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Abstract
In this paper we study a special type of linear codes, called skew

cyclic codes, in the most general case. This set of codes is a gen-
eralization of cyclic codes but constructed using a non-commutative
ring called the skew polynomial ring. In previous works these codes
have been studied with certain restrictions on their length. This work
examines their structure for an arbitrary length without any restric-
tion. Our results show that these codes are equivalent to either cyclic
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codes or quasi-cyclic codes, hence establish strong connections with
well-known classes of codes.

1 Introduction

Cyclic codes have been investigated and studied by many researchers for the
last fifty years. These classes of codes were first discussed by a series of
papers and reports by E. Prange [9], and [10] published between 1957 and
1959. Their rich algebraic structure made this class of error-correcting-codes
one of the most important classes in coding theory. Prange in [9], and [10],
identified cyclic codes of length n over a finite field F with ideals in the
ring F [x]/(xn − 1). This relationship between ideals and cyclic codes led to
the construction of BCH codes and Reed-Solomon codes. In the seventies
many mathematicians and engineers expanded the study of linear and cyclic
codes from finite fields to finite rings. A remarkable paper by Hammons et
al. [4] showed that certain binary nonlinear codes with good error correcting
capabilities can be viewed through a Gray mapping as linear codes over Z4.
All of this work is restricted to codes that are defined in a commutative ring.

D. Boucher, W. Geiselmann and F. Ulmer in [2], and in [3], took another
direction when they studied a more generalized class of linear and cyclic
codes using a non-commutative ring. They studied what they called skew
cyclic codes, where the generator polynomial of a skew cyclic code comes
from a non-commutative ring F [x; θ], where F is a finite field and θ is a field
automorphism of F . They gave some examples of skew cyclic codes with
Hamming distances larger than the best known linear codes with the same
parameters [2].

The skew cyclic codes constructed in [2] and skew QC constructed in [1]
have the property that |〈θ〉| = m must be a factor of the length n of the
code. If m - n then the polynomial generated by (xn − 1) is not a two-sided
ideal and hence the set Rn = F [x; θ]/(xn − 1) fails to be a ring. Therefore,
the usual identification of codes with ideals is no longer valid.

In this paper, we are interested in studying skew cyclic codes for an
arbitrary length n without any restriction. Since the polynomial (xn − 1)
does not always generate a two-sided ideal in the ring F [x; θ], the set Rn =
F [x; θ]/(xn − 1) fails to be a ring unless m|n. It follows that identification
of skew cyclic codes with ideals in Rn is invalid in this case. We will show
that the set Rn is always a left F [x; θ] submodule. Therefore, we identify
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skew cyclic codes with left submodules of Rn. Our main results show that
any skew cyclic code is equivalent to a cyclic or a quasi-cyclic (QC) code.

The rest of the paper is organized as follows. Section 2 includes a brief
description of the skew polynomial ring F [x; θ] and the definition of skew
cyclic codes. It also includes a description of the set Rn = F [x; θ]/(xn − 1).
We show that Rn fails to be a ring if m - n. However, we show that Rn

can be considered as a left F [x; θ] module. In Section 3, we discuss the
structure of skew cyclic codes where we show that these types of codes are
left F [x; θ] submodules of Rn. Moreover we show that skew cyclic codes
are free modules. This identification will help in finding a basis and the
dimension of these codes. In section 4 we focus on the relationship between
skew cyclic codes and cyclic and QC codes. We show that if (m, n) = 1 then
skew cyclic codes are the same as cyclic codes and if (m,n) = d > 1, then
skew cyclic codes are equivalent to QC codes. Section 5 concludes the paper.

2 The Definition of Skew Cyclic Codes

2.1 The Skew Polynomial Ring F [x; θ] and Skew Cyclic
Codes

This section represents the construction of a non-commutative ring R =
F [x; θ]. The structure of this noncommutative ring depends on the elements
of a finite field F and an automorphism θ of F.

Let F be any finite field of characteristic p. Let θ be an automorphism of
F with |〈θ〉| = m. Let K be a subfield of F fixed under 〈θ〉 . Then, [F : K] =
m and K = GF (pt) where F = GF (q) and q = ptm. Moreover since K is
fixed under θ, we have θ (a) = apt

for all a ∈ F .

Example 1 Consider the finite field GF (4) = {0, 1, α, α2} where α2+α+1 =
0. Define an automorphism

θ : GF (4) → GF (4) by

θ(a) = a2.

Then θ(0) = 0, θ(1) = 1, θ(α) = α2 and θ(α2) = α. Hence the fixed field
K is just the binary field GF (2).
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Definition 2 Following the above notation, we define the skew polynomial
set F [x; θ] as

F [x; θ] =

{
f(x) = a0 + a1x + a2x

2 + · · ·+ anx
n| where

ai ∈ F for all i = 0, 1, . . . , n

}
where addition of these polynomials is defined in the standard manner while
multiplication, which we will denote by *, is defined using the distributive
law and the rule

(axi) ∗ (bxj) = aθi(b)xi+j.

Example 3 Using the same automorphism from Example1 we get

(αx) ∗ (α2x) = αθ(α2)x2

= (α)(α)x2 = α2x2.

On the other hand we have,

(α2x) ∗ (αx) = α2θ(α)x2

= α2(α2)x2 = αx2.

This shows that (αx) ∗ (α2x) 6= (α2x) ∗ (αx).

Theorem 4 [7] The set F [x; θ] with respect to addition and multiplication
defined above forms a non-commutative ring called the skew polynomial ring.

The following facts are straightforward for the ring F [x; θ] :

1. It has no nonzero zero-divisors.

2. The units of F [x; θ] are the units of F.

3. deg(f + g) ≤ max{deg(f), deg(g)}.

4. deg(f ∗ g) = deg(f) + deg(g).

The skew polynomial ring F [x; θ] was introduced by Ore [8] in 1933, and
a complete treatment of this ring can be found in [6] and in [7].

Theorem 5 [7] (The Right Division Algorithm) For any polynomials f and
g in F [x; θ] with f 6= 0 there exist unique polynomials q and r such that

g = q ∗ f + r where deg(r) < deg(f).
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The above result is called division on the right by f . A similar result can
be proved regarding division on left by f . Applying the division algorithm
above one can easily prove the following theorem:

Theorem 6 [6] F [x; θ] is a non-commutative principal left (right) ideal ring.
Moreover any two sided ideal must be generated by

f(x) =
(
a0 + a1x

m + a2x
2m + . . . + arx

rm
)
∗ xt,

where |〈θ〉| = m.

A version of the following lemma appears in [1] where only one direction
of the implication is stated. We include a full statement and proof for the
sake of completeness.

Lemma 7 (xn − 1) ∈ Z (F [x; θ]) if and only if m|n where Z (F [x; θ]) is the
center of F [x; θ].

Proof. Assume m|n and let f(x) ∈ F [x; θ], say

f(x) = a0 + a1x + · · ·+ arx
r.

Since m|n, θn(a) = a for any any a ∈ F . Hence,

(xn − 1) ∗ f(x) = (xn − 1) ∗ (a0 + a1x + · · ·+ arx
r)

= xn ∗ a0 + xn ∗ a1x + · · ·+ xn ∗ arx
r − f(x)

= θn(a0)x
n + θn(a1)x

n · x + · · ·+ θn(ar)x
n · xr − f(x)

= a0x
n + a1x

n · x + · · ·+ arx
n · xr − f(x)

= a0 ∗ xn + a1x ∗ xn + · · ·+ arx
r ∗ xn − f(x)

= (a0 + a1x + · · ·+ ar) ∗ xn − f(x)

= f(x) ∗ (xn − 1) .

Hence, (xn − 1) ∈ Z (F [x; θ]).
Conversely, suppose (xn − 1) ∈ Z (F [x; θ]). Then, xn − 1 commutes with

every element of F [x; θ]. In particular, (xn − 1) ∗ axm = axm ∗ (xn − 1), for
any a ∈ F . Now, (xn − 1) ∗ axm = θn(a)xn+m − axm, and axm ∗ (xn − 1) =
axn+m − axm. This implies that θn(a) = a for all a ∈ F , hence |〈θ〉| |n.

The skew polynomial ring is important in the study the structure of skew
cyclic codes which are defined as follows.
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Definition 8 Let F be any finite field of characteristic p and let θ be an
automorphism of F with |〈θ〉| = m. A subset C of F n is called a skew cyclic
code of length n if

1. C is a subspace of F n.

2. If
c = (c0, c1, . . . , cn−1) ∈ C

then
θ(c) = (θ(cn−1), θ(c0), . . . , θ (cn−2)) ∈ C.

It is shown in [2, 3] that under the usual identification of vectors with
polynomials, the skew cyclic shift (the second condition in the definition
above) corresponds to skew multiplication by x in F [x; θ], and skew cyclic
codes are ideals in F [x; θ]/(xn − 1) when m|n.

2.2 Algebraic Structure Of Rn = F [x; θ]/(xn − 1)

As a result of Theorem 6, the ideal generated by the polynomial xn − 1 is a
two sided ideal if and only if m|n. Moreover by Lemma 7, (xn−1) commutes
with the elements of F [x; θ] if and only if m|n. This result has a big impact
on the structure of elements in the set Rn = (F [x; θ]/(xn − 1). If m|n then
the set Rn is a well-defined ring where multiplication of elements in Rn is
defined by

(f1(x) + (xn − 1)) ∗ (f2(x) + (xn − 1)) (1)

= f1(x) ∗ f2(x) + f1(x) ∗ (xn − 1) + (xn − 1) ∗ f2(x) + (xn − 1)

Now since m|n, by Lemma 7, (xn − 1) ∈ Z(F [x, θ]). Hence

(xn − 1) ∗ f2(x) = f2(x) ∗ (xn − 1). (2)

This implies that

(f1(x) + (xn − 1)) ∗ (f2(x) + (xn − 1))

= f1(x) ∗ f2(x) + (f1(x) + f2(x)) ∗ (xn − 1) + (xn − 1)

= f1(x) ∗ f2(x) + (xn − 1).
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So multiplication is well-defined in Rn and hence Rn is a ring. If m - n
then (xn − 1) /∈ Z(F [x, θ]) and hence Equation 2 is not valid anymore. This
implies that

(f1(x) + (xn − 1)) ∗ (f2(x) + (xn − 1))

= f1(x) ∗ f2(x) + f1(x) ∗ (xn − 1) + (xn − 1) ∗ f2(x) + (xn − 1)

6= f1(x) ∗ f2(x) + (xn − 1). (3)

Equation 3 implies that multiplication is not well-defined in the set Rn and
hence Rn is not a ring anymore. Since Rn is not a ring, we can not discuss
the structure of ideals in this set. In all of the literature on skew cyclic codes,
the condition m|n is assumed, hence the one-to-one correspondence between
the skew cyclic codes and the ideals in Rn is used. Because Rn fails to be a
ring for other values of n, we are faced with two possible scenarios regarding
the structure of skew cyclic codes

• Scenario I: Restrict the study of skew cyclic codes to the case m|n only:
In this case there is a a one-to-one correspondence between skew cyclic
codes and ideals in Rn. This is the reason that the work in [2, 3] was
restricted to the case where m|n.

• Scenario II: No restriction on the length n : In this case the traditional
relationship between ideals and cyclic codes is no longer valid. Another
approach is needed to handle the case of arbitrary code length n.

In this paper we are interested in studying the structure of skew cyclic
codes for any length n (Scenario II). Although the set Rn is not a ring
anymore for m - n, it still has a useful structure that makes it possible
to handle this case.

Let (f(x) + (xn − 1)) be an element in the set Rn, and let r(x) ∈ F [x; θ].
Define multiplication from left as:

r(x) ∗ (f(x) + (xn − 1)) = r(x) ∗ f(x) + (xn − 1) for any r(x) ∈ F [x; θ]. (4)

This is a well-defined multiplication of the elements of Rn by the elements
of F [x; θ]. Under this definition we have the following theorem:

Theorem 9 Rn is a left F [x; θ]-module where multiplications is defined as
in Equation 4.

Proof. Using the definition in Equation 4, it is straightforward to show that
all the conditions of a left module are satisfied.
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3 The Structure of Skew Cyclic Codes

The set Rn can be described as

Rn = F [x; θ]/ (xn − 1) =

{
f(x) = a0 + a1x + a2x

2 + · · ·+ an−1x
n−1| where

ai ∈ F for all i = 0, 1, . . . , n− 1 and xn = 1

}
.

It is worth noting that the set Rn can be considered as a left F -module, and
from Theorem 9 as a left F [x; θ]-module.

Under this representation of Rn and due to Theorem 6, we can identify
each codeword

(ao, a1, . . . , an−1)

by a polynomial

f(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1 in Rn

as in the traditional study of cyclic codes. The following theorem gives a
well-defined definition of skew cyclic codes for any length n.

Theorem 10 A code C in Rn is a skew cyclic code if and only if C is a left
F [x; θ]-submodule of the left F [x; θ]-module Rn.

Proof. Suppose C is a skew cyclic code in Rn. Let

f(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

be any codeword in C. Since C is a skew cyclic code, (a0, a1, . . . , an−1) and
all its skew cyclic shifts are in C. Note that

x ∗ f(x) = θ(an−1) + θ(a0)x + . . . + θ(an−2)x
n−1

= (θ(an−1), θ(a0), θ(a1), . . . , θ(an−2)),
...

xi ∗ f(x) = θi (an−i) + θi (an−i+1) x + . . . + θi (an−i−1) xn−1

= (θi (an−i) , θi (an−i+1) , . . . , θi (an−i−1))

are all elements in C, where all the indices are taken mod n. Since C is a
linear code, it follows that r(x) ∗ f(x) ∈ C for any r(x) ∈ F [x; θ]. Therefore
C is an F [x; θ]-submodule of Rn.
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Now suppose C is a left F [x; θ]-submodule of the left F [x; θ]-module Rn,
then for any f(x) ∈ C we have x ∗ f(x) ∈ C. Therefore C is a skew cyclic
code.

In the sequel the structure of skew cyclic codes will be identified with the
structure of the left F [x; θ]-submodules of Rn.

Lemma 11 Let C be a left submodule of Rn. Then C is a cyclic submodule
generated by a monic polynomial of minimal degree in C.

Proof. Let f(x) ∈ C be a monic polynomial of minimal degree among non-
zero polynomials in C. Note that f(x) is unique (otherwise if l(x) ∈ C is
monic of the same degree then f(x)− l(x) ∈ C would be of degree less than
the degree of f(x)). Let c(x) be any element in C. By the right division
algorithm there are two unique polynomials q and r such that

c = q ∗ f + r where r = 0 or deg(r) < deg(f).

Since C is a left submodule, r = c − qf ∈ C. This is a contradiction unless
r = 0, since f(x) is of minimal degree in C. Therefore, we have c = q ∗f and
hence C is a cyclic submodule generated by f(x). We write this as C = (f).

Theorem 12 Let C = (f) be a left submodule of Rn. Then f(x) is a right
divisor of xn − 1.

Proof. Let f(x) be a polynomial of minimal degree in C. Again as in Lemma
11 above there are two unique polynomials q and r such that

xn − 1 = q ∗ f + r where deg(r) < deg(f).

Since f(x) and xn − 1 = 0 are in C, we conclude that r(x) ∈ C. But f(x) is
of minimal degree in C. Therefore r(x) = 0 and hence f(x) is a right divisor
of xn − 1.

Before we state the next results it is important to note that C can be
considered both as left F [x; θ] and F submodules.

Theorem 13 Let C = (g) be a left submodule of Rn where g(x) is a right
divisor of xn − 1 of degree r, and xn − 1 = h(x) ∗ g(x). Then C is a free left
F -submodule with basis

β =
{
g(x), x ∗ g(x), . . . , xn−r−1 ∗ g(x)

}
, and

dim C = n− r.
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Proof. Let C = (g(x)) be a left submodule of Rn where g(x) is a right divisor
of xn − 1 of degree r. Let c(x) ∈ C. Then there is an element l(x) ∈ F [x; θ]
such that

c(x) = l(x) ∗ g(x).

If deg l(x) ≤ n− r − 1 then β is a spanning set of C. Otherwise by the right
division algorithm there are two polynomials q(x) and r(x) such that

l(x) = q(x) ∗ h(x) + r(x)

with r(x0 = 0 or deg r(x) ≤ n− r− 1. Multiplying by g(x) on the right and
noting that h(x) ∗ g(x) = 0 we get

l(x) ∗ g(x) = r(x) ∗ g(x).

Therefore, β spans C. To show that β is linearly independent suppose that

c0g(x) + c1x ∗ g(x) + . . . + cn−r−1x
n−r−1 ∗ g(x) = 0.

Comparing coefficients yields the fact that ci = 0 for all i = 0, 1, . . . , n−r−1.
Hence β is linearly independent and therefore it is a basis for C with dim C =
n− r.

4 Relationship between skew cyclic codes and

cyclic and QC-codes

Before we prove our main results in this section, we will recall the definition
of cyclic codes and quasi cyclic codes.

Definition 14 Let F be any finite field of characteristic p. A subset C of
F n is called a cyclic code of length n if

1. C is a subspace of F n.

2. If
c = (c0, c1, . . . , cn−1) ∈ C

then
c = (cn−1, c0, . . . , cn−2) ∈ C.
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Definition 15 Let F be a finite field. A subset C of F n is called a quasi-
cyclic code of length n where n = sl, and index l if

1. C is a subspace of F n.

2. If

c =

(
c0,0, c0,1, . . . , c0,l−1, c1,0, c1,1, . . . , c1,l−1, . . . ,

cs−1,0, cs−1,1, . . . , cs−1,l−1

)
∈ C

then

Tθ,s,l(c) =

(
cs−1,0, cs−1,1, . . . , cs−1,l−1, c0,0,

. . . , c0,l−1, . . . , cs−2,0, . . . , cs−2,l−1

)
∈ C.

In the proofs of the following theorems, we will use the following fact
from elementary number theory. Let d be the greatest common divisors of
the integers a and b (denoted by (a, b) = d). Then there exist integers x and
y such that

ax + by = d.

This representation is not unique. In fact, if we let let x0 = x + k
b

(a, b)
, and

y0 = y − k
a

(a, b)
for some integer k, then

ax0 + by0 = ax + k
ab

(a, b)
+ by − k

ab

(a, b)
(5)

= ax + by = d.

Theorem 16 Let C be a skew cyclic code of length n and let θ be an au-
tomorphism of F with |〈θ〉| = m. If (m, n) = 1 then C is a cyclic code of
length n.

Proof. Let C = (g(x)) be a skew cyclic code of length n such that (m, n) = 1.
We know that there exist integers α1, α2 such that

1 = α1m + α2n ⇒ α1m = 1− α2n.

By Equation 5 we may assume that α2 is a negative integer, so we can write
α1m = 1+Dn, where D > 0. Let c(x) = c0 + c1x+ . . .+ cn−1n− 1xn−1 ∈ C.
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To show that C is a cyclic code it is suffices to show that
cn−1 + c0x + c1x

2 + . . . + cn−2x
n−2 ∈ C. Consider

xα1m ∗ c(x)

= x1+Dn ∗
(
c0 + c1x + . . . + cn−1x

n−1
)

= θ1+Dn(c0)x
1+Dn + · · ·+ θ1+Dn(cn−2)x

1+Dn+n−2 + θ1+Dn(cn−1)x
1+Dn+n−1

= θα1m(c0)x
1+Dn + . . . + θα1m (cn−2) xDn+n−1 + θα1m (cn−1) xn+Dn ∈ C.

Note that in the ring Rn = F [x; θ]/(xn − 1), we have xn = 1 and θm (a) = a
for any a ∈ F. This implies that

xα1m ∗ c(x) = cn−1 + c0x + c1x
2 + . . . + cn−2x

n−1 ∈ C.

Thus, C is a cyclic code of length n.
This theorem yields the following corollary.

Corollary 17 For (m, n) = 1, if f(x) is a factor of xn − 1 in F [x, θ], then
f(x) is also a factor of xn − 1 in the usual polynomial ring F [x].

Theorem 18 Let C = (g(x)) be a skew cyclic code of length n and let θ be
an automorphism of F with |〈θ〉| = m. If (m,n) = d then C is equivalent to
a QC code of length n and index d.

Proof. Let n = ds and

c =

(
c0,0, c0,1, . . . , c0,d−1, c1,0, c1,1, . . . , c1,d−1, . . . ,

cs−1,0, cs−1,1, . . . , cs−1,d−1

)
∈ C. Since (m, n) = d,

we may write α1m = d + Jn for some nonnegative integer J. Consider

θd+Jn

(
c0,0, c0,1, . . . , c0,d−1, c1,0, c1,1, . . . , c1,d−1, . . . ,

cs−1,0, cs−1,1, . . . , cs−1,d−1

)
=

(
θd+Jn (cs−1,0) , θd+Jn (cs−1,1) , . . . , θd+Jn (cs−1,d−1) , θd+Jn (c0,0) , . . . ,
θd+Jn (c0,d−1) , . . . , θd+Jn (cs−2,0) , θd+Jn (cs−2,1) , . . . , θd+Jn (cs−2,d−1)

)
.

θd+Jn (a) = θα1m (a) = a for any a ∈ F. This implies that

θd+Jn

(
c0,0, c0,1, . . . , c0,d−1, c1,0, c1,1, . . . , c1,d−1, . . . ,

cs−1,0, cs−1,1, . . . , cs−1,d−1

)
=

(
cs−1,0, cs−1,1, . . . , cs−1,d−1, c0,0, . . . ,
c0,d−1, . . . , cs−2,0, cs−2,1, . . . , cs−2,d−1

)
∈ C.

Therefore, C is equivalent to a QC code of length n and index d.
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Remark 19 Theorem 16 can be obtained as a corollary to Theorem 18,
where d = 1. However, it is such an important special case that it is worthy
of being stated by itself. Moreover, this is the order in which we observed and
proved these results.

Example 20 Let us consider the skew cyclic code of length 40 generated by
the polynomial p(x) = a2 + ax2 + a2x4 + ax5 + a2x6 + x7 + x8 + x9 + a2x10 +
ax11 + x13 + x14 + x15 + ax17 + ax18 + ax19 + a2x20 + x21 + x22 + ax23 + x24

over GF (4). This polynomial generates a skew cyclic code with parameters
[40, 16, 15] [2], which is the best known code for these parameters. In this case
m = 2, and d = 2. According to Theorem 18 this code should be equivalent
to a QC code of index 2. In fact, it is equivalent to the 1-generator QC
code generated by the polynomials g1(x) = x19 + x18 + x17 + x16 + x5 and
g2(x) = a2x19 +x18 + a2x17 +x16 + a2x15 + a2x14 + ax13 + ax12 + a2x10 +x9 +
x8 + ax7 + a2x5 + a2x3 + ax2 + a [5].

Example 21 Let us consider the skew cyclic code of length 30 generated
by the polynomial p(x) = a2 + ax + a2x2 + a2x4 + ax5 + x6 + ax7 + x8 +
x9 + x10ax11 + x13 + x14 over GF (4). This polynomial generates a skew
cyclic code with parameters [30, 16, 9] [2], and it is the best known code for
these parameters. This code is also equivalent to a QC code of index 2.
This is a 2-generator QC code generated by the polynomials g1(x) = x10,
g2(x) = a2x12 + x11 + x9 + x8 + ax7 + ax6 + a2x3 + ax2 + x, g3(x) = 0, and
g4(x) = x14 +x13 +x12 +x11 +x10 +x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2 +x+1
[5].

Example 22 We have x6−1 = (x3+a10x2+a5x+a5)∗(x3+a5x2+a5x+a10)
in F [x, θ] where F = GF (16) = Z2(a), a is a root of x4+x+1, and θ(z) = z2.
The polynomial g = x3 + a10x2 + a5x + a5 generates a skew cyclic code over
GF (16) with parameters [6, 3, 3]. In this example, m = 4, n = 2, and d = 2.
As predicted by Theorem 18, this code is equivalent to the 2-QC code generated
by g1(x) = a10x + a5, and g2(x) = x + a5.

5 Conclusion

In this paper, we investigated the structure of skew cyclic codes of an arbi-
trary length n, where the generator polynomial of a skew cyclic code comes
from the non-commutative ring F [x; θ] where θ is an automorphism of F with
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|〈θ〉| = m. We have shown that if m - n then the polynomial generated by
(xn−1) is not a two-sided ideal and hence the set Rn = F [x; θ]/(xn−1) fails
to be a ring. Under this condition skew cyclic codes can not be identified
with ideals in Rn. Considering Rn as a left F [x; θ]-module, we have shown
that a skew cyclic code is either equivalent to a usual cyclic code (the case
(m, n) = 1), or a quasi-cyclic code of index d (case (m, n) = d).
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