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1. Introduction. When a stress wave strikes a crack, a stress field is generated which
contains square-root singularities at the tips of the crack. The question of fracture
under the influence of such a stress field was investigated in [1] and [2] for anti-plane
and in-plane motions, respectively. In both [1] and [2] a semi-infinite crack in a two-
dimensional geometry was considered, and it was assumed that the crack propagates
in its own plane. The principal task of the analysis of [1] and [2] consisted in solving an
unusual transient diffraction problem, namely, the diffraction of an elastic wave by a
semi-infinite crack which starts to extend after the crack tip has been struck.

In this paper we also consider transient diffraction of an elastic wave by an extending
crack, but with the distinction that the crack may propagate under an arbitrary angle
with its own plane. The incident wave is a plane horizontally-polarized wave. It is
assumed that crack propagation at a constant velocity is generated at the instant that
the tip of a semi-infinite crack is struck. An expression is derived for the stress intensity
factor in terms of the speed of crack propagation and the angle of crack propagation.

For a step-stress incident wave a solution for the particlc velocity is sought which
shows dynamic similarity inside the circular region of the diffracted wave. A crucial
step in the analysis is the use of Chaplygin's transformation, which reduces the problem
to the solution of Laplace's equation in a semi-infinite strip containing a slit. Other
applications in elastodynamics of dynamic similarity and Chaplygin's transformation
can be found in [3] and [4]. The Schwarz -Chris toff el transformation is subsequently
employed to map the semi-infinite strip on a half-plane. The appropriate analytic
function in the half-plane is obtained by a method which was discussed in great detail
by Muskhelishvili [5].

Expressions for the shear stresses and the particle velocity in the vicinity of the
crack tip were obtained by means of a limiting process which is analogous to the one
worked out by Sih [6] for problems of static equilibrium. The interesting aspect of the
results is that the dependence of the near-tip fields on the angle of crack propagation
separates from the dependence on a polar angle centered at the moving crack tip.

2. The diffraction problem. Horizontally polarized wave motion in a homogeneous,
isotropic, linearly elastic solid is governed by the two-dimensional wave equation
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d2w/dx + d2w/dy2 = (1 /cT2)d2w/dt2 (2.1)

where w(x, y, t) is the displacement normal to the x-y plane and cT is the velocity of
transverse waves,

cT = (m/p)1/2, (2.2)

where n and p are the shear modulus and the mass density, respectively.
At time t = 0 a plane incident wave of the form

Wine 0, y, t) = /(r) (2.3)

where

r = t + (x/cT) sin a — (y/cT) cos a (2.4)

and /(r) = 0 for r < 0, strikes the tip of a semi-infinite crack. The position of the wave-
front prior to time t = 0 is shown in Fig. la. It is assumed that the crack starts to propa-
gate at a constant velocity v, where v/cT < 1, at the instant that the crack tip is struck.
In contradistinction to earlier work, the crack is, however, not assumed to propagate
in its own plane, but rather in a plane which makes an angle kit with the plane of the
crack (see Fig. lb). Thus, at time t > 0 the crack tip is located at point D which is

0
UNDISTURBED / DISTURBED

(a) t<0

(b) t>0
Fig. 1. Pattern of wavefronts and position of the crack tip.
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defined by r = vt, 6 = kit. At time t the crack has generated a plane reflected wave and
a cylindrical diffracted wave. The pattern of wavefronts and the position of the crack
tip is shown in Fig. lb. Note that P and Q denote points which coincide with the origin 0
but which are located on the lower and upper surfaces of the crack, respectively.

The reflection and diffraction of the incident wave involve horizontally polarized
motions only which are governed by Eq. (2.1). To investigate the cylindrical wave it
is convenient to express the Laplacian in polar coordinates, with fixed origin at 0. Eq.
(2.1) is thus rewritten as

ld_(dw
r dr V dr.

, 1 = J_ djw
r dr V dr) r 3d' cT2 dt2 ^ '

The relevant shear stresses are

tTz — ndw/dr, Tez = (ji/r)dw/dQ. (2.6a, b)

In this paper we will consider the case of a step-stress incident wave. The function
/(r) in Eq. (2.3) then is of the form

/(r) = WutH(t) (2.7)

where H(r) is the Heaviside step function. The method of solution of Eq. (2.5) is based
on the premise that certain field variables should show dynamic similarity, since there
is no characteristic length in this diffraction problem. This implies that these field
variables depend on the independent variables r, 9 and t only through dependence
on d and on the ratio r/t. For an incident wave of the form (2.7) the particle velocity

W = dw/dt (2.8)

shows this property, i.e., W(r, 8, t) = IF(s, 0), where

s = r/t. (2.9)

To solve for W{s, 6) it is convenient to introduce s = r/t as a new variable. The
equation governing W(s, d) follows from Eq. (2.1) as

s2\d2W , L 2s2\dW d2W ,„in,s I1 " c"V Tf + 'I1 " 17 + W " °' <2'I0)
In terms of s and d the boundary conditions on W(s, d) take the form (see Fig. la, b):

6 = —7r, s < cT , dW/dd = 0, (2.11)

—7T < 6 < —(a + x/2), s = cT , W = 2W0 , (2-12)

— (a + 7r/2) < 6 < a + 7r/2, s = cT , W = W0 , (2.13)

a -f" 7r/2 < 6 < 7r, s = cT , W = 0, (2.14)

d = nr, s <cT , dW/dd = 0, (2.15)

6 = kit ± e, s < v, dW/dd = 0. (2.16)

For s < cT , Eq. (2.10) is elliptic. By means of Chaplygin's transformation

/3 = arcosh (cT/s), (2.17)
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Eq. (2.10) can then be simplified to Laplace's equation

d2W/d/32 + d2W/dd2 = 0. (2.18)

The real transformation (2.17) maps the circular domain s < cT , ~w < d < ir, into a
semi-infinite strip containing a slit in the 6 — 0 plane (see Fig. 2). Inside this domain
W(0, 6) satisfies Eq. (2.18). The boundary conditions are indicated in Fig. 2.

Within the semi-infinite strip in the 6 — 0 plane the solution of Laplace's equation
may be written as the real part of an analytic function G(y)

where

Eq. (2.19) implies

where

W = Re G(y) (2.19)

y = 0 + id. (2.20)

Tvz — iT#z = nG'(y) exp (if) (2.21)

Tpz = dT„./dt, T+z = dT+Jdt. (2.22a, b)

Here p and ^ are polar coordinates centered at the point D in the 6 — 0 plane (see Fig. 2)
and tvz and t+z are defined analogously to Eqs. (2.6a, b). A prime denotes a derivative
with respect to the argument of the function.

The function G(y) can, in principle, be obtained by the use of conformal mapping
techniques. The region in the 7-plane can be mapped on the upper half of the f-plane,
where f = £ + it], by the following Schwarz-Christoffel transformation:

7 - »«•> - c- jf+ + c. <2-23>

a+^ir

(a+^7r)

w = 0
E

-C 

0

■Q

*P
—=0

w = w0

-B
>=2w0

Fig. 2. Domain in the 6-0 plane.



SKEW CRACK PROPAGATION 127

V

B D Q

-£ -i -i K i i zP Q E

Fig. 3. Mapping on f-plane.

where C\ and C2 are complex constants. Schwarz-Christoffel transformations are dis-
cussed in some detail in [7]. The three arbitrary choices in the mapping are that the
points A, F and D are mapped into the points f = — 1, f = +1 and f = k, respectively.
The f-plane is shown in Fig. 3.

The integral in Eq. (2.23) can be evaluated to yield

7 = n t 2V/2 ^ ~~ ^2)V2(1 — f2)V2 + £"!/> + 1] — In [f + %p]\
CP + ?q U ~ CP )

~tTi, (i-Ly/2 {ln [(1 ~ *°2)V2(1 ~f2)1/2 ~ +1] ~ln [f ~?o]1

+ C2 . (2.24)

The mapping of the point F gives C2 = iir. By examining the changes of the imaginary
parts at P and Q we obtain

1 + k = -&> + «)C,/ft, + £0)(1 - ?p2)1/2, (2.25)

1 -*=-(£« - icJC./ft, + f„)(l - £Q2)1/2, (2.26)

respectively. Elimination of C\ from (2.25) and (2.26) yields

(1 + «)/(1 - *) = + K)(l - |«2)l/2/($0 - <0(1 - £p2)'/2. (2.27)

In view of Eqs. (2.25) and (2.26), the mapping can be rewritten as

7 = (1 + K){ln [(1 — £pV/2( 1 — f2)172 + f£p + 1] — In [f + £P]j

+ (1 - «)jln [(1 - £02)1/2(1 - f2)1/2 - ft, + i] _ in [f - {<,]} + iT. (2.28)

Finally, comparing the coordinates of D in the y and f-planes, we obtain the following
relation:

ln [cT/v + {(cT/vf - 1]1/21

= (1 +k) ln {[(1 - £/)1/2(l - *2)1/2 + kZp + 1 ]/({, + k)\

+ (1 - k) In {[(1 - £a2),/2(l - k2)1/2 - + !]/&, - «)}• (2.29)
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Eqs. (2.27) and (2.29) allow us to compute £P and |a for any given k and v/cT . Values
for £b and |* can be computed in the same manner from Eq. (2.28).

The boundary conditions shown in Fig. 2 are converted into conditions on the real
axis in the f-plane. If we write

W = W0 + W. , (2.30)

the boundary conditions on W. at 77 = 0 may be expressed as

- co <| < -|B , HE < H < °° W. = 0, (2.31)

-{„<£< -1, W, = W0 , (2.32)

— 1 < € < 1, dW./dr, = 0, (2.33)

1 < | < , W, = Wo . (2.34)
The appropriate analytic function in the upper half of the f-plane can be obtained

by the method of sectionally holomorphic functions. This method has been discussed
in great detail by Muskhelishvili [5], For the present problem it is convenient to work
with

/(f) = f"(f) = dWM - idW./dr, (2.35)
where

W, = Re F(t) (2.36)

and the Cauchy -Riemann conditions have been employed. The conditions on W, ,
Eqs. (2.31)-(2.34), now yield the following boundary conditions for /(f):

1 = 0, -1<£<1, lm/(f) = 0, (2.37)

1 = 0, ||| > 1, Re /(f) = 0. (2.38)
A problem with very similar conditions on the real axis was solved by Sih [8].

Since Re F(f) is discontinuous at f = — |B and f = |® , it is to be expected that
/(f) will contain poles at these points. It is easily checked that the following expression
for /(f) in the upper halfplane satisfies Eqs. (2.37) and (2.38):

«» - (Htt> {fTu + F^}' (2-39)
This expression has branch points at f = ±1. The branch cuts are taken along the
real axis, and we consider the branch of (f2 — 1)1/2 which —► f as |f| —> ». In view of
Eqs. (2.35) and (2.36), W, is obtained as

+ + <240>W, = Re

where the path of integration is in the upper halfplane. To determine the constants
A, B and C, the integration in (2.40) is carried out along the real axis. The path of
integration then consists of straight-line segments plus semicircular indentations in the
upper halfplane when a pole is passed. The condition (2.31) along the real axis in the
region — °° < | < —|B shows that C = 0. However, for | > —|fl , W, has a non-zero real
part contributed by the integral along the semicircular portion of the path above — |B •
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By applying the boundary condition (2.32) we find

A = -(W0/t)($b2 - 1)1/2. (2.41)

In the region — 1 < £ < 1, Eq. (2.40) yields

*■-«'.+ £ (i^r* [dr.+ du- i2A2)
The condition W, = — W„ for 1 < £ < (see Eq. (2.34)) yields, upon evaluation of
the integrals,

B = (TFoA)(£/ - 1)1/2. (2.43)

It is easily checked that W„ = 0 in £ > £E since the contribution to the integral of the
semicircular path segment above £B is W0 ■ Thus, Eq. (2.40) with C = 0 and A and B
defined by Eqs. (2.41) and (2.43), respectively, satisfies the boundary conditions (2.31)-
(2.34).

The problem is now in principle solved. To find an expression for W in terms of r,
t and 6, f has to be expressed in terms of y by means of Eq. (2.24), whereupon the result
must be substituted in Eqs. (2.40) and (2.30). As is often the case with the Schwarz-
Christoffel transformation, unfortunately, it is not possible to invert Eq. (2.24) ana-
lytically. The information that has thus far been gathered is, however, sufficient to
derive expressions for the stresses and the particle velocity in the vicinity of the moving
crack tip. This is shown in the next section.

3. Stresses in the vicinity of the crack tip. Within the rectangular region in the
d — ft plane shown in Fig. 2 the particle velocity W, as a function of /3 and 6, is governed
by Laplace's equation (see Eq. (2.18)). The region contains a semi-infinite slit, whose
tip is located at the point D. Let us consider the cylindrical coordinate system z, p, \J/,
centered at D, and where p represents the radial distance measured from D while \p
is the angle shown in Fig. 2. It is well known that the derivatives of a field quantity
governed by Laplace's equation have a square root singularity at the tip of the slit.
Thus, as the point D is approached, dW/dp and (\/p)dW/8>p, or Tpz and , show
square-root singularities. The forms of Tvz and Tfollow, for example, from the results
presented by Sih [6] as

Tv. = (K cos 4*)/(2p),/2 + 0(p1/2), (3.1)

T,. = -(ffsin l*)/(2v)1'2 + 0(p1/2), (3.2)

where K is the intensity factor.
To relate K to G(y) we follow the steps outlined in the paper by Sih [6], Thus, first

Eqs. (3.1) and (3.2) are combined to form

Tvz - iTu ~ [K/(2p)1/2] exp (#/2) (3.3)

and then, since y — yD = p exp dtp) (see Fig. 2), we find

Tv. - ~ [K/21/2(y - yD)u2] exp (z'0. (3.4)

By comparing Eqs. (2.21) and (3.4) it follows that

K(yD) = 21/2m lim (y - yD)1/2G'(y). (3.5)
7 —*7 D
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In the previous section the conformal mapping y = co(f) was employed, (see Eqs.
(2.23) and (2.24)) to map the rectangular region on the upper half of the f-plane. In
this mapping the point D is mapped on the real axis, and its position is defined by |D .
Concomitant with the mapping, Eq. (3.5) becomes

mD) = 21/2m lim ~rf (/^~^- (3.6)f-£o aw/af

In general the function dF/d$ is continuous at f = and do>/df vanishes as f —> .
It is necessary to use L'Hospital's rule to obtain

K(h>) = VLF'foVW'qiD)]1". (3.7)
By employing Eqs. (2.39) and (2.23), the intensity factor for the problem at hand is
now easily evaluated as

K = (£p + <0(£o — k)1 A B "1
_£js + K £e ~ Kj

(3.8)(1 + k)1/\Zp + ?a)1/2[(l - k2)(1 - £/)]1/4

It can be shown that K is an even function of k.
The remaining task is to employ Eqs. (3.1) and (3.2) to obtain expressions for the

shear stress and the particle velocity in the vicinity of the crack tip. To this end we
introduce a new set of polar coordinates z, R, <p centered at the crack tip, as shown in
Fig. 4. The pertinent shear stress rfI is related to rTZ and by

tv, = —Trz sin <p — tBz cos <p. (3.9)

Denoting drr2/dt by Trz , we cafi derive the following expression for Tr, by employing
Eqs. (2.6a) and (2.19):

Tra = (d(3/dr)n Re G'(y). (3.10)

Eliminating Re G'(y) by means of Eq. (2.21), and employing Eqs. (3.1) and (3.2), we
find, for small values of p,

Tr. (1 - v2/cT2)~1/2[K/(2p)1/2vt] cos U- (3.11)

Similarly,

TSz ~ [K/(2p)l/2vt] sin \\p. (3.12)

For small values of R/vt the following relations can easily be derived:

9 ~ kit R sin ip/vt, (3.13)

— (R/vt) cos (p], (3.14)

P
Fig. 4. Polar coordinates centered at the moving crack tip.
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(3 ~ pD + [(R/vt) cos <p]/(l — v2/cT2)w2. (3.15)

By writing p and \p in terms of 9 and /3, and by employing Eqs. (3.13)-(3.15), expressions
can be obtained relating p, sin (ip/2) and cos (tp/2) to ft, <p and t respectively. Substitution
of the results in Eqs. (3.11) and (3.12), integration with respect to t and subsequent
substitution of the results in Eq. (3.9) results in

tvz <~ fcT$T(y/cr , <p)(t/R)w2 (3.16)

where

K = (1 - v2/cT2)1MK/v1/2, (3.17)

. , , , / [1 —. (t>/cr)2 sin2 y]1/2 + cosy \1/2 .
<f>T(v/CT t <p) — If-. / / \ 2l r-| / / \2 ■ 2 if sin (pIU - (v/ct) ][1 - (v/cT) sin <p])

[1 — (v/cT)2 sin2 (p]1/2 — cosy
1 — {v/cT)2 sin2 <p

1/2

cosy. (3.18)

It should be noted that does not depend on k. The dependence of tvz on y in the
immediate vicinity of the crack tip thus is independent of the skew of crack propagation.

In Fig. 5 the function $T is plotted versus y for various values of v/cT . It is noted
that the maximum of 3>r moves out of the plane of crack propagation (<p = ir) as v/cT
increases.

To compute the particle velocity in the vicinity of the crack tip we observe that

dW/dt = — (r/t)dW/dr. (3.19)

Using (3.11) and integrating with respect to t, we obtain

W ~ kw$w{v/cT , tp)(t/R)1/2 (3.20)

where

and

kw = —v1/2K/(l - v2/cT2)Uin (3.21)

f ,, , /[I - Wct)2 sm2 <p]U2 + cos y\,/2 r
*r(»/cr , *0 = 1 1 — (v/cT)2 sin2 tp / ' (3"22)

4. Propagation of the crack in its own plane. For this case, which corresponds to
k = 0, it follows from Eq. (2.27) that £P = . The conformal mapping (2.28) now
reduces to

7 = iir — 2i arctan [(f2 — l)I/2/(l — £P2)1/2]. (4.1)

This relation can be inverted to yield

f - i = _(i _ coth2 [(/3 + id)/2], (4.2)

The point D now maps into the origin of the f-plane. By the use of Eq. (4.2) the mapping
of D yields an equation for and which can be solved as

= £0 = 2I/2(1 + cT/vyW2 (4.3)

By means of Eq. (4.2) we also find



132 J. D. ACHENBACH AND V. K. VARATHARAJULU

4.0

0 30 60 90 120 150 180

<f> (DEGREES)
Fio. 5. Dependence of in the vicinity of the crack tip on the polar angle <p.

t - t 21/2(1 - sin a)u\cT/v + sin «)1/2
Ss {eT/v+ 1)1/2 cos a ' ( ;

A = -B = ^ • (4.5)
it \cT/v + 1/ """ -

The constants A and B easily follow as
/ / - \ 1 to. - — sin a
,T/v + 1/ cos a

Substitution of Eqs. (4.3)-(4.5) into Eq. (3.8) yields
f)l/2 TIT■ / \l/2/-« ■ \l/2 1/2 1/2

7v- |   2 M" o (cr (1 sin ex.) Ct V /, r%\
U = 0 — / 2 2\ 1/4/i I • / \ 1/2 * V*'°/irCj< (cT — v ) (1 + v Sin a/cr)

The corresponding expression for tv, can be shown to agree with an expression derived
earlier in [9] in the vicinity of the crack tip for a crack propagating in its own plane.

For a stationary crack (v = 0), the factor kr and the function 3>(^) follow immediately
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from Eqs. (3.17), (4.6) and (3.18). The corresponding tvi can be shown to agree with
the results of [10].

5. Singularity at the corner. The stress t0z in the vicinity of the corners at the
points P and Q can also be obtained by a limiting process in the f-plane. Since the
manipulations are straightforward and similar to the ones carried out in [4], they will
not be recorded here. In the vicinity of P we find

1 C y 2\-l/2 -4; Bre, ~ 5 =; (1 - 1;/)
2 KC Lis — + £e-

2cA"/<1+") .
 I «i r
r / (5'"

The general form of the dependence on r agrees with what is usually found at the vertex
of a wedge. It should be noted that the stress is not singular if k < 0. A similar expression
can be derived for the stress in the vicinity of the point Q.

0

Fig. 6. The factor if as a function of the angle of skew; a = 0°.
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1.4

0 0.2 0.4 0.6 0.8
K

Fig. 7. The factor K as a function of the angle of skew; a = 45°.

6. Results. The intensity factor K, which appears in the expressions for r„,
and W ((3.16) and (3.20), respectively), has been plotted in Figs. 5 and 6 versus the
parameter k which defines the angle of skew. The diagrams show that for small values
of v/cT the maximum of K occurs for k = 0, i.e. for propagation of the crack in its own
plane. As the speed of crack propagation increases beyond approximately v/cT = 0.3
for an angle of incidence a = 0°, and a value somewhat smaller than v/cT = 0.2 for
a = 45°, the maxima of K occur at increasing values of k. When v/cT approaches unity
the maxima move to k = 0.5 and k = 0.75 for a = 0 and a = 45°, respectively, i.e.
toward the point corresponding to E in Fig. 1.
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