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Abstract

We mainly investigate the structures of skew cyclic and skew quasi-
cyclic codes of arbitrary length over Galois rings. Similar to [5], our
results show that the skew cyclic codes are equivalent to either cyclic
and quasi-cyclic codes over Galois rings. Moreover, we give a necessary
and sufficient condition for skew cyclic codes over Galois rings to be
free. A sufficient condition for 1-generator skew quasi-cyclic codes to be
free is also determined.
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1 Preliminaries

Let q = pr, p a prime number and r a positive integer. Let f(x) be a basic
irreducible polynomial of degree m over Zq . The Galois ring of degree m over
Zq is the residue class ring Zq[x]/(f(x)), denoted as R = GR(q, m). R is a
local ring with maximum ideal 〈p〉 and the residue field Fpm . Each element
of R can be uniquely expressed as a = a0 + a1ξ + . . . + am−1ξ

m−1, where
ai ∈ Zq, i = 1, 2, . . . , m − 1. The set T = {0, 1, ξ, . . . , ξpm−2} is called the
Teichmuller set of R. The Frobenius automorphism φ of R over Zq is defined
by φ(a) = a0 + a1ξ

p + . . . + am−1ξ
(m−1)p. The group of automorphism of R is

a cyclic group with order m and is generated by φ.
Let θ be an automorphism of R. The skew polynomial ring R[x; θ] is

the set of polynomials over R, where the addition is defined as the usual
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addition of polynomial and the multiplication is defined by the basic rule
(axi)(bxj) = aθi(b)xi+j , a, b ∈ R.

Let θ be an automorphism with order t and let Z(R[x; θ]) be the center of
R[x; θ]. Then it is easy to deduce that the center of R[x; θ] is R∞[xt], where
R∞ = GR(q, m/t). Let f, g ∈ R[x; θ]. Then g is called a right divisor of f if
there exists q ∈ R[x; θ] such that f = qg. A right divisor of a center polynomial
is also its left divisor. In particular if t divides n, then xn − 1 ∈ Z(R[x; θ])
and hence a right divisor of xn − 1 is also its left divisor. This result has a
big impact on the structure of elements in R[x; θ]/(xn − 1). If we remove this
restriction, then we can define skew cyclic codes of any length n. However, if
t is not a divisor of n, then R[x; θ]/(xn − 1) is not a ring anymore. It is only
a left R[x; θ]-module.

2 Skew cyclic codes

Let θ be an automorphism of the Galois ring R. A linear code C of length n
over R is called skew cyclic if and only if (c0, c1, . . . , cn−1) ∈ C ⇒ (θ(cn−1),
θ(c0), . . . , θ(cn−2)) ∈ C. As traditional study of cyclic codes, we can identify
each codeword (c0, c1, . . . , cn−1) ∈ C by a polynomial c(x) = c0 + c1x + . . . +
cn−1x

n−1 in R[x; θ]/(xn − 1).

Proposition 2.1 Let C be a skew cyclic code of length n and let θ be an
automorphism of R with order t. If gcd(t, n) = 1 then C is a cyclic code of
length n.

Proof Since gcd(t, n) = 1, it follows that there exist integers a, b such that
at + bn = 1. Therefore, at = 1 − bn = 1 + ln, where l > 0. Let c(x) =
c0+c1(x)+. . .+cn−1x

n−1 be a codeword in C. Note that xatc(x) = θat(c0)x
1+ln+

θat(c1)x
2+ln + . . . + θat(cn−1)x

n+ln = cn−1 + c0x + . . . + cn−2x
n−2 ∈ C. Thus C

is a cyclic code of length n. �

Proposition 2.2 A code C of length n over R is a skew cyclic code if and
only if C is a left R[x; θ]-submodule of the left R[x; θ]-module R[x; θ]/(xn −1).

Proof Let c(x) = c0 + c1x + . . . + cn−1x
n−1 be a codeword in C. Since C is

cyclic, it follows that xc(x), x2c(x), . . . , xic(x) are all elements in C, where all
the indices are taken modulo n. Therefore, r(x)c(x) ∈ C for any r(x) ∈ R[x; θ].
Thus C is an R[x; θ]-submodule of R[x; θ]/(xn − 1).

Conversely, suppose C is a left R[x; θ]-submodule of the left R[x; θ]-module
R[x; θ]/(xn − 1). Then for any codeword c(x) ∈ C, xc(x) ∈ C. Therefore, C is
skew cyclic. �

Note that not all left R[x; θ]-submodules are R-free, but in following we
will focus on those submodules. Similar to the case that the order of θ divides
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n, the following proposition gives a well-defined properties of free skew cyclic
codes for any length n.

Proposition 2.3 A skew cyclic code C of length n over R is free if and
only if it is generated by a monic right divisor g(x) of xn − 1 with degree k.
The set {g(x), xg(x), . . . , xn−k−1g(x)} forms a basis of C and the rank of C is
n − k.

3 Skew quasi-cyclic codes

Let θ be an automorphism of R and n = ls. A linear code C over R is
called skew quasi-cyclic with index l if and only if (c0,0, c0,1, . . . , c0,l−1, c1,0,
c1,1, . . . , c1,l−1, . . . , cs−1,0, cs−1,1, . . . , cs−1,l−1) ∈ C ⇒ (θ(cs−1,0), θ(cs−1,1), . . . ,
θ(cs−1,l−1), θ(c0,0), θ(c0,1), . . . , θ(c0,l−1), . . . , θ(cs−2,0), θ(cs−2,1), . . . , θ(cs−2,l−1)) ∈
C. If θ is the identity map, we call C a quasi-cyclic code over R.

In the following, we illustrate the relationship between skew cyclic codes
and quasi-cyclic codes over R.

Proposition 3.1 Let C be a skew cyclic code of length n over R and let θ
be an automorphism with order t. If gcd(t, n) = l, then C is equivalent to a
quasi-cyclic code of length n with index l over R.

Proof Let n = sl and (c0,0, c0,1, . . . , c0,l−1, c1,0, c1,1, . . . , c1,l−1, . . . , cs−1,0, cs−1,1,
. . . , cs−1,l−1) ∈ C. Since gcd(t, n) = d, there exist integers a, b such that at +
bn = d. Therefore, at = d−bn = d+gn, where g is a nonnegative integer. Note
that θd+gn(c0,0, c0,1, . . . , c0,l−1, c1,0, c1,1, . . . , c1,l−1, . . . , cs−1,0, cs−1,1, . . . , cs−1,l−1)
= (cs−1,0, cs−1,1, . . . , cs−1,l−1, c0,0, c0,1, . . . , c0,l−1, . . . , cs−2,0, cs−2,1, . . . , cs−2,l−1) ∈
C. Thus, C is equivalent a quasi-cyclic code of length n with index l over R.

From Proposition 3.1, we have the following corollary directly.

Corollary 3.2 Let C be a skew quasi-cyclic code of length n with index l
over R and let θ be an automorphism with order t. If gcd(t, n) = k, then C is
equivalent to a quasi-cyclic code of length n with index lk over R.

Let C be an skew qusi-cyclic codes of length n with index l over R. As tra-
ditional study of quasi-cyclic codes , we can identity an element (c0,0, c0,1,
. . . , c0,l−1, c1,0, c1,1, . . . , c1,l−1, . . . , cs−1,0, cs−1,1, . . . , cs−1,l−1) ∈ C with the poly-
nomial (c0(x), c1(x), . . . , cl−1(x)) ∈ (R[x; θ]/(xs−1))l, where cj(x) =

∑s−1
i=0 ci,jx

i∈
R[x; θ]/(xs−1), j = 0, 1, . . . , l−1. Then, like in the case of skew cyclic codes
in section 2, it is easy to see that skew quasi-cyclic code of length n with index
l over R is a left R[x; θ]-submodule of (R[x; θ]/(xs−1))l; and conversely, a left
R[x; θ]-submodule of (R[x; θ]/(xs − 1))l is a skew quasi-cyclic code of length
n with index l over R. It can lead us to compute the number of distinct skew
cyclic and quasi-cyclic codes over R.
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A 1-generator skew quasi-cyclic code C defined as C generated by an element
(g1(x), g2(x), . . . , gl(x)) ∈ (R[x; θ]/(xn−1))l. For 1-generator skew quasi-cyclic
codes, we have the following property.

Proposition 3.3 Let C be an 1-generator skew quasi-cyclic code over R,
which generated by (g1(x), g2(x), . . . , gl(x)) ∈ (R[x; θ]/(xs − 1))l. For each
i = 1, 2, . . . , l, if gi(x) generates an R-free skew cyclic code over R, then C is
R-free with rank s−degg(x), where g(x) = gcld(g1(x), g2(x), . . . , gl(x), xs−1).

4 Examples

Example 4.1 Let R = GR(4, 2), θ be a Frobenius automorphism. Let
g(x) = x3 +2x2 +x+3, which is a right divisor of x7 − 1. Since gcd(2, 7) = 1,
by Proposition 2.1 and Proposition 2.3, skew cyclic code C = 〈g(x)〉 is a free
cyclic code with rank 7 − 3 = 4 over R. In fact, it is an [7, 4, 3] cyclic code.

Example 4.2 Let R = GR(9, 2), θ be a Frobenius automorphism. Let
g(x) = x + α2 is a right divisor of x4 − 1, where α is a primitive element in
R. This polynomial generates a MDS skew cyclic code with parameters [4, 3, 2]
over R. Since gcd(2, 4) = 2, this code is equivalent to a quasi-cyclic code of
length 4 with index 2 generated by g1(x) = 1 and g2(x) = α2x over R.

Example 4.3 Let R = GR(9, 2), θ be a Frobenius automorphism. Let
g(x) = x + α2 is a right divisor of x4 − 1, where α is a primitive element in
R. Let C = (g(x), g(x), g(x)) be a 1-generator skew quasi-cyclic code of length
12 with index 3 over R. Then by Corollary 3.2 and Proposition 3.3, C is an
R-free quasi-cyclic code of length 12 with index 2 × 3 = 6 over R. In fact, it
is an [12, 3, 6] code over R.
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