic circuits are line-
based sketches that contain three uniform symbol classes,
namely, bubble or a circle, normal gates, and concentrated
curve gates (like X-OR). +e symbols considered for eval-
uation are bubble, OR, AND, NOT, NOR, NAND, and
X-OR. +e text blocks in this database are just single letters
naming the inputs A, B, and C and output Y. Figure 1 shows
example DLC with all the symbols considered for this work
and the X-NOR and complex circuit board diagrams
avoided for complexity.

+e DLC database is minimally available as the sketches
employing the basic logic operations are quite less. +e
X-NOR and other complex structured sketches are avoided
in this work as it convolutes the description of the SKE-
TRACK scheme. Figures 1(c) and 1(d) show these complex
sketches. +e X-NOR gate is similar to the X-OR, but it
includes additional symbols to visualize the NAND property
and this structure convolutes the recognition in SKE-
TRACK. Similarly, the complex structure in Figure 1(d)
includes the complete circuit board structure with the logic
symbols. +e connector lines increase the complexity of
correctly identifying logic symbols. +ese structures require
extensive analysis which is complex and time consuming
than other symbols. +ese symbols are planned to be rec-
ognized using highly advanced techniques in future works
and hence deliberately avoided in the current research. +e
DLC sketches for this research are extracted from the
IAMonDo Database [39]. A total of 150 sample sketches are
collected based on 10 different sketch patterns by 15 users
which are categorized for training and test separately.

4. SKETRACK Freehand Sketch
Recognition Scheme

+e proposed stroke-based online freehand sketch recog-
nition scheme (SKETRACK) employs the concepts of text
segmentation, feature extraction, and symbol candidate
recognition using the MSVM classifier. In SKETRACK,
initially the normalization of the input ink files of the FC,
FA, and DLC domains is performed to correct the edges and
noises. +en, the text segmentation process is performed to
separate the text blocks from the sketch symbols. Text
strokes and the symbols are recognized separately. +is
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process significantly minimizes the computation complex-
ity. +en, the symbol strokes are modelled with the help of a
feature extraction where the different variations of the
structure are stored and the new strokes are compared with
them to form its respective diagram structure. +en, the
symbol strokes are clustered using spectral clustering to
group similar continuous strokes to model a specified di-
agram part with dimensionality reduction using the p-dis-
tance and Euclidean distance. Finally, the symbol strokes are
recognized using the MSVM classifier. +ese recognized
symbols are analysed for the diagram structure, and the text
strokes are replaced to its original positions to recreate the
original sketch. +e complete recognition pipeline of
SKETRACK is given in Figure 2.

4.1. Normalization and Text Recognition. +e input sketches
in the ink files contain sketch symbols, annotation, and the
relations between them. Normalization of these files is ef-
fective in minimizing the least accurate diagrams. +e input
files may not be accurate as the strokes might have been
incomplete or corrupted from the user side or during the
creation of ink files. +is can be rectified by normalizing the
ink files to correct the edges and noises. Also, the nor-
malization of texts is performed along with this step to
improve the text segmentation process.+e texts might be in
a noncanonical language or usual speech transcription
which is considered as nonstandard forms. Hence, the

normalization process standardizes the texts to standard
canonical forms as presented in globally recognized dic-
tionaries and lexicons such as Oxford. Once the normali-
zation is complete, the text strokes are separated for
processing isolated from the processing of diagram strokes.
Figure 3 shows the text separation process through nor-
malization and text classifier.

+e normalization includes the process of mapping the
input diagram to a standardized image plane in the pre-
defined square shape. It controls the aspect ratio of the text
in the diagram through 14 basic normalization steps in the
form of linear and moment normalization with different
processes of the aspect ratio. +is results in the filling and
centring the horizontal and vertical dimensions. +en, the
text features are extracted using a text extractor and the text
separation process isolates the texts and shapes separately.
+e text separation is performed using deep learning re-
current neural networks (DLRNN) [40] as it has been found
to be most efficient in classifying the text data. DLRNN
utilizes the internal memory for processing the input strokes.
It has greater applications in the recognition process of
handwriting, speech, and objects. It forms a loop of in-
formation cycle and makes a decision using short-term
memory. +is concept is briefed in order to provide a higher
focus on symbol recognition. DLRNN has a higher accuracy
of 99.05% for shape classes and 98.94% for text classes. +is
process is applied to all three domain databases. DLRNN has
accuracy in shape/text class of 99.56/97.7, 98.8/99.76, and
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Figure 1: (a) Example of freehand DLC, (b) structured symbols, (c) X-NOR gate, and (d) complex structure.
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99.12/94.88% for FC, FA, and DLC databases, respectively.
Figure 4 shows the input FC sketch and its text segmentation
results. It can be seen that there is a symbol and an ar-
rowhead detected along with the text.+is error is due to the
low quality of the input image and will be minimized in the
uniform symbol classifier.

+e text recognition is performed after the completion of
the symbol recognition and structural analysis. +e isolated
strokes of text during the text separation process are pro-
cessed with the corresponding sketch structure analysis. +e
text blocks are processed in two types: arrow text labels and
labels for uniform symbols. First, the uniform symbol labels
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Arrow and line 
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Text segmentation 
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Stroke clusters
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Figure 2: SKETRACK recognition pipeline.
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Figure 3: Text separation process.
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are detected followed by the arrow labels. Finally, the text
blocks are assigned to the nearest arrow and symbols based
on matching.

4.2. Feature Extraction. +e feature extraction model
contains the strokes of similar structures with different
variations. +e semantic strokes are initially fixed for each
of the symbols of the FC, FA, and DLC databases based on
training data. +en, the different possible variations re-
sembling each symbol are gathered to form a cluster. Some
symbols like OR and NOR in DLC may seem much
similar, and hence, there occurs a possibility of mis-
recognition. Figure 5 shows the feature extraction process
of the symbol strokes.

+e sketches contain all necessary symbols, and some
symbols will have been used more than once in the same
sketch. In such cases, the system might recognize the repeated
symbol and considers only one symbol for clustering.+is will
create a different sketch at the final classifier. Hence, the
clustering approach is tuned to select both the symbols and
group them together so that the sketch is complete when
restructured. First, the diagrams with strokes are converted
into binary form and denoising is applied to eliminate dis-
turbance from the noisy pixels. +en, the strokes are de-
termined by their colours and skeletonizing is applied to
retrieve the stroke features. +e matching concept is used to
group these strokes when there is more instance of the same
symbol. For highly effective grouping, the high dimensionality
features must be reduced and an effective clustering algorithm
has to be applied. A total of 29960 training samples are
employed, and among them, only optimal features are selected
based on this concept. +e higher number of feature variables
will be time consuming as well as incompetent as most of the
features have little information about the symbols. Hence, the
number of features must be reduced and this process is called
dimensionality reduction. For the purpose of reducing the

feature dimension, the p-distance [41] and Euclidean distance
[42] are utilized. p-distance is the proportion of the stroke at
which two sequences of compared symbols are different. It is
computed as follows:

p − distance � 1 −
similar features

total features
. (1)

Similarly, the Euclidean distance between two features is
the measuring length connecting these two features and can
be computed to evaluate the dimension of the features.
Euclidean distance between two features p and q with i
number of variations can be computed as follows:
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Ed(p, q) � Ed(q, p) �
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􏽘n
i�1

qi − pi( 􏼁2
􏽶􏽴

, (i � 1, 2, . . . , n).

(2)
Based on these parameters, the dimension of the features

is minimized. +en, the clustering/segmentation of the
symbol strokes is performed using spectral clustering.

4.3. Symbol Segmentation Using Spectral Clustering. +e
strokes are mapped on a graph, and the clusters are formed
as said in the feature extraction model. +e symbol strokes
are defined on a weighted undirected graph G of quad tree T.
+e topology of this graph is defined to auxiliary stroke
structure for navigation and trajectory generation. +e
vectorV � v1, v2, . . . , vn􏼈 􏼉 is the collection of all leaf nodes of
the quad tree T, and E � eab | a, b≤ n􏼈 􏼉 is the collection of all
connections of the leaf nodes. +e incidence matrix I is
estimated for the similarity between the strokes and is used
on the degree of connection in this graph model. Figure 6
illustrates the steps involved in the symbol segmentation
process using the spectral clustering algorithm.

For segmentation of the graph G, it must be modified
into sparse graph using a threshold defined as

ThIa,Ib � 1.05
max xmap, ymap􏼐 􏼑∗ 2Ia + 2Ib( 􏼁

2Ia2Ib
, (3)

where ThIa ,Ib is the threshold of similarity matrix “I” of graph
G between two points (a, b), xmap, ymap is the mapping
location, and 1.05 is the coefficient added to avoid the
floating point computation error.

Now the quad tree of stroke segmentation problem is
modelled into the weighted unidirectional graph segmen-
tation problem. Spectral clustering [43] segments this graph
using generalized Laplace matrix formation. Laplace matrix
LIa,b is defined by the following function:

LIa,b �

1, a � b, deg va( 􏼁≠ 0.
−

1�������������
deg va( 􏼁deg vb( 􏼁􏽱 , a≠ b,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

When k number of submaps is given, then the k min-
imum eigenvectors ev1, ev2, . . . , evn of the LIa,b must be
determined using the auxiliary matrix P:

P � ev1, ev2, . . . , evn􏼂 􏼃 �
ev11 · · · evk1

⋮ ⋱ ⋮
ev1n · · · evkn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Each row of this auxiliary matrix P is considered as the
corresponding sample of symbol strokes. +e k sample
clustering provides the spectral clustering result:

strokei � Pab
􏼌􏼌􏼌􏼌 1≤ a≤ k, b ∈ [1, n]􏽮 􏽯. (6)

To determine the value of k, a score function is estimated
using any distance function. As said in the feature extraction
model, the Euclidean distance is used to determine the value
of k. Euclidean distance between two clusters Ai andBi is
computed using the following equation:

d(A, B) �

����������
􏽘n
i�1

ai − bi( 􏼁2
􏽶􏽴

. (7)

+us, the value of k can be set and the graph G can be
segmented effectively.+is graph directly provides the stroke
clusters of the symbols. +ese clusters will be recognized
using the classification for final structure analysis.

4.4. Symbol Recognition Process. Symbol recognition is
performed to classify the subsets of stroke clusters generated
at the end of the segmentation process. +e main process is
to assign a symbol class to each cluster. +e symbol rec-
ognition process consists of two steps: arrow detection and
uniform symbol classifier. +e arrow detection is carried out
by recognizing them as connectors between the uniform
symbol candidates. +e uniform symbol is recognized using
the MSVM classifier. Both the arrow detector and uniform

Input sketch with 
stroke features

Graph mapping

Segmented symbol 
strokes

Local best-�t 
plane retrieval

Graph Laplace 
matrix 

construction

Graph partition

Figure 6: Symbol segmentation process.
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symbol recognizer provide list of symbol candidates from
which the actual symbols are selected by the structural
analysis process.

4.4.1. Symbol Classifier Using MSVM. +e classifier has the
function of assigning a symbol class to each of the clusters.
+e traditional multiclass SVM has been utilized for this
objective in some of the recent research studies. However,
the SVM classifier has some disadvantages when used for
recognition purposes. +e major limitations are the longer
training time and the inefficient selection of kernel function.
In order to overcome these challenges, the MSVM model is
presented which utilizes a hybrid kernel function based on a
Gaussian kernel and a polynomial kernel. Hybrid kernel
concept has been already utilized by many authors [44], but
the hybrid kernel in this work is novel function. +en, the
SVM parameters are optimized by using the lion optimi-
zation algorithm. +e lion optimization algorithm has dual
purpose in the SKETRACK scheme. First, it is used for
optimizing the SVM parameters, and then, it will be used for
optimizing the max-sum problem in structural analysis.
Figure 7 shows the process involved in the proposed MSVM
algorithm whose parameters are optimized using lion
optimization.

A dynamic feature descriptor based on the normaliza-
tion is utilized with the MSVM classifier. +e MSVM
classifier is modelled with a hybrid kernel and is much
suitable for the DLC database and any type of arrow-con-
nected diagrams. +e MSVM works on finding the optimal
hyperplane that separates the stroke clusters. For deriving
two hyperplanes for graph of clusters x1, x2, . . . , xn where x
is the graph point indicating a cluster is described as

w1 · x + c1 � 1,

w2 · x + c2 � − 1,
(8)

where c1 and c2 are scalar learning parameters while w1 and
w2 are the p-dimensional weighting vectors perpendicular to
the separating hyperplane. +e values of c1, c2, w1, and w2

are selected such that the training time is shorter.
Selecting a proper kernel function is necessary to im-

prove the recognition performance. +e commonly utilized
kernels are linear kernel, polynomial kernel, radial basis
function, and sigmoid tanh kernel. However, these kernel
functions do not provide best learning ability to SVM.
Hence, in this work, the MSVM utilizes a hybrid kernel by
combining the Gaussian kernel and polynomial kernel. +e
Gaussian kernel is developed based on the radial basis
function, and thus, constructed hybrid kernel KRP is given
as

KRP � λKP +(1 − λ)KR, (9)

where KP is a polynomial kernel which is formulated for
clusters x1, x2 with distance d, and random value r as

KP x1, x2( 􏼁 � poly􏽘n
i�1

x1i ∗x2i + r⎛⎝ ⎞⎠d

. (10)

Similarly, theKR is the radial basis function which can be
formulated with a Gaussian parameter g as

KR x1, x2( 􏼁 � exp − g􏽘n
i�1

x1i − x2i( 􏼁2⎛⎝ ⎞⎠. (11)

However, the radial basis function KR is a local kernel
and does not provide global solutions. In order to provide a
global solution for optimal hyperplane selection with faster
convergence, the hybrid kernel employs the tuning pa-
rameter λ which also tunes the influence the two individual
kernels KP and KR in the hybrid function KPR.

For further enhancing the performance of MSVM, the
parameters are optimized using lion optimization [45]. +e
tuning parameter λ is optimized by modelling it as lions of
the traditional lion optimization algorithm. +e hunting
behaviour of the lions is formulated for this work. +e
solution search operation of MSVM has to be improved,
and hence, a parameter Q is introduced to adjust the speed
of moving lions based on the preys’ position. +e positions
of the lions are also updated based on the change of po-
sition by prey. If the hunting lion is odd, the value ofQ is set
as “− 1” making the lion move in the opposite direction of
the prey. Similarly, if the hunting lion is even, Q value is set
as “1” and the lion continues to move in the same direction.
+e speed of movement and position of the lion can be
formulated by

Return optimal tuning parameter

Initialize SVM parameters

Modelling hybrid kernel

No

Code kernel parameters in 
binary format

Update parameters of SVM, lion

Generate initial lion 
population

Decode lions and tuning 
parameter

Estimate �tness of each lion

Termination conditions 
achieved?

Generate new 
population

Yes

Evaluate classi�cation results

Figure 7: Parameter optimization process in MSVM.
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Mi d(t + 1) � Q ω ×Mi d(t) + c × rand() ×Xi d(t)􏼈 ,

Xi d(t + 1) � Xi d(t) + Si d(t + 1),
(12)

where d is the distance of two cluster points in problem
space, Xi d(t) is the previous position of lion based on
position of prey whileMi d(t) is the previous speed of lion, ω
is the weighting vector, rand() is the random value between
[0,1], and c is the scalar learning factor. +e fitness in this
work is the classification accuracy. Based on these concepts,
the MSVM overcomes the limitations of SVM and provides
higher uniform symbol recognition accuracy.

+emajor modification of the proposedMSVM from the
traditional SVM is the hybrid kernel function with the
optimized tuning parameter λ. +e lion optimization selects
from the range 0< λ< 2 in our experiments. In practical
cases, these values can be set between 0.25 and 1.99 such that
optimal classification is obtained. Larger value of λ results in
better classification, but it is not the same for all databases,
and based on the database features, the value varies. In some
cases, the larger value of λ will be less than 1 depending on
the diagram instances, and hence, the lion optimization
selects adaptive values suitable for each instance. +e clas-
sification accuracy obtained by selecting different optimal
values of λ for the three domains of diagrams is given in the
Experiments section.

4.4.2. Arrow/Line Detector. Most existing models of arrow/
line detection utilized the arrow subclasses to detect them,
but the results were not satisfactory. As it is difficult to
recognize the arrows based on its appearance, the special
properties of the arrows are exploited in this work to dif-
ferentiate them.+e most special property is that it connects
two symbols, and once the uniform symbols are detected by
MSVM classifier, the connecting elements are analysed.
Figure 8 illustrates the steps performed in the proposed
arrow/line detector.

+e arrow detection is performed in two steps. +e first
step is the detection of the shaft (line) of an arrow that
connects two symbols with a sequence of strokes from the
first symbol to the second symbol. +is concept of detection
is enough for a line connecting two symbols in a DLC also.
+e pairs of symbols are detected using the MSVM classifier,
and the arrow shafts connecting them are detected. For this
purpose, the strokes in vicinity of a symbol are found by
increasing the size of bounding boxes. +is will increase the
search space and provide many symbol pairs. +en, it has to
be determined whether the symbol stroke is closer in the
search space and is properly fit with the shaft length and the
open connector length, and the smallest distance between
the two symbols is computed and is compared with a general
distance threshold dthresh.

Once the connectors are identified, they must be formed
into arrows. However, for detecting the arrows, the second
step is very important. +e shaft/lines have no direction, and
only the arrowhead defines the direction. +e second step is
the detection of arrowhead at the end of the second symbol.
+e shaft without a head is considered as a simple line while
the shaft with a head is defines as arrow. +e shaft detection

is performed by adding the iterative stroke sequences. +e
spatially closer strokes of arrowheads identified in the
previous step are then analysed to find any interference with
other strokes. +e detected arrowhead strokes must be in-
terfered with other symbol strokes. To validate the arrow-
heads, the arrowhead candidate list is generated and the
arrowhead with highest confidence is selected as in [24]. +e
confidence value of a symbol is defined as a number assigned
to each symbol in a sketch showing how much that sketch is
trusted with the current symbol. Confidence of an arrow-
head is computed as the product of confidence of heads’
bounding box shape and distance of the head centroid to the
end point. It is estimated as

confidence � shapeConf · distanceConf ,

shapeConf � exp(− (z − h) · (z + h)),

distanceConf � exp ln(0.5) ·
dcentroid
dthresh

􏼠 􏼡,
(13)

where z denotes the width and h denotes the height of the
head’s bounding box; dcentroid is the distance of the bounding
box’s centroid to the endpoint of connector and dthresh is the
general distance threshold.

+e arrowhead direction can be determined by the ar-
rowhead’s association with the end point of the connector.
+e confidence of an arrow can be estimated as the product
of confidence of connector and confidence of head’s con-
fidence. +e confidence of a connector is based on the
connector distance which is a sum of distance between
connector’s endpoints and connector points of symbols and
distance between the consecutive connector strokes. +is
can be formulated as

connectorConf � exp ln(0.5) ·
dconnector
dthresh

􏼠 􏼡, (14)

where dconnector is the connector distance. Based on these
confidence values, the direction of the arrowheads is
determined.

4.5. Structural Analysis. Structural analysis is literally the
final step in SKETRACK for recognizing the sketches. +e
symbol candidates detected by the uniform symbol classifier
of MSVM and arrow detector are fed as the input to the
structural analysis module. +e structural analysis task is for
recognizing the subset of symbol and arrow/line candidates
that can be grouped to form a valid sketch of FC, FA, or
DLC. For connecting these sets of symbol candidates, the
relation between symbols has to be determined by score
values. +e score is computed upon three fundamental types
of relations. +e first type is the conflict relation when two
symbol candidates share one or more strokes or arrows at
the same connection point. +e second relation is the
overlap in which two symbols have overlapping boundaries.
+e third relation is the end point in which the arrow/line
has two symbols at the end points. +e first and second
relations are effective and both symbol candidates are
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selected while the third relation is effective if the arrow is
selected for structure solution. +e conflicts and the end
point relations can be determined through estimation
properties while the score is necessary for computing the
overlap relation. +e confidence score function is modelled
for the first two relations of conflict and overlap [25].
Figure 9 shows the final output of the FLC sketch recognized
by the proposed SKETRACK.

For conflict relation, the scores are negative infinity, i.e.,
s1 � − ∞ while for the overlap relation it is given as

s2 � − SR∩S/min SR, SS( 􏼁, (15)

where R and S are the bounding box of the first and second
symbols while SR, SS, and SR∩S are surfaces of R, S, and R∩S,
respectively.

Once the scores are computed for the relations between
the symbol candidates, the diagrams are represented. +e
diagrams are represented based on the confidence scores
computed. First, the symbol candidates are mapped as nodes
of undirected graph G � (V, E) and the labels K� 0 and
K� 1 are used to select the symbol candidate. +e graph cost
functions can be formulated by modelling the pairwise max-
sum labelling problem using the maximizing sum of unary
and binary cost functions:

max
k

􏽘
u∈V

gu ku( 􏼁 + 􏽘
u,v{ }∈V

guv ku, kv( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦, (16)

where K is the set of finite labels, gu(ku) is the unary cost,
guv(ku, kv) is the binary cost, and u, v{ } is the edge. By
simplifying this function, the diagram structure is finally
represented. However, this max-sum problem is NP-hard
and hence needs to be solved using any optimization al-
gorithm. As stated before, the lion optimization algorithm is
employed to resolve this problem. First, the max-sum
problem in equation (16) is modelled into optimization
problem and lion optimization is applied. +e hunting
behaviour and the nomadic movement of lions are explored
to optimally select the solution for this problem in poly-
nomial time. +us, the diagrams can be recognized and
represented as in the original input sketches. +e perfor-
mance of the proposed SKETRACK will be evaluated in the
experiments section.

5. Experiments and Results

+e experiments are performed using MATLAB on the
online sketches from FC, FA, and DLC databases. +e

proposed system has been implemented in a computer with
minimum requirements of Intel i3 processor, 4GB RAM
with Windows 10 operating system. +e performance of the
MSVM-based SKETRACK is evaluated and also compared
with the existing methods. Also, the influence of the hybrid
kernel function is also illustrated by estimating the symbol
classification accuracy of theMSVMwith optimal values of λ
for FC, FA, and DLC sketches.

5.1. Evaluation of SKETRACK Classification Accuracy with
respect to λ. For estimating the symbol classification accu-
racy of MSVMwhen using optimally selected λ value instead
of fixed tuning parameter, the parameters must be set. +e
parameters include the scalar and weight parameters of SVM
and the movement parameters of lions. +e population of
lions is set asN� 50, the maximum iteration is set as 100, the
maximum value of target location Xi d,max � 1, the mini-
mum value of target location Xi d,min � 0, and the speed of
movement Mi d,max � (Xi d,max − Xi d,min) × 0.1. +e scalar
learning parameter c1 � c2 � 1.4962 ≈ 1.5, and the weight
vectors are selected as w1 � 0.9 and w2 � 0.4. +e initial
optimal value will be selected for each database randomly,
and the best value will be returned only when the classifi-
cation accuracy stays constant for at least 20 iterations.
Table 1 shows the optimal λ value obtained by lion opti-
mization and corresponding classification accuracy for the
FC, FA, and DLC databases.
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When the optimal values is selected for λ, the manual
setting process for tuning of the SVM classifier is avoided
and the classification accuracy is also increased due to the
optimal as well as adaptive selection of λ value for each
diagram database.

5.2. Comparison of SKETRACK Recognition Results with
Other Methods. +e performance of the MSVM-based
SKETRACK is evaluated on online diagram databases. +e
results obtained on FC and FA diagram instances are
compared with that of three state-of-the-art methods:
multiclass SVM [24, 25], CNN [31], and CNN-SVM [37]
while SVM [46, 47] is only compared with the proposed
MSVM results for the DLC diagrams due to lack of more
existing methods. +e two main reasons for the less research
on DLC sketches and their limited capacity are as follows: (1)
the complexity of the DLC sketches and (2) the inability to
adapt with the quality of input employed. +e comparison
results on the three online diagram databases are given in
Tables 2–4.

From Table 2, it can be seen that the proposed MSVM
classifier has comparatively better recognition performance
than the other methods for the FC instances.+e accuracy of
MSVM is 95.87% which are increased by 1.11% than CNN-
SVM while also outperforming SVM and CNN methods.
MSVM also provides higher precision of 94.96% but slightly
less values of recall and F-measure than CNN-SVM; how-
ever, overall, it provides comparatively better results than
other models.

From Table 3, it is revealed that the accuracy, precision,
recall, and F-measure of the proposed MSVM classifier are
significantly higher than the other methods for FA diagrams.
+e accuracy value of MSVM for FA database is 94.99%
which is increased by 1.77% than CNN-SVM. +e precision
value of MSVM is 94.31% which is increased by 0.36%.
Likewise, the recall value is 94.13%, increased by 1.97% than
CNN-SVM and F-measure value increased 1.4% than CNN-
SVM for FA. It is also noted that MSVM outperformed SVM
and CNN models which can be indicative that the MSVM is
comparatively the better classifier.

Table 4 illustrates that the accuracy, recall and F-measure
of the proposed MSVM classifier are significantly higher
than the other methods for DLC. +e IAMonDo database
[39] contains high number of hand-drawn sketches, but the
quality of around 50%–75% and this quality metric can
impact the performance. +e accuracy, recall, and F-mea-
sure values are increased by 5.8%, 1.6%, and 1.29%, re-
spectively, while the precision value is reduced by 0.3% than
SVM-1 for DLC. +e difficult processing for recognizing the
DLC sketches is reflected through these results. +e im-
portant point from these results is that the DLC sketches

have been recognized with greater performance than the
existing research models.

+e recognition precision of the proposed SKETRACK is
evaluated based on twometrics, namely, stroke labelling (SL)
and the symbol segmentation and classification measure
(SR1). +ese two metrics help in evaluating the correctness
of the recognition of each unique symbol and the arrows/
lines effectively. +e results for the three databases are
evaluated separately. Tables 5–7 show the recognition results
for the online FC, FA, and DLC databases.

It can be seen that the proposed MSVM-based approach
of SKETRACK has significantly good performance. +e
performance in some of the classes varies from other pivotal
classes due to the introduction of noise and missing of
temporal information. +e results of the DLC database is
around 5–10% less than the FA and FC databases. However,
the results are promisingly better because the other existing
SVM-based models for DLC have provided much worst
performance. +e performance improvement in the online
and offline FC, FA, and DLC databases is highly efficient
because of the improved classification of SKETRACK.

Table 8 lists the minimal, maximal, average, and median
time required to resolve the max-sum problem using lion
optimization in selecting the lambda values of the hybrid
kernel while Table 9 shows the minimal, maximal, average,
and median of the total time. +is table helps in identifying
the cost of performing the optimization task additionally. It
can be seen that the time is optimal, and hence, the addi-
tional overhead is minimized.

From Tables 8 and 9, it can be seen that the time taken to
solve the optimization problem is only a small fraction of the
total time, and hence, the fast processing is performed. +e
optimization process does not create additional cost or
overhead to the proposed system.

When analysing the system performance, the mis-
recognition is also a major criteria. In this work, although
best techniques are utilized, the system fails to detect some of
the sketches due to the low quality of the input. In some
cases, the text blocks have been misinterpreted as symbols.
In other cases, the user who drawn the diagram has utilized
fast skills that are not recognizable. Some texts are not
recognizable due to the conflicts in the font style.

Figures 10–12 show the examples for misrecognition
results.+e FA and FC sketches are recognized and the result
are coloured to differentiate the misrecognized symbols. +e
colour green indicates correct symbol recognition, red in-
dicates text, and blue indicates the incorrect recognition. In
Figure 10, all the symbols are recognized correctly except
three. +e oval shape containing the start is misrecognized;
the end word is partially recognized and the end oval shape is
recognized as text due to conflicts in recognition. Similarly,
the DLC sketch in Figure 12 has colours denoting the
symbols, namely, brown for OR, violet for AND, green for
NOR, yellow for NAND, blue for X-OR, pink for Bubble,
and black for connector lines. But the final result has
misrecognition in bubbles at NAND andNOR symbols. Also
the NOT gate with bubble is completely recognized as
bubble. Apart from these misrecognitions, it can be seen that
the sketches have been recognized with an average of 80%

Table 1: Classification accuracy with respect to optimal λ.

Database Optimal λ Accuracy (%)

FC 1.8542 95.87
FA 1.8496 94.99
DLC 1.9277 79.21
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Table 5: Recognition results for the FC database.

Class SL (%) SR1 (%)

Arrow 85.3 77.54
Connection 82.45 96.2
Data 86.22 92.3
Decision 92.4 75.3
Process 92.1 88.5
Terminator 71.06 90.35
Text 98.8 91.15
Total 94.15 86.2

Table 2: Recognition performance results for FC database.

Methods Accuracy (%) Precision (%) Recall (%) F-measure (%)

SVM [25] 84.76 83.45 81.6 86.5
CNN [31] 90.66 89.71 88.72 89.018
CNN-SVM [37] 94.76 94.43 92.01 90.32

Proposed MSVM 95.87 94.96 91.86 90.27

Table 3: Recognition performance results for FA database.

Methods Accuracy (%) Precision (%) Recall (%) F-measure (%)

SVM [25] 86 83.83 85.5 83.54
CNN [31] 90.23 88.13 89.30 88.87
CNN-SVM [37] 93.22 93.95 92.16 90.85
Proposed MSVM 94.99 94.31 94.13 92.25

Table 4: Recognition performance results for the DLC database.

Methods Accuracy (%) Precision (%) Recall (%) F-measure (%)

SVM 1 [40] 75.5 74.2 70.83 72.72
SVM 2 [48] 73.4 73.6 71.5 73.66
Proposed MSVM 79.21 73.9 73.1 74.95

Table 6: Recognition results for the FA database.

Class SL (%) SR1 (%)

Arrow 92.4 89.2
Initial arrow 89.7 93.65
Final state 95.0 92.8
State 85.1 92.5
Label 90.4 91.3
Total 91.25 91.89

Table 7: Recognition results for the DLC database.

Class SL (%) SR1 (%)

Line 92.0 89.24
OR 85.96 84.1
AND 78.45 81.5
NOT 79.6 79.2
NOR 82.1 77.66
NAND 81.23 72.24
X-OR 69.78 66.66
Bubble 75.77 74.58
Text 92.08 90.9
Total 82.22 79.8
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precision in almost all databases. It must also be noted that
the sketches recognized in Figures 10 and 11 have mis-
recognized symbols. +e misrecognition is due to the in-
correct strokes in which the single strokes are identified
correctly while the merging of these symbols in the diagram
representation of structural analysis has not been accurate.
+e strokes have a wider significance in influencing the
overall performance. +e misrecognition in DLC sketches is
due to the similarity of class symbols, for example, similarity
OR with NOR and X-OR. Likewise, the second curved
structure of X-OR is quite complex to detect when the sketch

is viewed in two-dimensional or three-dimesnional struc-
tures. Table 10 shows the misrecognition results for all three
online databases in a combined inference.

From Table 10, it can be seen that the failure to recognize
the symbols is mainly due to the ineffectiveness of the
segmentation process to adapt to the low-quality sketches.
+e next reason is the performance of classifier. Hence, the
need for improvement can be attributed to the segmentation
process to avoid the rate of misrecognition. However, it must
be noted that these misrecognitions in SKETRACK are only
a fraction of the total system and only contribute to less than

Table 8: Optimization time.

Class
Optimization time (s)

Minimal Maximal Average Median

FC 0.11 0.35 0.14 0.11
FA 0.12 0.19 0.14 0.12
DLC 0.15 0.26 0.17 0.15

Table 9: Total running time.

Class
Running time (s)

Minimal Maximal Average Median

FC 0.19 3.66 0.83 0.72
FA 0.28 2.54 0.87 0.84
DLC 0.38 1.43 0.77 0.67

Table 10: Misrecognition rates for different process of SKETRACK.

Database Number of misrecognized symbols Text separation (%) Segmentation (%) Classification (%) Structural analysis (%)

FC 359 8.92 43.5 30.33 8.9
FA 266 3.95 62.67 51.5 21.1
DLC 428 5.5 71.2 59.2 37.7
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Figure 10: Examples of recognized results of FC sketch: (a) input sketch and (b) recognized sketch (green—correct symbol recognition,
red—text, and blue—incorrect symbols).
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10% of the total input sketches. +erefore, the proposed
SKETRACK can be concluded to be efficient for FC and FA
sketch recognition while there needs some adjustments for
recognizing DLC sketches.

6. Conclusion

Efficient online freehand sketch recognition of FC, FA, and
DLC sketches has been developed and evaluated in this
paper. +e proposed SKETRACK scheme consists of text
segmentation, feature extraction, spectral clustering for
symbol segmentation, symbol recognition using the MSVM
classifier, and structural analysis. +e experimental results
are compared with the state-of-the-art methods to validate
the performance efficiency of the sketch recognition
methods. +e proposed system performed better than the
state-of-the-art methods.+e accuracy of recognizing online
FC, FA, and DLC diagrams is high using the proposed
SKETRACK scheme. Although recognition performance for

few sketches is not perfect, it is mainly due to the noise and
low quality of the database instances.

Although efficient, the small fraction of misrecognition
has been attributed mainly to the symbol segmentation
process. +is will be exploited in future with more advanced
techniques to further minimize the recognition errors. Also
the DLC databases consist of only simple symbols while
other complex symbols like converters and processors are
difficult and are neglected; the inclusion of these symbols in
recognition will be examined. Moreover, the proposed
scheme will be utilized in other domains like electronic
circuits and optical diagrams. Finally, the iterative recog-
nition of sketches using immediate feedback system is also
planned to be tested in the future.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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