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Abstract We study the ability of a quantum channel to generate quantum coherence

when it applies to incoherent states. We define the measure of coherence generating

power (CGP) for a generic quantum channel to be the average coherence generated by

the quantum channel acting on a uniform ensemble of incoherent states based on the skew

information-based coherence measure. We present explicitly the analytical formulae of

the CGP for any arbitrary finite dimensional unitary channels. We derive the mean value

of the CGP over the unitary groups and investigate the typicality of the normalized CGP.

Furthermore, we give an upper bound of the CGP for the convex combinations of unitary

channels. Detailed examples are provided to calculate exactly the values of the CGP for

the unitary channels related to specific quantum gates and for some qubit channels.
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1. Introduction

Quantum coherence is a distinctive feature of quantum systems associated with the

superposition principle. It plays pivotal roles in quantum thermodynamics [1], quantum

metrology [2] and quantum biology [3]. The quantification of quantum coherence from a

mathematical perspective, however, has only been considered not long ago in [4], where a

rigorous framework for coherence measures has been proposed. The past few years have

witnessed a great interest in quantifying quantum coherence by utilizing various distance

measures such as relative entropy, l1-norm, intrinsic randomness, robustness of coher-
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ence, max-relative entropy, fidelity, affinity, skew information, generalized α-z-relative

Rényi entropy, logarithmic coherence number, Schatten-p-norm and Fisher information,

etc. [4–21]. On the other hand, the problem of coherence distillation and coherence di-

lution have also been discussed [22–28], and a complete theory of one-shot coherence

distillation has been formulated [29]. The average quantum coherence over the pure

state decompositions of a mixed quantum state has been discussed in [30]. Feasible

methods have been introduced to detect and estimate the coherence by constructing co-

herence witnesses for any finite-dimensional states [31]. Quantum coherence from other

resource-theoretical perspectives such as no-broadcasting of quantum coherence [32,33],

interconversion between quantum coherence and quantum entanglement or quantum cor-

relations [?,34–39] have also been studied extensively. The study on coherence of quantum

channels has also attracted much attention [40–46].

The coherence measure defined in [4] is basis-dependent. To get rid of the influence

of the basis, the average coherence with respect to mutually unbiased bases or all the basis

sets have been discussed [47,48]. On the other hand, random pure quantum states provide

new perspectives for various phenomena in quantum physics and quantum information

processing [49]. Average coherence based on the relative entropy of coherence and its

typicality for random pure states and random mixed states have been derived in [50,51],

and the average subentropy, coherence and entanglement of random mixed quantum

states have been discussed in [52].

The concepts of cohering power and de-cohering power of generic quantum channels

have been initially introduced by Mani and Karimipour [53]. By optimization on the

output coherence, the coherence generating power (CGP) of a quantum channel has

been defined to quantify the power of a channel in generating quantum coherence. Many

examples have been given to the qubit channels including those induced by quantum

gates. Different kinds of operations which either preserve or generate coherence have

also been studied [54, 55]. It was Zanardi et al. [56, 57] who first utilize probabilistic

averages to study the CGP. By introducing a measure based on the average coherence

generated by the channel acting on a uniform ensemble of incoherent states, a new method

in quantifying the CGP of unitary channels has been formulated. The coherence measure

based on the Hilbert-Schmidt norm has been exploited to derive explicitly the analytical

formulae of the CGP.

However, the Hilbert-Schmidt norm measure is not a well-defined coherence measure

since it does not possess the expected monotonicity property. In [58] by using the well-

defined relative entropy of coherence measure, Zhang et al. has studied the quantification

of CGP for a generic quantum channel via probabilistic averages and derived explicitly

the analytical formulae of CGP for unitary channels and deduced an upper bound for the

CGP for unital quantum channels. Since the skew information-based coherence is also a

well-defined coherence measure that can be experimentally measured, it is of significance

to calculate the CGP of a generic quantum channel under the skew information-based
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coherence, instead of the relative entropy of coherence. In this paper, we will solve this

problem.

The paper is arranged as follows. In Section 2, we first recall the concepts of skew

information and skew information-based coherence. Then by adopting the probabilis-

tic averages, we define the coherence generating power of a generic quantum channel

with respect to skew information-based coherence. In Section 3, we present an explicit

analytical formula of the CGP via skew information-based coherence for any unitary

channels and calculate the CGP of unitary channels induced by some specific quantum

gates. Based on the formula given in Section 3, we further compute the mean valued of

the CGP and discuss the typicality for the normalized CGP in Section 4. In Section 5,

we study the CGP for convex combinations of unitary channels and derive the CGP for

some important qubit channels. Finally, we give some concluding remarks in Section 6.

2. CGP of quantum channels under skew information-based coherence

Let H = CN be a Hilbert space of dimension N , and B(H), S(H) and D(H) be the

set of all bounded linear operators, Hermitian operators and density operators on H,

respectively. Denote by U(N) the group of all N ×N unitary matrices.

Fix an orthonormal basis {|k〉}Nk=1 of H. The set of incoherent states, which are

diagonal in this basis, can be written as I = {δ ∈ D(H)|δ =
∑N

k=1 pk|k〉〈k|, pk ≥
0,

∑N
k pk = 1}. Let Λ be a CPTP map Λ(ρ) =

∑

nKnρK
†
n, where Kn are Kraus

operators satisfying
∑

nK
†
nKn = IN with IN the identity operator on H. Kn are called

incoherent Kraus operators if K†
nIKn ∈ I for all n, and the corresponding Λ is called an

incoherent operation.

A well-defined coherence measure C(·) of a quantum state ρ should satisfy the fol-

lowing conditions [4]:

• (C1) (Faithfulness) C(ρ) ≥ 0 and C(ρ) = 0 iff ρ is incoherent;

• (C2) (Convexity) C(·) is convex in ρ;

• (C3) (Monotonicity) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ;

• (C4) (Strong monotonicity) C(·) does not increase on average under selective inco-

herent operations, i.e., C(ρ) ≥∑n pnC(̺n), where pn = Tr(KnρK
†
n) are probabil-

ities and ̺n = KnρK
†
n

pn
are the post-measurement states, Kn are incoherent Kraus

operators.

The skew information-based coherence CS(ρ) of a quantum state ρ with respect to a

fixed orthonormal basis {|k〉}Ni=1 in an N -dimensional Hilbert space H is defined by [9],

CS(ρ) =

N
∑

k=1

I(ρ, |k〉〈k|) = 1 −
N
∑

k=1

〈k|√ρ|k〉2, (1)
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where I(ρ, |k〉〈k|) = −1
2Tr{[

√
ρ, |k〉〈k|]}2 is the skew information of the state ρ with

respect to the projector |k〉〈k|, k = 1, 2, · · · , N . CS(ρ) is shown to be a well-defined

coherence measure which satisfies the required properties of a coherence measure in the

framework of [4]. It is of pivotal importance with meaningful physical interpretations and

can be experimentally implemented. The advantage of this coherence measure is that it

has an analytic expression. Also, an operational meaning in connection with quantum

metrology has been revealed. The distribution of this coherence measure among the mul-

tipartite systems has been investigated and a corresponding polygamy relation has been

proposed. It is also found that this coherence measure provides the natural upper bounds

of quantum correlations prepared by incoherent operations. Moreover, it is shown that

this coherence measure can be experimentally measured [9]. Since the skew information-

based coherence measure (1) is well-defined and can be analytically expressed, it is of

great significance both theoretically and practically, and worth evaluating the CGP of

unitary channels based on this measure. Note that CS(ρ) attains the maximal value

1 − 1
N at the maximal coherent sate |ψ〉 = 1√

N

∑N
j=1 e

iθj |j〉.
Quantum ensembles are formulated by specifying probability measures on D(CN ).

The uniqueness for such measures cannot be guaranteed, while the Fubini-Study (FS)

measure is the only natural measure in defining random pure states [59].

Conventionally, it is not easy to deal with the emerged monotone metrics when

N > 2, we have to take great efforts when we consider a Riemannian geometry on D(CN ).

However, for some special monotone metrics, the measures induced from them would be

easier to tackle with. Recall that in flat space, the Euclidean measure is decomposed into

a product. We can use the same technique here. The set of quantum mixed states in

the form ρ = UΛU †, with Λ a fixed diagonal matrix having strictly positive eigenvalues,

is a flag manifold F(N) = U(N)/[U(1)]N . If the chosen eigenvalues and eigenvectors are

independent, and the eigenvectors are drawn according to the invariant Haar measure,

dµHaar(W ) = dµHaar(UW ), then we can assume that a probability distribution in D(CN )

possess the invariance with respect to unitary rotations, P (ρ) = P (WρW †) [59].

Combining the two measures, a product measure on the Cartesian product of the

flag manifold and the simplex F(N)×∆N−1 can be defined: dω(ρ) = dµHaar(U)× dµ(Λ),

which induces the corresponding probability distribution, P (ρ) = PHaar(F
(N)) × P (Λ),

where the first factor denotes the natural, unitarily invariant distribution on the flag

manifold F(N) = U(N)/[U(1)]N induced by the Haar measure on U(N). Note that the

Haar measure on U(N) is unique while there is no unique choice for µ [59].

The measures used frequently over D(CN ) can be obtained by taking partial trace

over a M -dimensional environment of an ensemble of pure states distributed according

to the unique, unitarily invariant FS measure on the space CPMN−1 of pure states of the

composite system. There is a simple physical motivation for such measures: they can be

used if anything is known about the density matrix, apart from the dimensionality M
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of the environment. When M = 1, we get the FS measure on the space of pure states.

Since the rank of ρ is limited by M , when M ≥ N the induced measure covers the full set

of D(CN ). Since the pure state |ψ〉 is drawn according to the FS measure, the induced

measure is of the product form P (ρ) = PHaar(F
(N)) × P (Λ). Hence the distribution of

the eigenvectors of ρ is determined by the Haar measure on U(N) [59].

The general measure for the joint probability distribution of spectrum Λ = {λ1, . . . , λN}
of ρ is given by [60],

dωN,M(Λ) = CN,Mδ



1 −
N
∑

j=1

λj





∏

1≤i<j≤N

(λi − λj)
2

N
∏

j=1

λM−N
j θ(λj)dλj, (2)

where δ is the Dirac delta function, the theta function θ ensures that ρ is positive definite,

and CN,M is the normalization constant,

CN,M =
Γ(NM)

∏N−1
j=0 Γ(N − j + 1)Γ(M − j)

.

In this paper we take N = M . In this scenario, we deal with non-Hermitian square

random matrice characteristic of the Ginibre ensemble [61, 62] and obtain the Hilbert-

Schmidt measure [59]. Denote dωN,N = dωHS and CN,N = CHS
N . Thus we have [60,63]

dωHS(ρ) = dµHaar(U) × dµ(Λ)

for ρ = UΛU †. Here dµ(Λ) is given by [60,63],

dµ(Λ) = CHS
N δ



1 −
N
∑

j=1

λj



 |∆(λ)|2
N
∏

j=1

dλj, (3)

where ∆(λ) =
∏

1≤k<l≤N(λl − λk) and

CHS
N =

Γ(N2)

Γ(N + 1)
∏N

j=1 Γ(j)2
. (4)

Let Φ be a quantum channel, i.e., a trace-preserving completely positive linear map,

which maps an incoherent state Λ to Φ(Λ). By employing the technique of probabilistic

averages [56–58], we define the measure of coherence generating power (CGP) CGPS(Φ)

of Φ to be the average skew information-based coherence generated by the quantum

channel acting on a uniform ensemble of incoherent states,

CGPS(Φ) :=

∫

I
dµ(Λ)CS(Φ(Λ)), (5)

where I denotes the set of incoherent states, µ is the probability measure on a uniform

ensemble of incoherent states and dµ(Λ) is given in Eq. (3). Obviously, for incoherent

quantum channels ΦIO, one has CGPS(ΦIO) = 0 since ΦIO(Λ) is always incoherent.
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In the following we calculate CGPS(Φ) for unitary channels ΦU such that ΦU (Λ) =

UΛU †, where U denotes unitary transformations and † the transpose and conjugation.

3. CGP of unitary channels under skew information-based coherence

We first calculate the CGP of unitary channels under skew information-based coher-

ence, see proof in Appendix A.

Theorem 3.1 For any given N × N unitary matrix U , the CGP of the unitary

channel ΦU is given by

CGPS(U) := CGPS(ΦU )

=



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2










1 − 1

N

N
∑

k,i=1

|Uki|4


 , (6)

where I
( 1
2
)

kl =
∑min(k,l)

r=0 (−1)k+l
( 1

2

k−r

)( 1

2

l−r

)Γ( 3
2
+r)

r! .

Below we present an estimation on the lower and upper bounds on CGPS(U).

Proposition 3.1 For any unitary channel ΦU ,

0 ≤ CGPS(U) ≤ CGPN ,

where

CGPN :=

(

1 − 1

N

)



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2






 . (7)

The lower bound is saturated iff |Uki| · |Ukj| = 0 for all k, i, j = 1, 2, · · · , N with i 6= j,

while the upper bound is saturated iff |Uki|2 = 1/N for all k, i = 1, 2, · · · , N .

Proof. Since U is unitary, we have
∑N

i=1 |Uki|2 = 1 for k = 1, 2, · · · , N . Then

N
∑

k,i=1

|Uki|4 =
N
∑

k=1

(

N
∑

i=1

(|Uki|2)2
)

≤
N
∑

k=1

(

N
∑

i=1

|Uki|2
)2

= N.

By Eq. (6), we obtain that CGPS(U) ≥ 0. It is easy to see that the lower bound is

saturated, i.e., CGPS(U) = 0, iff
∑N

k,i=1 |Uki|4 = N iff
∑N

i=1(|Uki|2)2 =
(

∑N
i=1 |Uki|2

)2

iff |Uki| · |Ukj| = 0 for all k, i, j = 1, 2, · · · , N with i 6= j.

On the other hand, noting that
∑N

k,i=1 |Uki|2 = N for k, i = 1, 2, · · · , N , and utilizing

the Lagrange multiplier method, one can check that the minimal value of
∑N

k,i=1 |Uki|4
is 1, which is attained iff |Uki|2 = 1/N for all k, i = 1, 2, · · · , N . This implies from (6)

that CGPS(U) ≤ CGPN , and the upper bound is saturated iff |Uki|2 = 1/N for all

k, i = 1, 2, · · · , N . �
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Note that |Uki| · |Ukj| = 0 for all k, i, j = 1, 2, · · · , N with i 6= j implies that at least

one of the elements in each row of the matrix is 0. For example, when N = 2, the unitary

U ∈ U(2) is in the following form,

(

u −v
v̄ ū

)

, u, v ∈ C, |u|2 + |v|2 = 1.

In order for the CGPS(U) to reach the lower bound 0, the unitary U is in either of the

following forms,

(

0 −e
√
−1φ

e−
√
−1φ 0

)

or

(

e
√
−1ϕ 0

0 e−
√
−1ϕ

)

.

A set of orthonormal bases {ek} with ek = {|0〉k, |1〉k, · · · , |N − 1〉k} for a Hilbert

space H = CN is called mutually unbiased bases (MUBs) if [64, 65] |k〈i|j〉l| = 1/
√
N

holds for all i, j ∈ {0, 1, · · · , N − 1} and k 6= l. From Proposition 3.1, it can be seen

that if the base {|i〉}Ni=1 and the base {U |i〉}Ni=1 are mutually unbiased, the unitary

channel ΦU reaches the maximal value of CGP. For example, the unitary U satisfying

that 〈s|U |t〉 = 1/
√
N exp(

√
−12π

N st)(s, t = 1, 2, · · · , N) has the maximal CGP.

From (7), for N = 2 and N = 3 we have

CGP2 =
1

2

(

1 − 3π

16

)

≈ 0.205

and

CGP3 =
2

3

(

1 − 103π

512

)

≈ 0.245,

respectively. In Fig. 1 we plot the maximal value CGPN of CGPS(U) as a function of

N = 2m for N = 2, ..., 10. It shows that as N increases, CGPN approaches to 0.28.

Figure 1: The upper bound CGPN of CGPS(U) as a function of N = 2m.

Next, as examples we calculate the CGP for some specific unitary channels by using
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Theorem 3.1. First, for N = 2 it follows from Eq. (6) that

CGPS(U) =

(

1 − 3π

16

)



1 − 1

2

2
∑

k,i=1

|Uki|4


 . (8)

Example 3.1 Consider the Hadamard gate H = 1√
2

(

1 1

1 −1

)

. From Eq. (8) we

have CGPS(H) = 1
2 (1 − 3π

16 ) ≈ 0.205.

Example 3.2 Consider the unitary transformation Uθ =

(

cos θ sin θ

− sin θ cos θ

)

. By

(8), we have the CGP of the unitary channel related to Uθ,

CGPS(Uθ) =
1

2

(

1 − 3π

16

)

sin2 2θ. (9)

Fig. 2 shows the coherence generating power CGPS(Uθ) of Uθ as the function of θ ∈ [0, π].

It can be seen that the maximal value of CGPS(Uθ) is 1
2(1− 3π

16 ) ≈ 0.205, which is attained

at θ = π/4 and θ = 3π/4.

Figure 2: The skew information-based coherence generating power of Uθ with respect to

the parameter θ.

When N = 4, it follows from Eq. (6) that

CGPS(U) =

(

1 − 54545π

262144

)



1 − 1

4

4
∑

k,i=1

|Uki|4


 . (10)

Example 3.3 (Square root of swap gate) The
√

swap gate is an important quantum

gate since any quantum multi-qubit gates can be generated by combining
√

swap and

single qubit gates, which is given by

√
swap =











1 0 0 0

0 1
2(1 + i) 1

2(1 − i) 0

0 1
2(1 − i) 1

2(1 + i) 0

0 0 0 1











.
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From Eq. (10), we have

CGPS(
√

swap) =
1

4

(

1 − 54545π

262144

)

≈ 0.087.

Example 3.4 For a partial swap operator [66], one has Ut ∈ U(Cd ⊗ Cd): Ut =√
tId ⊗ Id + i

√
1 − t S, where S =

∑d
i,j=1 |ij〉〈ji| and t ∈ [0, 1]. When d = 2, we have

Ut =











√
t+

√
1 − ti 0 0 0

0
√
t

√
1 − ti 0

0
√

1 − ti
√
t 0

0 0 0
√
t+

√
1 − ti











.

Then it follows from Eq. (10) that

CGPS(Ut) = t(1 − t)

(

1 − 54545π

262144

)

, t ∈ [0, 1]. (11)

We plot CGPS(Ut) as the function of t ∈ [0, 1] in Fig. 3. It is found that the maximal

value of CGPS(Ut) is CGPS(U 1

2

) = 1
4

(

1 − 54545π
262144

)

≈ 0.087 attained at t = 1
2 .

Figure 3: The skew information-based coherence generating power of Ut with respect to

the parameter t.

It is pointed out that [58] the possible values of the relative entropy-based CGP

CGPR form the closed interval [0, lnN − HN + 1], where HN =
∑N

n=1 1/n, and both

CGPR(H) and the maximal value of CGPR(Uθ) (θ ∈ [0, π]) reach the maximal CGP

of qubit unitary channels, ln2 − 1/2 ≈ 0.193. In comparison, CGPR(
√

swap) = 1
2 ln2 ≈

0.347 is greater than the maximal CGP of unitary channels given by 4 × 4 unitary

matrices, ln4 − H4 + 1 ≈ 0.303, while the maximal value of CGPR(Ut), t ∈ [0, 1],
1
4 (2ln2 − 1) ≈ 0.097, is less than it.

Note that similarly, for skew information-based CGP CGPS, both CGPS(H) and

the maximal value of CGPS(Uθ) (θ ∈ [0, π]) reach the maximal CGP of unitary channels

given by 2 × 2 unitary matrices, 1
2 (1 − 3π

16 ) ≈ 0.205. However, both CGPS(
√

swap)

9



and the maximal value of CGPS(Ut) for t ∈ [0, 1], 1
4

(

1 − 54545π
262144

)

≈ 0.087, are less than

the maximal CGP of unitary channels given by 4 × 4 unitary matrices, 3
4

(

1 − 54545π
262144

)

≈
0.26. Moreover, for the same unitary channel given in the above examples, the skew

information-based CGP CGPS are less than the relative entropy-based CGP CGPR

calculated in [58].

4. CGP as a random variable over the unitary group under skew information-

based coherence

We now regard CGPS(U) as a random variable over the group of N × N unitary

matrices U(N) equipped with the Haar measure dµHaar(U). We calculate the mean value

of CGPS(U) for random unitary channels.

If G is a locally compact group, there is, up to a constant multiple, a unique regular

Borel measure µL that is invariant under left translation. Here left translation invariance

of a measure µ means that µ(M) = µ(gM) for all measurable sets M and g ∈ G. Regular-

ity means that µ(M) = inf{µ(O) : M ⊆ O, O open} = sup{µ(C) : M ⊇ C, C compact}.

Such a measure is called a left-invariant Haar measure. It has the properties that any

compact set has finite measure and any nonempty open set has positive measure. Left-

invariance of the measure amounts to left-invariance of the corresponding integral,

∫

G
f(g′g)dµL(g) =

∫

G
f(g)dµL(g)

for any Haar integral function f on G and any g′ ∈ G [67]. We denote this left-invariant

Haar measure by µHaar here.

Theorem 4.1 The mean value of CGPS(U) is given by

EU [CGPS(U)] =
N − 1

N + 1



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2






 . (12)

where I
( 1
2
)

kl =
∑min(k,l)

r=0 (−1)k+l
( 1

2

k−r

)( 1

2

l−r

)Γ( 3
2
+r)

r! .

Proof. From Eq. (6), the mean value of CGPS(U) for unitary channels is given by

EU [CGPS(U)]

=

∫

U(N)
dµHaar(U)



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2










1 − 1

N

N
∑

k,i=1

|Uki|4


 ,(13)

where µHaar is a unitarily invariant uniform Haar measure. Noting that the Haar measure
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is left-invariant, we obtain

EU [CGPS(U)]

=



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2










1 − 1

N

∫

U(N)
dµHaar(U)

N
∑

k,i=1

|Uki|4




=



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2








(

1 −N

∫

U(N)
dµHaar(U)|U11|4

)

, (14)

where U11 = 〈1|U |1〉. From the proof of Theorem 1 in [68], we have

∫

U(N)
dµHaar(U)|U11|4 = (N − 1)B(3, N − 1) = (N − 1)

Γ(3)Γ(N − 1)

Γ(N + 2)

= (N − 1)
2

(N + 1)N(N − 1)
=

2

N(N + 1)
. (15)

Substituting (15) into (14) one gets (12). �

Comparing (12) in Theorem 4.1 with (19) in Theorem 4 of [68], we see that the

mean value EU [CGPS(U)] of skew information-based CGP for random unitary channels

coincides with average skew information-based coherence Eρ[CI(ρ)] for random quantum

mixed states. This fact can be explained as follows. On the one hand, any quantum

mixed state can be diagonalized, i.e., ρ = UΛU †, where Λ is a diagonal matrix and U is a

unitary operator. Hence, for a random quantum mixed state, the randomness resides in

both the diagonal matrix Λ and the unitary operator U . On the other hand, according to

Eq. (2), the CGP of a unitary channel with respect to skew information-based coherence

is defined via probabilistic averages, in which the probability measure is on a uniform

ensemble of incoherent states (diagonal matrices). Therefore, it is not surprising that

these two quantities are equal.

Define the normalized CGP C̃GPS(U) := CGPS(U)/CGPN ≤ 1. Then it follows

that EU [C̃GPS(U)] = N
N+1 , which coincides with the normalized CGP based on the

Hilbert-Schmidt norm of coherence presented in [56]. Let (X, d1) and (Y, d2) be two

metric spaces and T : X → Y be a mapping. T is called a Lipschitz continuous mapping

on X with the Lipschitz constant η, if there exists η > 0 such that d2(T (x), T (y)) ≤
ηd1(x, y) holds for all x, y ∈ X [69].

Let X : U(N) → R be a Lipschitz continuous function from the unitary group to

the real line with a Lipschitz constant K, i.e., |X(U) − X(V )| ≤ K‖U − V ‖2, with

‖ · ‖2 denoting the Hilbert-Schmidt norm of a matrix A, i.e., ‖A‖2 :=
√

TrA†A [70]. Let

U ∈ U(N) be chosen uniformly at random. Then for any ǫ > 0, we have the Levy’s Lemma

for Haar-distributed N × N unitaries [71]: Pr{|X(U) − E[X(U)]| ≥ ǫ} ≤ exp
(

−Nǫ2

4K2

)

,

where Pr denotes the probability of a random event. Using this version of Levy’s Lemma,

11



we can similarly obtain the typicality of CGP, similar to the one presented in [56],

Pr

{

C̃GPS(U) ≥ 1 − 2

N1/3

}

≥ 1 − exp

(

−N1/3

256

)

.

5. CGP of mixed unitary channels under skew information-based coherence

In this section, we consider the convex combinations of unitary channels of the form

Φ(·) =
∑

m pmUm ·U †
m. In this case,

√

Φ(Λ) =

√

∑

m pmUmΛU †
m. In general it is difficult

to compute CGPS(Φ) since
√

Φ(Λ) is hard to tackle. We present an upper bound for

this class of channels.

Theorem 5.1 For mixed unitary channels Φ(·) =
∑

m pmUm · U †
m, we have

CGPS(Φ) ≤
∑

m

pmCGPS(Um). (16)

Proof. Note that the skew information-based coherence is a well-defined coherence

measure which satisfies the convexity under classical mixing [9],

CS

(

∑

n

qnρn

)

≤
∑

n

qnCS(ρn),

where qn ≥ 0 and
∑

n qn = 1. It follows that

CS(Φ(Λ)) = CS

(

∑

m

pmUmΛU †
m

)

≤
∑

m

pmCS(UmΛU †
m).

Therefore, by the definition (2) we get

CGPS(Φ) =

∫

Γ
dµ(Λ)CS(Φ(Λ)) ≤

∑

m

pm

∫

Γ
dµ(Λ)CS(UmΛU †

m) =
∑

m

pmCGPS(Um).

This completes the proof. �

As applications, we consider the Pauli channels defined by

Φ(ρ) =
3
∑

m=0

pmσmρσm, pm ≥ 0,
3
∑

m=0

pm = 1, (17)

where σ0 = I, and σm, m = 1, 2, 3, are the standard Pauli matrices. When p1 = p2 =

p3 = p, one has the depolarizing channel. When p1 = p, p2 = p3 = 0 and p1 = p2 = 0,

p3 = p one gets the bit-flipping channel and the phase-flipping channel, respectively. The

case p2 = p and p1 = p3 = 0 corresponds to the bit-phase-flipping channel. From Eq. (8),

it is easy to check that CGPS(σm) = 0 for m = 0, 1, 2, 3. Hence, for any Pauli channel

Φ we have CGPS(Φ) = 0 from (16).

12



As another example, consider the (unital) amplitude damping channel Φ(ρ) =
∑2

n=1EnρE
†
n with

E1 =

(

1 0

0
√

1 − γ

)

, E2 =

(

0 0

0
√
γ

)

.

We have Φ(Λ) = Λ. It follows from (6) that CGPS(Φ) = 0.

For the (nonunital) amplitude damping channel Φ(ρ) =
∑2

n=1EnρE
†
n with

E1 =

(

1 0

0
√

1 − γ

)

, E2 =

(

0 0
√
γ 0

)

,

we have

Φ(Λ) =

(

λ1 + γλ2 0

0 (1 − γ)λ2

)

,

where Λ = diag(λ1, λ2). This implies that CS(Φ(Λ)) = 0, and thus CGPS(Φ) = 0.

More generally, by the property (8) given in [11], it can be seen that if the Kraus

operators En of the channel Φ and the reference basis {|k〉} satisfy En|k〉〈k| = |k〉〈k|En

for all n and k, then we have CS(Φ(ρ)) ≤ CS(ρ), and thus CS(Φ(Λ)) ≤ CS(Λ). For such

channels, it holds that CGPS(Φ) = 0.

6. Conclusions and discussions

We have introduced the measure of the coherence generating power (CGP) of a

quantum channel, which is the average coherence generated by the channel acting on

a uniform ensemble of incoherent states. By adopting the technique of probabilistic

averages, we have successfully derived the explicit analytical formulae of CGP for any

arbitrary finite dimensional unitary channels. Furthermore, we have formulated the mean

value of the CGP over the unitary group, and investigated the typicality of the normalized

CGP. Moreover, we have also presented an upper bound on CGP for mixed unitary

channels (the convex combination of unitary channels) by using the convexity of the skew

information-based coherence. Detailed examples have been provided for quibt channels.

In [56, 57] Zanardi et al. have studied the coherence generating power of unitary

channels based on the coherence measure of Hilbert-Schmidt norm, in which the measure

is in fact not well-defined and the computation involves only integrals in uniform Haar

measure over pure states. Instead, the authors in [58] derived the formulae of CGP for

unitary channels based on the relative entropy of coherence. The skew information-based

coherence measure we adopted in this paper is also well-defined and has many important

operational interpretations.

The obtained results enrich and complement the ones given in [58]. It is also worth

pointing out that as the dimension N → ∞, the CGP of unitary channels in [56, 57]

approaches to 0, while the CGP of unitary channels in [58] does not always approach to

13



0. The mean value of the CGP for random unitary channels also approaches to 0 when

N → ∞. In comparison, numerical results show that our CGP of unitary channels and

the mean value of the CGP over the unitary group both approaches to a positive number

close to 0.28. Our results may shed some new light on the studies of coherence generating

power of quantum channels.
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Appendix A: Proof of Theorem 3.1

Proof of Theorem 3.1 Suppose that the spectral decomposition of Λ is Λ =
∑N

j=1 λj |j〉〈j|. Then
√

Λ =
∑N

j=1

√

λj |j〉〈j|. Consider the unitary channel ΦU(Λ) =

UΛU †. We have

∫

I
dµ(Λ)CS(ΦU (Λ)) =

∫

I
dµ(Λ)

[

1 −
N
∑

k=1

〈k|U
√

ΛU †|k〉2
]

=

∫

I
dµ(Λ) −

N
∑

k=1

∫

I
dµ(Λ)

〈

k⊗2|U⊗2
√

Λ
⊗2

(U⊗2)†)|k⊗2
〉

= 1 −
N
∑

k=1

〈

k⊗2|U⊗2

∫

I
dµ(Λ)

√
Λ
⊗2

(U⊗2)†)|k⊗2

〉

. (18)
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Since
∫

I
dµ(Λ)

√
Λ
⊗2

=

∫

I
dµ(Λ)

∑

1≤i=j≤N

√

λiλj|ij〉〈ij| +

∫

I
dµ(Λ)

∑

1≤i 6=j≤N

√

λiλj|ij〉〈ij|

=

∫

I
dµ(Λ)

N
∑

i=1

λi|ii〉〈ii| +

∫

I
dµ(Λ)

∑

1≤i 6=j≤N

√

λiλj |ij〉〈ij|

=
1

N

N
∑

i=1

|ii〉〈ii| + CHS
N

∫

RN
+

∑

1≤i 6=j≤N

√

λiλjδ



1 −
N
∑

j=1

λj



 |∆(λ)|2
N
∏

j=1

dλj|ij〉〈ij|, (19)

where ∆(λ) =
∏

1≤k<l≤N(λl − λk), and
∫

RN
+

√

λiλjδ
(

1 −∑N
j=1 λj

)

|∆(λ)|2∏N
j=1 dλj are

the same for i 6= j, we only need to calculate

∫

RN
+

√

λ1λ2δ



1 −
N
∑

j=1

λj



 |∆(λ)|2
N
∏

j=1

dλj.

Denote

F (t) =

∫

RN
+

√

λ1λ2δ



t−
N
∑

j=1

λj



 |∆(λ)|2
N
∏

j=1

dλj.

By performing Laplace transform (t→ s) of F (t), and letting µj = sλj, j = 1, 2, we get

F̃ (s) =

∫

RN
+

√

λ1λ2exp



−s
N
∑

j=1

λj



 |∆(λ)|2
N
∏

j=1

dλj

= s−(N2+1)

∫

RN
+

√
µ1µ2exp



−
N
∑

j=1

µj



 |∆(µ)|2
N
∏

j=1

dµj, (20)

where ∆(µ) =
∏

1≤k<l≤N (µl − µk). Utilizing the inverse Laplace transform (s → t) :

L −1(sα) = t−α−1

Γ(−α) , we obtain

F (t) =
tN

2

Γ(N2 + 1)

∫

RN
+

√
µ1µ2exp



−
N
∑

j=1

µj



 |∆(µ)|2
N
∏

j=1

dµj. (21)

Thus

∫

RN
+

√

λ1λ2δ



1 −
N
∑

j=1

λj



 |∆(λ)|2
N
∏

j=1

dλj

=
1

Γ(N2 + 1)

∫

RN
+

√
µ1µ2exp



−
N
∑

j=1

µj



 |∆(µ)|2
N
∏

j=1

dµj

=
(N − 2)!

∏N
j=1 Γ(j)2

Γ(N2 + 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2


 , (22)
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where we have used the following result [68],

∫

RN
+

√
µ1µ2 exp



−
N
∑

j=1

µj



 |∆(µ)|2
N
∏

j=1

dµj

= (N − 2)!

N
∏

j=1

Γ(j)2





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2


 , (23)

with I
( 1
2
)

kl =
∑min(k,l)

r=0 (−1)k+l
( 1

2

k−r

)( 1

2

l−r

)Γ( 3
2
+r)

r! .

From (6), (21) and (22) we obtain

∫

I
dµ(Λ)

√
Λ
⊗2

=
1

N

N
∑

i=1

|ii〉〈ii| +
1

N3(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2




∑

1≤i 6=j≤N

|ij〉〈ij|.(24)

Combining (24) and (23), we get

∫

I
dµ(Λ)CS(ΦU (Λ))

= 1 −





1

N

N
∑

k,i=1

|Uki|4 +
1

N3(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2




N
∑

k=1

∑

1≤i 6=j≤N

|Uki|2|Ukj |2




= 1 − 1

N

N
∑

k,i=1

|Uki|4 −
1

N3(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2






N −
N
∑

k,i=1

|Uki|4




=



1 − 1

N2(N − 1)





(

N
∑

k=1

I
( 1
2
)

kk

)2

−
N
∑

k,l=1

(

I
( 1
2
)

kl

)2










1 − 1

N

N
∑

k,i=1

|Uki|4


 ,

which completes the proof. �
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