SKEW DERIVATIONS AND $U_{q}(\operatorname{sl}(2))^{\dagger}$

BY
S. MONTGOMERY ${ }^{\text {a }}$ AND S. PAUL SMITH ${ }^{\text {b }}$
${ }^{2}$ Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA; and ${ }^{\text {b Department of Mathematics, University of Washington, Seattle, WA 98195, USA }}$

ABSTRACT
This note first describes the basic properties of the skew derivations on the polynomial ring $k[X]$. As a consequence of these properties it is proved that the q-analogue of the enveloping algebra of $\mathrm{sl}(2), U_{q}(\mathbf{s l}(2)$), has a unique action on $\mathbf{C}[X]$, where "action" means that $\mathbf{C}[X]$ is a module algebra in the Hopf algebra sense. This depends on the fact that the generators of a subalgebra of $U_{q}(\operatorname{sl}(2))$ described by Woronowicz must act via an automorphism, and the skew derivations associated to it.

1. Skew derivations

Let A be an algebra over a field k, and fix $\sigma \in \mathrm{Aut}_{k} A$. A skew derivation [O] of A is a k-linear map $\delta: A \rightarrow A$ such that

$$
\delta(a b)=\delta(a) b+\sigma(a) \delta(b) \quad \text { for all } a, b \in A .
$$

Since the definition depends on σ, we call δ a σ-derivation. The set of all σ-derivations is denoted by $\operatorname{Der}_{\sigma} A$. Note that $\sigma-1 \in \operatorname{Der}_{\sigma} A$, and if $\delta \in \operatorname{Der}_{\sigma} A$, then $\sigma \delta \sigma^{-1} \in \operatorname{Der}_{\sigma} A$.

Suppose that A is commutative. Then $\operatorname{Der}_{\sigma} A$ is a left A-module, where A acts by left multiplication. The power rule for σ-derivations becomes

$$
\begin{aligned}
\delta\left(a^{n}\right) & =\left(a^{n-1}+a^{n-2} \sigma(a)+\cdots+\sigma(a)^{n-1}\right) \delta(a) \\
& =\frac{\left(a^{n}-\sigma\left(a^{n}\right)\right)}{a-\sigma(a)} \delta(a) \quad \text { if } a \neq \sigma(a) .
\end{aligned}
$$

[^0]More generally, if f is a function of a, the rule for differentiating a composition of functions becomes (when $a \neq \sigma(a)$)

$$
\delta(f)=(f-\sigma(f))(a-\sigma(a))^{-1} \delta(a)
$$

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ is any finitely generated k-algebra, then a σ-derivation is completely determined by $\delta\left(a_{1}\right), \ldots, \delta\left(a_{n}\right)$. For the free algebra $F=$ $k\left\langle X_{1}, \ldots, X_{n}\right\rangle$, the $\delta\left(X_{j}\right)$ may be chosen arbitrarily. Let I be an ideal of F. If $\sigma(I) \subset I$, and $\delta(I) \subset I$, then σ induces an automorphism of F / I, and δ induces a σ-derivation on F / I. To check that $\sigma(I) \subset I$, and $\delta(I) \subset I$, it is enough to check that $\sigma\left(r_{\lambda}\right) \in I$, and $\delta\left(r_{\lambda}\right) \in I$ for generators r_{λ} of the ideal I.
We now examine the polynomial ring $k[X]$. Let ∂ be the σ-derivation given by $\partial(X)=1$. Since $\delta \in \operatorname{Der}_{\sigma} k[X]$ is determined by $\delta(X)$, if $\delta(X)=p$, then $\delta=p \partial$. Thus $\operatorname{Der}_{\sigma} k[X]$ is the free $k[X]$-module with basis ∂. What are the eigenvalues of the action of σ on $\operatorname{Der}_{\sigma} k[X]$ given by $\delta \mapsto \sigma \delta \sigma^{-1}$?

Lemma 1.1. Let $\sigma \in \operatorname{Aut}_{k} k[X]$ with $\sigma(X)=\alpha X+\beta$ where $\sigma, \beta \in k$. Consider the eigenvalues for the action of σ on $\operatorname{Der}_{\sigma} k[X]$.
(a) The only possible eigenvalues are $\alpha^{n-1}, n=0,1,2, \ldots$.
(b) Suppose that α is not a root of 1 . Then the eigenvectors are $\left(X+\beta(\alpha-1)^{-1}\right)^{n} \partial$ with corresponding eigenvalues $\alpha^{n-1}, n=0,1,2, \ldots$.

Proof. Let $\delta=p \partial$. We view $\sigma, p, \delta \in \operatorname{End}_{k} k[X]$ with p acting on $k[X]$ by left multiplication. Thus $\sigma \delta \sigma^{-1}=\sigma p \sigma^{-1} \sigma \partial \sigma^{-1}$. Now $\sigma \partial \sigma^{-1}(\mathbf{X})=\alpha^{-1}$, so $\sigma \partial \sigma^{-1}=\alpha^{-1} \partial$; and $\sigma p \sigma^{-1}=\sigma(p)$ because $\sigma p \sigma^{-1}(f)=\sigma\left(p \cdot \sigma^{-1}(f)\right)=\sigma(p) \cdot f$.
Thus $\sigma \delta \sigma^{-1}=\alpha^{-1} \sigma(p) \partial$, and δ is an eigenvector, with $\sigma \delta \sigma^{-1}=\mu \delta$ if and only if $\sigma(p)=p(\alpha X+\beta)=\alpha \mu p(X)$. Thus we must find eigenvectors for the action of σ on $k[X]$.
If $\alpha=1$ the result is trivial. If $\alpha \neq 1$, we may set $Y=X+\beta(\alpha-1)^{-1}$. Since $\sigma\left(Y^{n}\right)=\alpha^{n} Y^{n}$, the eigenvectors for the σ action on $\operatorname{Der}_{\sigma} k[X]$ are the $Y^{n} \partial$ having eigenvalue α^{n-1}

Corollary 1.2. Let $\sigma(X)=\alpha X+\beta$ where α is not a root of 1 . If $\delta_{1}, \delta_{2} \in$ $\operatorname{Der}_{\sigma} k[X]$ satisfy $\sigma \delta_{1} \sigma^{-1}=\mu \delta_{1}$ and $\sigma \delta_{2} \sigma^{-1}=\mu^{-1} \delta_{2}$ for some $1 \neq \mu \in k$, then (up to scalar multiples) the only possibilities are

$$
\delta_{1}=\partial, \quad \delta_{2}=\left(X+\beta(\alpha-1)^{-1}\right)^{2} \partial \quad \text { and } \mu=\alpha^{-1}
$$

or

$$
\delta_{1}=\left(X+\beta(\alpha-1)^{-1}\right)^{2} \partial, \quad \delta_{2}=\partial \quad \text { and } \quad \mu=\alpha .
$$

2. Some Hopf algebras involving skew derivations

This section gives two examples of non-commutative, and non-cocommutative Hopf algebras, both involving skew derivations. Recall that, if H is a Hopf algebra with co-multiplication $\Delta: H \rightarrow H \otimes H$, given by $\Delta(h)=\Sigma_{(h)} h_{(1)} \otimes h_{(2)}$, then an algebra A is an H-module algebra if A is an H-module, and H "measures" A; that is, $h \cdot 1=\varepsilon(h) 1$ and

$$
h \cdot(a b)=\sum_{(h)}\left(h_{(1)} \cdot a\right)\left(h_{(2)} \cdot b\right) \quad \text { for all } a, b \in A
$$

An element $\delta \in H$ is called σ-primitive if $\Delta(\delta)=\delta \otimes 1+\sigma \otimes \delta$ for some $0 \neq$ $\sigma \in H$. The coassociativity of H forces $\Delta(\sigma)=\sigma \otimes \sigma$; that is, σ is group-like. The properties of the antipode s of H imply that $s(\sigma)=\sigma^{-1} \in H$ and that $s(\delta)=-\sigma^{-1} \delta$. Hence if A is a H-module algebra, then σ acts on A as an automorphism, and δ acts as a σ-derivation.

Example 2.1. Fix $0 \neq \alpha \in k$, and define $H=k[Y] *\langle\sigma\rangle$ to be the skew group ring of the group $\langle\sigma\rangle \cong \mathbf{Z}$, over the polynomial ring $k[Y]$ where the action is $\sigma(Y)=\alpha Y$. Thus in $H, \sigma Y=\alpha Y \sigma$. Make H into a Hopf algebra by defining

$$
\begin{gathered}
\Delta(\sigma)=\sigma \otimes \sigma, \quad \Delta(Y)=Y \otimes 1+\sigma \otimes Y, \quad \varepsilon(\sigma)=1, \\
\varepsilon(Y)=0, \quad s(\sigma)=\sigma^{-1}, \quad s(Y)=-\sigma^{-1} Y .
\end{gathered}
$$

Thus H is neither commutative, nor co-commutative.
The commutative polynomial ring $A=k[X]$ may be made into an H module algebra with σ acting as the automorphism $\sigma(X)=\alpha^{-1} X$ and Y acting as the σ-derivation $\partial \in \operatorname{Der}_{\sigma} k[X]$, i.e. $Y(X)=1$. Thus H is isomorphic to the subalgebra $k\left[\sigma, \sigma^{-1}, \partial\right]$ of $\operatorname{End}_{k} k[X]$.

As a Hopf algebra, H is similar in spirit to [S, p. 89] and to [T]. However, those examples were not represented as skew derivations. The connection between skew derivations and Hopf algebras was pointed out to one of us by Kharchenko [K]; he used the tensor algebra on the vector space generated by all skew derivations of an arbitrary algebra A to construct a Hopf algebra. Our H is the "smallest" non-cocommutative subalgebra of his construction. We thank M. Artin for suggesting we look at the special case $A=k[X]$.

Example 2.2. This example reappears in Section 4 in connection with $U_{q}(\mathbf{s l}(2))$. Fix $0 \neq \gamma \in k$, and define $A=k\langle x, y\rangle /\langle x y-\gamma y x\rangle$. Define $\sigma \in$

Aut $k\langle x, y\rangle$ by $\sigma(x)=\gamma x$ and $\sigma(y)=\gamma^{-1} y$. Consider the σ-derivations $\partial_{1}, \partial_{2}$ on $k\langle x, y\rangle$ defined by

$$
\partial_{1}(x)=0, \quad \partial_{1}(y)=x \quad \text { and } \quad \partial_{2}(x)=y, \quad \partial_{2}(y)=0 .
$$

Since $\langle x y-\gamma y x\rangle$ is stable under σ, and $\partial_{i}(x y-\gamma y x)=0$, we may view $\sigma \in \operatorname{Aut}_{k} A$ and $\partial_{1}, \partial_{2} \in \operatorname{Der}_{\sigma} A$. Let $H=k\left[\partial_{1}, \partial_{2}, \sigma, \sigma^{-1}\right]$ be the subalgebra of $\operatorname{End}_{k} A$ generated by these elements.

In H the following relations hold:

$$
\begin{gather*}
\sigma \partial_{1}=\gamma^{2} \partial_{1} \sigma, \quad \sigma \partial_{2}=\gamma^{-2} \partial_{2} \sigma \tag{2.3}\\
\partial_{1} \partial_{2}-\gamma^{-2} \partial_{2} \partial_{1}=\left(\gamma^{2}-1\right)^{-1}\left(\sigma^{2}-1\right) . \tag{2.4}
\end{gather*}
$$

Notice that (2.4) says $\partial_{1} \partial_{2}-\gamma^{-2} \partial_{2} \partial_{1}$ is a σ^{2}-derivation of A. It is not difficult to show that H is defined by precisely these relations: first use the Diamond Lemma $[B]$ to show that the algebra defined by the relations (2.3) and (2.4) has a basis $\sigma^{k} \partial_{i} \partial_{2}$, then check that these elements acting on A are linearly independent.
Make H into a Hopf algebra by defining

$$
\begin{gathered}
\Delta(\sigma)=\sigma \otimes \sigma, \quad \Delta\left(\partial_{i}\right)=\partial_{i} \otimes 1+\sigma \otimes \partial_{i}, \quad \varepsilon(\sigma)=1, \quad \varepsilon\left(\partial_{i}\right)=0, \\
s(\sigma)=\sigma^{-1}, \quad s\left(\partial_{1}\right)=-\sigma^{-1} \partial_{1}, \quad s\left(\partial_{2}\right)=-\sigma^{-1} \partial_{2} .
\end{gathered}
$$

This algebra H, which is neither commutative nor co-commutative, first appeared in [W], and is isomorphic to a subalgebra of $U_{q}(\mathrm{sl}(2))$; see (3.1) and (3.4).

3. $\quad U_{q}(\mathrm{sl}(2))$ and its action on $\mathrm{C}[X]$

This section concerns the action of $U_{q}(\mathbf{s l}(2))$, the q-analogue of the enveloping algebra of sl(2), on $\mathbf{C}[X]$. Fix $0 \neq q \in \mathbf{C}$, not a root of unity. As defined by Jimbo [J] and Drinfeld [D], $U_{q}(\mathrm{sl}(2))=\mathbf{C}\left[E, F, K, K^{-1}\right]$ is defined by relations

$$
K E=q^{2} E K, \quad K F=q^{-2} F K, \quad E F-F E=\left(K^{2}-K^{-2}\right) /\left(q^{2}-q^{-2}\right) .
$$

Make $U_{q}(\mathrm{sl}(2))$ a Hopf algebra by defining

$$
\begin{array}{lll}
\Delta(E)=E \otimes K^{-1}+K \otimes E, & \Delta(F)=F \otimes K^{-1}+K \otimes F, & \Delta(K)=K \otimes K, \\
s(E)=-q^{-2} E, & s(F)=-q^{2} F, & s(K)=K^{-1}, \\
\varepsilon(E)=0, & \varepsilon(F)=0, & \varepsilon(K)=1 .
\end{array}
$$

Independently of Drinfeld and Jimbo, Woronowicz [W, Table 7, p. 150] defined an algebra which, in retrospect, is isomorphic to a subalgebra of $U_{q}(\mathrm{sl}(2))$. We will denote this algebra (which depends on a parameter $0 \neq v \in \mathbf{C})$ by $W_{v}=\mathbf{C}\left[\nabla_{0}, \nabla_{1}, \nabla_{2}\right]$, with the relations

$$
\begin{aligned}
& v \nabla_{2} \nabla_{0}-v^{-1} \nabla_{0} \nabla_{2}=\nabla_{1}, \\
& v^{2} \nabla_{1} \nabla_{0}-v^{-2} \nabla_{0} \nabla_{1}=\left(1+v^{2}\right) \nabla_{0}, \\
& v^{2} \nabla_{2} \nabla_{1}-v^{-2} \nabla_{1} \nabla_{2}=\left(1+v^{2}\right) \nabla_{2} .
\end{aligned}
$$

Lemma 3.1. Suppose that $v=q^{2}$. Then there is an injective algebra homomorphism $W_{v} \rightarrow U_{q}(\mathrm{sl}(2))$ defined by

$$
\begin{aligned}
& \nabla_{0} \mapsto-q F K, \\
& \nabla_{1} \mapsto q E K, \\
& \nabla_{2} \mapsto\left(K^{4}-1\right) /\left(q^{-4}-1\right) .
\end{aligned}
$$

Proof. First consider the subalgebra $\mathbf{C}\left[E K, F K, K^{4}, K^{-4}\right]$ of $U_{q}(\mathrm{sl}(2))$. The defining relations are

$$
\begin{align*}
& K^{4}(E K)=q^{8}(E K) K^{4}, \quad K^{4}(F K)=q^{-8}(F K) K^{4}, \tag{3.2}\\
& (E K)(F K)-q^{-4}(F K)(E K)=\left(K^{4}-1\right) /\left(q^{4}-1\right) . \tag{3.3}
\end{align*}
$$

Consequently, the proposed images of $\nabla_{0}, \nabla_{1}, \nabla_{2}$ satisfy the defining relations of W_{v}. Hence the proposed algebra homomorphism exists. It follows from the Diamond Lemma [B] that W_{v} has a basis $\nabla_{2}^{i} \nabla_{f}^{i} \nabla_{1}^{k}$ with $i, j, k \in \mathbf{N}$, and that $U_{q}(\mathrm{sl}(2))$ has a basis $E^{i} F^{j} K^{k}(i, j \in \mathbf{N}, k \in \mathbf{Z})$. The injectivity of the given map follows.

Thus we may identify W_{v} with its image in $U_{q}(\mathrm{sl}(2))$. We shall consider the slightly larger algebra $W_{q}:=\mathbf{C}\left[E K, F K, K^{2}, K^{-2}\right]$. Notice that W_{q} is a subHopf algebra of $U_{q}(\mathrm{sl}(2))$; the K^{2} term is required by consideration of $\Delta(E K)$, and the K^{-2} term is required by consideration of $s\left(K^{2}\right)$. Although $W_{v} \subset W_{q}, W_{v}$ is not a Hopf subalgebra; this is the reason we prefer to focus on W_{q}.
Theorem 3.4. Suppose that $\mathbf{C}[X]$ is a $W_{q}(\mathrm{sl}(2))$-module algebra with K^{2} acting as the automorphism $\sigma(X)=\alpha X+\beta$. Set $Y=X+\beta(\alpha-1)^{-1}$. Then (up to an automorphism of W_{q}) there are two possibilities:
(1) $\alpha=q^{-4}$ and $E K \mapsto \partial, F K \mapsto-q^{-4} Y^{2} \partial$,
(2) $\alpha=q^{4}$ and $E K \mapsto-q^{4} Y^{2} \partial, F K \mapsto \partial$,
where ∂ is the σ-derivation $\partial(Y)=1$. Furthermore, there is no loss of generality in assuming that $\beta=0$.

Proof. Notice that K^{2} is group-like, and $E K$ and $F K$ are K^{2}-primitive. Therefore K^{2} must act as an automorphism, and $E K$ and $F K$ act as skew derivations with respect to this automorphism. Write $\sigma, \delta_{1}, \delta_{2}$ for the images of $K^{2}, E K, F K$ in $\operatorname{End}_{\mathrm{C}} \mathrm{C}[X]$. After (3.2) and (3.3) the following relations hold:

$$
\begin{align*}
& \sigma \delta_{1} \sigma^{-1}=q^{4} \delta_{1}, \quad \sigma \delta_{2} \sigma^{-1}=q^{-4} \delta_{2}, \tag{3.5}\\
& \delta_{1} \delta_{2}-q^{-4} \delta_{2} \delta_{1}=\left(\sigma^{2}-1\right) /\left(q^{4}-1\right) . \tag{3.6}
\end{align*}
$$

Since q^{4} is an eigenvalue for the σ action on $\operatorname{Der}_{\sigma} \mathbf{C}[X]$, it follows from (1.1) that q^{4} is a power of α, and hence α is not a root of unity. Set $Y=$ $X+\beta(\alpha-1)^{-1}$. As in (1.1), Y is a σ-eigenvector, and replacing X by Y, we may take $\beta=0$.

By (1.2) either
(1) $\delta_{1}=\gamma_{1} \partial, \delta_{2}=\gamma_{2} Y^{2} \partial$ and $\alpha=q^{-4}$
or
(2) $\delta_{1}=\gamma_{1} Y^{2} \partial, \delta_{2}=\gamma_{2} \partial$ and $\alpha=q^{4}$,
where γ_{1} and γ_{2} are scalars to be determined by the requirement that (3.6) holds. To determine $\gamma:=\gamma_{1} \gamma_{2}$ we compute the action of the expressions in (3.6) on Y^{n}. In case (1)

$$
\begin{aligned}
& \gamma\left(\partial Y^{2} \partial-\alpha Y^{2} \partial^{2}\right): Y^{n} \mapsto \gamma\left(1-\alpha^{n}\right)\left(1+\alpha^{n}\right)(1-\alpha)^{-1} Y^{n}, \\
& \left(\sigma^{2}-1\right) /\left(q^{4}-1\right): Y^{n} \mapsto \alpha\left(\alpha^{2 n}-1\right)(1-\alpha)^{-1} Y^{n} .
\end{aligned}
$$

Therefore $\gamma=-\alpha$. In case (2)

$$
\begin{aligned}
& \gamma\left(Y^{2} \partial^{2}-\alpha^{-1} \partial Y^{2} \partial\right): Y^{n} \mapsto \gamma\left(1-\alpha^{n}\right)\left(1+\alpha^{n}\right) \alpha-1(\alpha-1)^{-1} Y^{n}, \\
& \left(\sigma^{2}-1\right) /\left(q^{4}-1\right): Y^{n} \mapsto\left(\alpha^{2 n}-1\right)(\alpha-1)^{-1} Y^{n} .
\end{aligned}
$$

Therefore $\gamma=-\alpha$.
The map $E K \mapsto \gamma_{1} E K, F K \mapsto \gamma_{1}^{-1} F K, K^{2} \mapsto K^{2}$ is an automorphism of W_{q}. Thus, up to an automorphism of W_{q}, we may assume that $\gamma_{1}=1$, and so $\gamma_{2}=\gamma=-\alpha$, or $\gamma_{2}=1$ and $\gamma_{1}=-\alpha$.

Corollary 3.7. Suppose that $\mathbf{C}[X]$ is a $U_{q}((2))$-module algebra. Then (up to isomorphism of module algebras, and automorphisms of $U_{q}(\mathrm{sl}(2))$ there are two possibilities:
(1) $K=\sigma: X \mapsto q^{-2} X, \quad E=\partial \sigma^{-1}, \quad F=-q^{-4} X^{2} \partial \sigma^{-1}$,
(2) $K=\sigma: X \mapsto q^{2} X, \quad E=-q^{4} X^{2} \partial \sigma^{-1}, \quad F=\partial \sigma^{-1}$,
where ∂ is the σ-derivation $\partial(X)=1$.
Proof. Instead of proving (3.6) up to an automorphism of W_{q}, set $X=\gamma_{1}^{-1} Y$ and $X=\gamma_{2}^{-1} Y$ in cases (1) and (2). Thus X is a K^{2}-eigenvector of eigenvalue α. Write $K(X)=\xi X$; thus $\xi^{2}=\alpha$ in the notation of (3.6). In case (1), $K E(X)=\sigma \partial \sigma^{-1}(X)=\sigma \partial\left(\xi^{-1} X\right)=\sigma\left(\xi^{-1}\right)=\xi^{-1}, \quad$ and $\quad E K(X)=\partial(X)=1$. However, $K E=q^{2} E K$ so $\xi^{-1}=q^{2}$ and $\xi=q^{-2}$ in case (1). The second possibility is obtained in a similar manner.

The statement of (3.7) may be slightly changed to avoid mention of automorphisms of $U_{q}(\mathrm{sl}(2))$.

Corollary 3.8. Suppose that $\mathbf{C}[X]$ is a $U_{q}(\mathrm{sl}(2))$-module algebra. There exists $Y \in \mathbf{C}[X]$ such that $\mathbf{C}[Y]=\mathbf{C}[X]$, and one of the following two possibilities occurs:
(1) $K=\sigma: Y \mapsto q^{-2} Y, \quad E=\partial \sigma^{-1}, \quad F=-q^{-4} Y^{2} \partial \sigma^{-1}$,
(2) $K=\sigma: Y \mapsto q^{2} Y, \quad E=-q^{4} Y^{2} \partial \sigma^{-1}, \quad F=\partial \sigma^{-1}$,
where ∂ is the σ-derivation $\partial(Y)=1$.
This section was motivated by analogy with the action of $U(\operatorname{sl}(2))$ on $\mathbf{C}[X]$ as differential operators. That action is given by

$$
E=\partial, \quad H=-2 X \partial, \quad F=-X^{2} \partial,
$$

where $\partial=d / d X$. Observe that $\mathbf{C}[X]$ is the dual of a Verma module, and contains the trivial module.

4. A "base affine space" for $U_{q}(\mathrm{sl}(2))$

Recall the natural action of $U(\mathrm{sl}(2))$ acting as differential operators on the commutative ring $\mathbf{C}[X, Y]$. The action is obtained as follows. Let sl(2) act on \mathbf{C}^{2} in the obvious way. There is a unique extension of this to an action on $S\left(\mathbf{C}^{2}\right)$, the symmetric algebra, such that $\mathrm{sl}(2)$ acts as derivations. Explicitly the action is given by

$$
E=X \partial / \partial Y, \quad H=X \partial / \partial X-Y \partial / \partial Y, \quad F=Y \partial / \partial X .
$$

The decomposition of $S\left(\mathbf{C}^{2}\right)=\bigoplus_{n} S^{n}\left(\mathbf{C}^{2}\right)$ into its homogeneous components is an sl(2)-module decomposition, and $S^{n}\left(\mathbf{C}^{2}\right)$ is the unique $(n+1)$-dimensional sl(2)-module.

What is the analogue of this for $U_{q}(\mathbf{s l}(2))$?

Theorem 4.1 ([L], [R3]). Suppose that q is not a root of unity. Then, for each $n>0$ there are precisely 4 simple $U_{q}(\mathrm{sl}(2))$-modules (up to isomorphism) of dimension n.

Theorem 4.2. If q is not a root of unity, then for each $n \geqq 1, W_{v}\left(v=q^{2}\right)$ has exactly one simple module of dimension n.

Proof. This follows from [W, Theorem 5.4], with the proviso that inverting the element K^{4} has eliminated all except one of the 1-dimensional modules for W_{v}. See also [BS].

Theorem 4.3. Let $A=\mathbf{C}[x, y]$ where $x y=q^{2} y x$. There is an action of $W_{q}(\mathrm{sl}(2))=C\left[E K, F K, K^{ \pm 2}\right]$ on A such that
(a) A is a $W_{q}(\mathrm{sl}(2))$-module algebra;
(b) each homogeneous component $A_{n}=\bigoplus_{1 \leq i \leqq n} \mathbf{C} x^{i} y^{n-i}$ is a simple $W_{q}(\mathbf{s}(2))$-module of dimension $n+1$;
(c) each A_{n} remains simple over the subalgebra $\mathbf{C}\left[E K, F K, K^{ \pm 4}\right] \cong W_{v}$ ($v=q^{2}$);
(d) A is a $U_{q}(\mathrm{sl}(2))$-module algebra, and the action of E, F, K on A_{1} is $E(x)=0, E(y)=q x, F(x)=q^{-1} y, F(y)=0, K(x)=q x, K(y)=q^{-1} y$.

Proof. This follows at once from Example 2.2 and Lemma 3.1. Define K^{2} to act via the automorphism $x \mapsto q^{2} x, y \mapsto q^{-2} y$ and $E K, F K$ to act as the σ^{2}-derivations

$$
E K: x \mapsto 0, y \mapsto x, \quad F K: x \mapsto y, y \mapsto 0 .
$$

It is routine to check (b) and (c).
Clearly the same question can be asked for $U_{q}(\mathrm{~g})$. Let G be the simply connected, connected algebraic group with $\operatorname{Lie} G=\mathrm{g}$, let B be a Borel subgroup, with unipotent radical N. The action of $U(\mathrm{~g})$ as differential operators on $\mathcal{O}(G / N)$ is such that each finite-dimensional simple g-module appears in $\mathcal{O}(G / N)$ with multiplicity 1 . What is the analogue of $\mathcal{O}(G / N)$ for $U_{q}(\mathrm{~g})$? In effect we are asking for a quantum version of Borel-Weil-Bott. The action of sl(2) on $S^{n}\left(\mathbf{C}^{2}\right)$ may be interpreted as an action on the global sections of the line bundle $\mathcal{O}_{\mathbf{P}^{\prime}}(n)$. Pursuing this analogy, one may interpret A as the homogeneous coordinate ring of the "quantum projective line", and the homogeneous components A_{n} as the sections of line bundles.

Final Remarks. Consider the relationship between the three different algebras $U_{q}(\mathrm{sl}(2)), W_{q}(\mathrm{sl}(2))$ and W_{v} with $v=q^{2}$. There are inclusions as follows:

$$
\begin{aligned}
& U_{q}(\mathrm{sl}(2))=\mathbf{C}\left[E, F, K^{ \pm 1}\right] \\
& \quad \supset W_{q}(\mathrm{sl}(2))=\mathbf{C}\left[E K, F K, K^{ \pm 2}\right] \supset W_{v}=\mathbf{C}\left[E K, F K, K^{ \pm 4}\right]
\end{aligned}
$$

The first two are Hopf algebras, but the last one is not. If $n>0$, then $U_{q}(\mathrm{sl}(2))$ has 4 distinct n-dimensional simple modules, $W_{q}(\mathbf{s l}(2))$ has 2 distinct n dimensional simple modules and W_{ν} has a unique n-dimensional simple module. In terms of irreducible representations, W_{v} is the most like $U(\mathrm{sl}(2))$.

References

[BS] A. D. Bell and S. P. Smith, Some 3-dimensional skew polynomial rings, in preparation.
[B] G. Bergman, The Diamond Lemma for Ring Theory, Adv. Math. 29 (1978), 178-218.
[D] V. G. Drinfeld, Quantum Groups, Proc. Int. Congr. Math. Berkeley 1 (1986), 798-820.
[J] M. Jimbo, A q-difference analogue of $U(\mathrm{~g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[K] V. K. Kharchenko, Skew derivations of prime rings, Lecture, Stefan Banach Center, Warsaw, 1988.
[L] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237-249.
[M] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi and K. Ueno, Representations of quantum groups and a q-analogue of orthogonal polynomials, C. R. Acad. Sci. Paris 307 (1988), 559-564.
[O] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 34 (1933), 480-508.
[R1] M. Rosso, Comparaison des groupes SU(2) quantiques de Drinfeld et de Woronowicz, C. R. Acad. Sci. Paris 304 (1987), 323-326.
[R2] M. Rosso, Representations irreducibles de dimension finie du q-analogue de l'algebre enveloppante d'une algebre de Lie semisimple, C. R. Acad. Sci. Paris 305 (1987), 587-590.
[R3] M. Rosso, Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra, Commun. Math. Phys. 117 (1988), 581-593.
[S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[T] E. J. Taft, The order of the antipode of finite dimensional Hopf algebras, Proc. Natl. Acad. Sci. U.S.A. 68 (1971), 2631-2633.
[W] S. L. Woronowicz, Twisted SU(2)-group. An example of a non-commutative differential calculus, Publ. R.I.M.S., Kyoto Univ. 23 (1987), 117-181.

[^0]: ${ }^{\dagger}$ Both authors were supported by the NSF, S. Montgomery by grant DMS 87-00641, and S. P. Smith by DMS 87-02447.

 Received July 5, 1989

