Skew exactness and range-kernel orthogonality III

Robin Harte ${ }^{\text {a }}$
${ }^{a}$ Trinity College Dublin, Ireland

Abstract

We record some "range-kernel orthogonality" for the elementary operators defining Hankel and Toeplitz operators.

Introduction

This note is a sort of follow-up visit to our earlier paper [H3], in which we feel we may have left gaps in a couple of the arguments, specifically Theorem 5 and Theorem 6; we have also belatedly noticed the connection between the "derivations" involved and the Brown-Halmos definitions [BH] of Hankel and Toeplitz operators.

1. Hermitian elements of a Banach algebra

Recall [BD] that a Banach algebra element $a \in A$ is said to be hermitian, written $a \in \operatorname{Re}(A)$, provided its numerical range is real:

1.1

$$
V_{A}(a) \equiv\{\varphi(a): \varphi \in \operatorname{State}(A)\} \subseteq \mathbf{R}
$$

where the "states" of A
1.2

$$
\operatorname{State}(A)=\left\{\varphi \in A^{\dagger}:\|\varphi\|=1=\varphi(1)\right\}
$$

are the norm one linear functionals which achieve their norm at the identity $1 \in A$. The real-linear subspace $\operatorname{Re}(A)=H \subseteq A$ is an example of a "hermitian subspace" [H4] of A : we have

$$
1.3 \quad 1 \in H ; H \cap i H=O \equiv\{0\}
$$

We introduce the complex-linear Palmer subspace

$$
\operatorname{Reim}(A)=\operatorname{Re}(A)+i \operatorname{Re}(A)
$$

and observe that the "real and imaginary parts" of $a=h+i k \in \operatorname{Reim}(A)$ are well-defined, with

$$
x: \operatorname{Reim}(A) \rightarrow \operatorname{Re}(A), y: \operatorname{Reim}(A) \rightarrow \operatorname{Re}(A)
$$

[^0]given by setting
1.5
$$
a=x(a)+i y(a)(a \in \operatorname{Reim}(A))
$$
and then there is an involution $*: \operatorname{Reim}(A) \rightarrow \operatorname{Reim}(A)$ given by
1.6
$$
(h+i k)^{*}=h-i k(\{h, k\} \subseteq \operatorname{Re}(A)) .
$$

If we further observe $[\mathrm{BD}],[\mathrm{Sp}]$ that $H=\operatorname{Re}(A)$ satisfies

1.7

$$
H=\operatorname{cl}(H) \perp i H
$$

the subspaces of "real" and "imaginary" elements are closed and mutually "orthogonal", then it follows that $\operatorname{Reim}(A)$ is also a closed subspace of A, on which the involution $a \rightarrow a^{*}$ is a bounded (real-)linear operator. Here, for $E+F \subseteq X$, "orthogonality" $E \perp F$ is according to James and Birkhoff:
1.8

$$
E \perp F \Longleftrightarrow \operatorname{AND}_{x \in E}(\|x\|=\operatorname{dist}(x, F))
$$

The Palmer subspace is not in general closed under multiplication; it is however [BD],[Sp] closed under the Lie bracket: if $\{a, b\} \subseteq \operatorname{Reim}(A)$ then
1.9

$$
[a, b] \equiv a b-b a \in \operatorname{Reim}(A)
$$

with
1.10

$$
[a, b]^{*}=\left[b^{*}, a^{*}\right]
$$

2. Self-commutant approximants

Specializing to the algebra $A=B(X)$ of bounded operators on a Banach space X, we claim that
Lemma 1 If X is a Banach space then

$$
T \in \operatorname{Reim} B(X) \Longrightarrow T^{-1}(0) \cap T^{*-1}(0) \subseteq \operatorname{Re}(T)^{-1}(0) \perp \operatorname{Re}(T)(X)
$$

Proof. If $\{H, K\} \subseteq \operatorname{Re} B(X)$ then
2.2

$$
T=H+i K \Longrightarrow T^{-1}(0) \cap T^{*-1}(0)=H^{-1}(0) \cap K^{-1}(0)
$$

and now by Sinclair's theorem ([Si] Proposition 1; [F] Corollary 7)

$$
H^{-1}(0) \perp H(X) \bullet
$$

If in particular $T \in B(X)$ satisfies the Fuglede condition,

2.4

$$
T^{-1}(0) \subseteq T^{*-1}(0),
$$

then Lemma 1 says that

$$
T^{-1}(0) \perp \operatorname{Re}(T)(X)
$$

If in particular A and B are Banach algebras and M a Banach (A, B)-bimodule then [H4] tuples $a \in A^{n}$ and $b \in B^{n}$ combine to give "elementary" operators

$$
L_{a} \circ R_{b}: m \mapsto \sum_{j} a_{j} m b_{j}(M \rightarrow M)
$$

we focus particularly on the "generalized inner derivation"

$$
L_{a}-R_{b}: m \mapsto a m-m b
$$

and its multiplicative analogue

$$
L_{a} R_{b}-I: m \mapsto a m b-m
$$

associated with $(a, b) \in A \times B$. For example if $(a, b)=(v, u)$ are the backward and forward shifts in $A=B(X)$ with $X=\ell_{2}$ then $[\mathrm{BH}]\left(L_{a} R_{b}-I\right)^{-1}(0)$ and $\left(L_{a}-R_{b}\right)^{-1}(0)$ are respectively the Toeplitz and the Hankel operators.

Generally when $A=M=B$,
Theorem 2 If A is a Banach algebra and $\{a, b\} \subseteq \operatorname{Reim}(A)$ then

$$
b \in\left(L_{a}-R_{a}\right)^{-1}(0) \cap\left(L_{a^{*}}-R_{a^{*}}\right)^{-1}(0) \Longrightarrow\|a\| \leq\left\|a-\left[b, b^{*}\right]\right\| \text { and }\|b\| \leq\left\|b-\left[a, a^{*}\right]\right\| .
$$

Proof. This is Lemma 1 with $X=A$ and $T=L_{b}-R_{b}$, together with the observation that
2.6

$$
\left(L_{a}-R_{a}\right)(b)=0 \Longleftrightarrow\left(L_{b}-R_{b}\right)(a)=0,
$$

and also (1.10)
2.7

$$
\left(L_{a^{*}}-R_{a^{*}}\right)(b)=\left(L_{a}-R_{a}\right)(b)^{*}=0 .
$$

Indeed if $\left(L_{b}-R_{b}\right)(a)=0=\left(L_{b}-R_{b}\right)^{*}(a)$ then, with $b=h+i k$ and arbitrary $c \in A$,

$$
\|a\| \leq\|a-\operatorname{Re}(T)(c)\| \equiv\left\|a-\left(L_{h}-R_{h}\right)(c)\right\|:
$$

but now

$$
c=2 i k \Longrightarrow\left(L_{h}-R_{h}\right)(c)=\left(L_{b}-R_{b}\right)\left(b^{*}\right)=\left[b, b^{*}\right] ;
$$

for the second part interchange a and b
Theorem 2 is a cosmetic improvement of Theorem 5 of [H3], in that the Fuglede condition (2.4) is withheld from $T=L_{a}-R_{a}$, and also plugs a small gap (2.7) in the argument there.

3. Multiplicative commutants

Theorem 6 of [H3] needs more than cosmetic adjustment. If we write, for arbitrary $c \in A$,

$$
D_{c}=L_{c}-R_{c} ; \Delta_{c}=L_{c} R_{c}-I
$$

then we recall $[\mathrm{H} 1]$ that if $\{a, b\} \subseteq A$ then

$$
\binom{D_{a+b}}{D_{a b}}=\left(\begin{array}{cc}
I & I \\
R_{b} & L_{a}
\end{array}\right)\binom{D_{a}}{D_{b}}
$$

and hence always

$$
D_{a}^{-1}(0) \cap D_{b}^{-1}(0) \subseteq D_{a+b}^{-1}(0) \cap D_{a b}^{-1}(0)
$$

Conversely (taking [H2],[HH] the "adjugate" !)

$$
\left(\begin{array}{cc}
L_{a} & -I \\
-R_{b} & I
\end{array}\right)\binom{D_{a+b}}{D_{a b}}=\left(\begin{array}{cc}
L_{a}-R_{b} & 0 \\
0 & L_{a}-R_{b}
\end{array}\right)\binom{D_{a}}{D_{b}} ;
$$

and hence if $L_{a}-R_{b}$ is one one there is equality in (3.3). We also have $S T-I=S(T-I)+(S-I)$, so that

$$
(S-I)^{-1}(0) \cap(T-I)^{-1}(0) \subseteq(S T-I)^{-1}(0) ;
$$

in particular
3.6

$$
\Delta_{a} \Delta_{b}=L_{b} R_{b} \Delta_{a}+\Delta_{b}=L_{a b} R_{b a}-I\left(\neq \Delta_{a b}\right),
$$

and hence
3.7

$$
\Delta_{a}^{-1}(0) \cap \Delta_{b}^{-1}(0) \subseteq\left(L_{a b} R_{b a}-I\right)^{-1}(0)
$$

As a supplement to the first row of (3.2) we have also

$$
D_{a+b}=\left(L_{a}-R_{b}\right)+\left(L_{b}-R_{a}\right),
$$

so that

$$
\left(L_{a}-R_{b}\right)^{-1}(0) \cap\left(L_{b}-R_{a}\right)^{-1}(0) \subseteq D_{a+b}^{-1}(0),
$$

giving cosmetic improvement of the sort of two-variable extension of Theorem 2 noticed by Mansour and Bouzenada ([MB] Theorem 3.1).

If we make the assumption

$$
\operatorname{Reim}(A)^{2} \subseteq \operatorname{Reim}(A)
$$

that the Palmer subspace is a subalgebra (so that [BD],[Sp] it is in fact a C^{*} algebra) then, in place of Theorem 6 of [H3],
Theorem 3 If $\{a, b\} \subseteq \operatorname{Reim}(A)$ then

$$
b \in\left(L_{a} R_{a}-I\right)^{-1}(0) \cap\left(L_{a^{*}} R_{a^{*}}-I\right)^{-1}(0) \Longrightarrow \mathrm{AND}_{c \in A}\left(\|b\| \leq\left\|b+c-a^{*} a c a a^{*}\right\|\right)
$$

Proof. This is (3.7) with $b=a^{*}$:

$$
\left(L_{a} R_{a}-I\right)^{-1}(0) \cap\left(L_{a^{*}} R_{a^{*}}-I\right)^{-1}(0) \subseteq\left(L_{a^{*} a} R_{a a^{*}}-I\right)^{-1}(0) \perp\left(L_{a^{*} a} R_{a a^{*}}-I\right)(A)
$$

The multiplicative assumption of course guarantees that the product of commuting hermitian operators in the middle of (3.12) is again hermitian •

We at the same time have cosmetic improvement of Duggal's ([Du] Theorem 2.6) version:
3.13

$$
b \in\left(L_{a} R_{a}-I\right)^{-1}(0) \cap\left(L_{a^{*}} R_{a^{*}}-I\right)^{-1}(0) \Longrightarrow b^{*} b \in\left(L_{a}-R_{a}\right)^{-1}(0) .
$$

An old example of Anderson and Foias says that the multiplicative assumption (3.10) cannot be omitted from Theorem 3; if

$$
0 \neq a^{*}=a=a^{2} \neq 1 \in A=B(X),
$$

then ([AF] Example 5.8) $L_{a} R_{a} \in B(A)$ is not hermitian, and the orthogonality at the end of (3.12) is liable to fail.

If $a=u \in A=B(X)$ with $X=\ell_{2}$ is the forward shift then $\left(L_{a}-R_{a}\right)^{-1}(0)$ consists of the analytic Toeplitz operators while $a^{*}=v$ is the backward shift, and $\left(L_{a^{*}}-R_{a^{*}}\right)^{-1}(0)$ the co-analytic Toeplitz operators; in this case the intersection on the left hand side of (2.5) reduces to the scalar multiples of the identity. When $a=u$ then $\left(L_{a^{*}} R_{a}-I\right)^{-1}(0)$ consists of the Toeplitz operators; $\left(L_{a} R_{a^{*}}-I\right)^{-1}(0)$ however, and therefore the intersection, reduces to the co-analytic Toeplitz operators.

Putting $a=1$ in (2.5) shows ([MB] Corollary 3.2) that

$$
b \in \operatorname{Reim}(A) \Longrightarrow\left\|1-\left[b, b^{*}\right]\right\| \geq 1
$$

References

[AF] J. Anderson and C. Foias, Properties which normal operators share with normal derivations and related properties, Pacific Jour. Math. 61 (1975)
[BD] F.F. Bonsall and J. Duncan, Numerical ranges I, London Math. Soc. Lecture Notes 2 (1971)
[BH] A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, Jour. Reine Angew. Math. 213 (1963) 89-102
[Du] B.P. Duggal, On self-commutator approximants, Kyungpook Math. Jour. 48 (2008)
[F] C.-K. Fong, Normal operators on Banach spaces, Glasgow Math. Jour. 20 (1979) 163-168
[H1] R.E. Harte, Commutivity and separation of spectra II, Proc. Royal Irish Acad. 74A (1974) 239-244
[H2] R.E. Harte, A matrix joke, Irish Math. Soc.
[H3] R.E. Harte, Skew exactness and range-kernel orthogonality II, Jour. Math. Anal. Appl. 347 (2008) 370-374
[H4] R.E. Harte, Hermitian subspaces and Fuglede operators, Funct. Anal. Approx. Comp. 2 (2010) 19-32
[HH] R.E. Harte and C. Hernandez, Adjugates in Banach algebras, Proc. Amer. Math. Soc. 134 (2005) 1397-1404
[Ma] P.J. Maher, Self-commutator approximants, Proc. Amer. Math. Soc. 134 (2006) 157-165
[MB] A. Mansour and S. Bouzenada, On generalized derivation in Banach spaces, Operators and matrices (to appear).
[Si] A.M. Sinclair, Eigenvalues in the boundary of the numerical range, Pacific Jour. Math. 35 (1970) 231-234
[Sp] P.G. Spain, Characterizations of Hilbert space and the Vidav-Palmer theorem, Rocky Mountain Jour. Math. 43 (2013) 1337-1353
[W] J.P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970) 129-135.

[^0]: 2010 Mathematics Subject Classification. 47A05.
 Keywords. Hermitian subspace; Palmer subspace; Orthogonality.
 Received: 20 Dececmber 2016; Accepted: 18 May 2017
 Communicated by Dragan S. Djordjević
 Email address: rharte@maths.tcd.ie (Robin Harte)

