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Skew informations from an 
operational view via resource 
theory of asymmetry
Ryuji takagi  

the Wigner-Yanase skew information was proposed to quantify the information contained in quantum 
states with respect to a conserved additive quantity, and it was later extended to the Wigner-Yanase-
Dyson skew informations. Recently, the Wigner-Yanase-Dyson skew informations have been recognized 
as valid resource measures for the resource theory of asymmetry, and their properties have been 
investigated from a resource-theoretic perspective. the Wigner-Yanse-Dyson skew informations have 
been further generalized to a class called metric-adjusted skew informations, and this general family 
of skew informations have also been found to be valid asymmetry monotones. Here, we analyze 
this general family of the skew informations from an operational point of view by utilizing the fact 
that they are valid asymmetry resource monotones. We show that such an approach allows for clear 
physical meanings as well as simple proofs of some of the basic properties of the skew informations. 
notably, we constructively prove that any type of skew information cannot be superadditive, where 
the violation of the superadditivity had been only known for a specific class of skew informations with 
numerical counterexamples. We further show a weaker version of superadditivity relation applicable 
to the general class of the skew informations, which proves a conjecture made for the Wigner-Yanase 
skew information as a special case. We finally discuss an application of our results for a situation where 
quantum clocks are distributed to multiple parties.

Quantifying the information contents is a central theme in information theory. In classical information theory, 
the Shannon entropy serves as such an information-theoretic quantity. In quantum information theory, the corre-
sponding information measure is the von Neumann entropy, and it successfully reflects the total information that 
a state in a system possesses. However, quantifying the information contents becomes subtle when the system has 
a certain symmetry and possesses a conserved quantity because, in such cases, some observables can be measured 
more easily than others as observed by Wigner, Araki, and Yanase1–3. It is then natural to consider an informa-
tion measure that takes into account the relation between a state and the conserved quantity. Motivated by this 
observation, Wigner and Yanase proposed the information measure called the Wigner-Yanase skew information, 
which measures the information contents contained in a quantum state with respect to a conserved additive 
quantity4. This information-theoretic quantity was later generalized by Dyson into one-parameter family called 
Wigner-Yanase-Dyson skew informations, and their properties were intensively investigated4–8.

The connection was observed between the skew informations and Riemannian metrics studied in information 
geometry9,10. The family of quantum Fisher informations were identified as the metrics that reflect the natural 
monotonicity property under information processing, and one-to-one correspondence between quantum Fisher 
informations and operator monotone functions was established11,12. Based on the observation on the relation 
between the skew informations (information-theoretic measure) and the quantum Fisher informations (infor-
mation metric), Hansen proposed a general family of skew informations parameterized by operator monotone 
functions originated from the information geometry, which is known as metric-adjusted skew informations10. In 
this paper, we simply say “skew informations” to refer to the whole family of metric-adjusted skew informations. 
This characterization of the skew informations by information geometry finds a further connection to the meas-
ures of asymmetry in the context of resource theories.

Resource theories are formal frameworks dealing with quantification and manipulation of intrinsic physi-
cal quantities, called resources, associated with given physical settings. The generality of the resource-theoretic 
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framework enables us to extract common features shared by a large class of the theories13–23 and also provides spe-
cific formalism depending on the interested physical quantities such as entanglement24,25, coherence26–28, asym-
metry29,30, quantum thermodynamics31,32, non-Markovianity33, magic34,35, and non-Gaussianity36–38. Resource 
theories are especially powerful when one is interested in separating precious resources and free objects, as well 
as in assessing operational significance of the resources20,22,39–44.

In particular, resource theory of asymmetry accounts for the capability of breaking the relevant symmetry 
possessed by the system. The reference frame that can break the symmetry is treated as resource, and this setting 
turns out to be especially relevant to quantum metrology45. Considering the close connection between metrology 
and the quantum Fisher informations, and the connection mentioned above between skew informations and the 
information geometry, it is not surprising that there is also a connection between the skew informations and the 
resource theory of asymmetry. Indeed, it has been found that the Wigner-Yanase-Dyson skew informations46,47 as 
well as the whole family of skew informations48 serve as valid asymmetry quantifiers, which give another opera-
tional aspect to this information-theoretic quantities.

Due to the generality of the skew informations as well as restrictions imposed on them, investigation of math-
ematical properties of the skew informations usually requires highly involved mathematical techniques5,10 that are 
not physically very intuitive, and it is hoped that the operational view stemming from the resource theory would 
provide another route that gets around with these difficulties. Indeed, such an approach has been developed in 
ref.46, which, in particular, showed the selective monotonicity of the Wigner-Yanase-Dyson skew informations 
by seeing them as asymmetry monotones and also observed that extensive quantities can be freely amplified by a 
covariant operation, which gave an intuitive operational explanation of the violation of the uncertainty relation in 
terms of the Wigner-Yanase skew information proposed in refs49–51. It has been also shown that any functions of 
the Noether’s conserved quantities cannot be asymmetry monotones (see also47).

Here, we employ an operational approach to analyze properties of the general class of skew informations 
and see that such an operational point of view allows for richer physical intuitions and simpler proofs of them. 
Notably, we constructively show that any skew information cannot be superadditive. The superadditivity of the 
Wigner-Yanase skew information was listed as a desired property for the skew information to be an information 
measure, and Wigner and Yanase themselves proved this property for pure bipartite states4. It had been widely 
believed that it would hold in general until counterexamples were found52–54. Although it would be interesting 
to investigate what property of the state contributes to the violation of the superadditivity, the previously shown 
counterexamples are purely numerical examples obtained by exhaustive computational search or semianalytical 
forms which fail to provide much physical insights. In this work, instead of taking a counterexample-based argu-
ment, we utilize the fact that the skew informations are asymmetry monotones and find that the violation of the 
superadditivity is a natural consequence from the resource-theoretic point of view. We also propose and prove 
a weaker version of superadditivity relation that holds for any skew information, which extends the results in 
refs54,55. We employ an operational argument to show that our inequality is optimal, which proves the conjecture 
proposed in ref.54 as a special case. Our results are then applied to a physical situation where quantum clocks are 
distributed to multiple parties.

This paper is organized as follows. In Sec. 2 and Sec. 3, we briefly review the resource theory of asymmetry 
and the skew informations. In Sec. 4, we discuss some properties of the skew informations for which operational 
approach turns out to be helpful. In Sec. 5, after reviewing a protocol used in the following discussion, we prove 
the violation of superadditivity of the skew informations and propose a weak superadditivity relation, followed by 
an application of these results to distributed quantum clocks. We finally conclude the paper in Sec. 6.

Resource theory of Asymmetry
Main building blocks of resource theories include the sets of free states and free operations, which represent free 
objects that are considered to be provided at no cost. The resource theory of asymmetry with group G corre-
sponds to the setting where one has free access to quantum states that are invariant (symmetric) under group 
action whereas states that can break the group symmetry, asymmetric states, are considered precious, and thus 
resources. Formally, the state ρ is called a symmetric state if ρ ρ= ∀ ∈†U U g G,g g  where Ug is a unitary rep-
resentation of the group element g. A relevant set of free operations are covariant operations   satisfying the 
covariance condition: E U E U= ∀ ∈  g Gg

I
g
O  where ⋅( )g

X  refers to the application of unitary representation of 
g on the system X, and =X I O,  correspond to the input system and output system of  . It can be easily seen that 
the covariant operations cannot create any asymmetry from symmetric states by noting that 
U E E U Eσ σ σ= =( ( )) ( ( )) ( )g

O
g
I  for any symmetric state σ, which is desired for the covariant operations to be free 

operations.
The other important concepts in resource-theoretic frameworks are resource quantifiers. They are also called 

resource monotones because reasonable resource quantifiers R must satisfy the monotonicity condition: 
ρ ρ ρ≥ ∀R R( ) ( ( )),  for any free operation  .

Although the formalism of the theory of asymmetry encompasses a general choice of group, here we focus on 
the U(1) group whose unitary representation is labeled by a real number t as =U t iH t( ) exp( )X X  where HX is an 
observable defined on system X. This choice of group represents the type of coherence relevant to quantum 
metrology45, quantum thermodynamics28,56,57, and quantum correlation58–61. As we shall see in the next section, a 
general family of skew informations, which originated from the information-theoretic motivation, have been 
shown to be valid asymmetry monotones in this case.
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Skew informations
Suppose the system possesses an additive conserved quantity whose observable is denoted by H. To quantify the 
information contained by quantum states with respect to the conserved quantity, Wigner and Yanase proposed 
the Wigner-Yanase skew information4:

ρ ρ= −I H H( , ) 1
2

Tr([ , ] )
(1)

WY 2

ρ ρ ρ= − .H H HTr( ) Tr( ) (2)
2

Later, the Wigner-Yanase skew information was generalized by Dyson,

ρ ρ ρ= −α
α α−I H H H( , ) 1

2
Tr([ , ][ , ])

(3)
WYD 1

ρ ρ ρ= − .α α−H H HTr( ) Tr( ) (4)2 1

with α< <0 1. Note that it reduces to the Wigner-Yanase skew information when one takes α = 1/2. 
Remarkably, it was shown that the Wigner-Yanase-Dyson skew informations are valid asymmetry 
monotones46,47.

The skew information is closely related to the information geometry, in which metrics represent ‘how close’ 
the neighboring probability distributions or quantum states are in terms of their parameters62. For classical prob-
ability distribution, imposing the contractivity under information processing uniquely identifies the metric as 
the classical Fisher information63. In quantum theory, the contractivity does not single out the unique metric, 
but rather a family of metrics, the quantum Fisher informations, are specified11,12. Consider the model where the 
quantum state is parameterized by a single real number t. Then, the quantum Fisher informations have the form

ρ
ρ ρ

=






∂

∂





∂

∂












ρ ρJ
t

c L R
t

( ) Tr ( , )
(5)

f
t

t
f

t

where = − −
c x y yf xy( , ): [ ( )]f

1 1 is the Morozova-Chentsov function11, and f is a standard operator monotonic 
function satisfying

 1. ≤ ≤A B0  implies ≤f A f B( ) ( ) for any Hermitian operators A, B.
 2. =f x xf x( ) (1/ )
 3. =f (1) 1,

and ρL , ρR  are the superoperators multiplying ρ from left and right: ρ=ρL X X  and ρ=ρR X X . Based on the 
observation on the connection between Wigner-Yanase skew information and the quantum Fisher information 
with unitary model9, a general family of skew informations called metric-adjusted skew informations were 
introduced10:

ρ ρ ρ= 



.ρ ρI H f i H c L R i H( , ) (0)

2
Tr ( [ , ]) ( , )( [ , ]) (6)

f
f

In this paper, we call this family of metric-adjusted skew informations simply skew informations. It can be 
explicitly calculated for the state ρ λ= ∑ | 〉〈 |j jj j  as

∑ρ
λ λ

λ λ λ
=

−
|〈 | | 〉| .I H f

f
i H j( , ) (0)

2
( )

( / ) (7)
f

ij

i j

j i j

2
2

Recently, it has been shown that the skew informations can be experimentally determined from 
linear-response theory64. Importantly, the Wigner-Yanase-Dyson skew informations (and automatically also the 
Wigner-Yanase skew information) are special kinds of skew informations, which are reconstructed by taking

α α
=

−
− −

−

α α α α− −
c x y x y x y

x y
( , ) 1

(1 )
( )( )

( ) (8)f

1 1

2

for α< <0 1.
An important property of the skew informations is that all the skew informations are valid asymmetry mono-

tones48, namely,

ρ ρ≥I H I H( , ) ( ( ), ) (9)f f

for any covariant operation  . It comes from the generic contractive property of the quantum Fisher metrics and 
the covariance of covariant operations with group transformations. Furthermore, the skew informations are addi-
tive for product states10:
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ρ ρ ρ ρ⊗ = +I H I H I H( , ) ( , ) ( , ) (10)
f f f

1 2 12 1 1 2 2

where  = ⊗ + ⊗H H H12 1 2.
The additivity for product states is rather peculiar feature of skew informations among other asymmetry 

monotones; there are asymmetry monotones that are not additive for product states (e.g. relative entropy of 
asymmetry65).

properties of Skew informations as Asymmetry Monotones
As reviewed in the last section, the family of skew informations are defined in quite a general fashion through 
the operator monotone function f. Its mathematical treatment could be cumbersome when the function has a 
complicated form or when one tries to keep its generality. Therefore, showing properties applicable to the general 
class of the skew informations could be highly non-trivial and mathematically involved while giving not much 
physical intuition.

However, we have also seen that the skew informations serve as asymmetry monotones. This is an attractive 
property since it is not only valid for general skew informations but also gives a relevant physical meaning. Here, 
we show that such a resource-theoretic point of view may greatly simplify the analysis of some of the properties 
and help to give physical intuition associated with them.

Monotonicity under the partial trace. The skew informations of the subsystem are not greater than the 
skew informations of the total system.

ρ ρ≥I H I H( , ) ( , ) (11)
f f

12 12 1 1

where  = ⊗ + ⊗H H H12 1 2. As asymmetry measures, this relation entails a natural physical meaning; if one 
throws away a subsystem, the capability of breaking the symmetry must not increase. Equation (11) is concisely 
obtained by monotonicity of the skew informations under covariant operations. The key observation is that the 
partial trace is a covariant operation because

ρ−iH t iH tTr [exp( ) exp( )] (12)2 12 12 12

 ρ= ⊗ ⊗− −e e e eTr [( ) ( )] (13)
iH t iH t iH t iH t

2 12
1 2 2 1

ρ= − .iH t iH texp( )Tr [ ]exp( ) (14)1 2 12 1

Also, the following property holds as a special case of =H 02 :

ρ ρ⊗ ≥ .I H I H( , ) ( , ) (15)
f f

12 1 1 1

Note that these properties have been discussed in the literature for only special cases such as 
Wigner-Yanase-Dyson skew information by explicitly calculating the quantities5,66.

convexity/selective monotonicity. The results in this subsection were obtained in ref.48, but we repeat 
them here because these are nice examples for which operational perspectives are helpful. The convexity of the 
skew informations has been shown in ref.10 where the Löwner’s theory of the operator monotone functions and 
analytic functions was actively used. The convexity can be more intuitively seen by staring from the monotonicity 
of the skew informations under covariant operations. We combine the monotonicity under partial trace described 
above and the following relation

∑ ∑ρ ρ





⊗ | 〉〈 | ⊗





=I p k k H p I H, ( , ),
(16)

f

k
k k

k
k

f
k

where |k〉 is an orthonormal basis, which can be straightforwardly obtained using (7). By using (16) and (11), we 
concisely reach the convexity property:

∑ ∑ρ ρ=





⊗ | 〉〈 | ⊗





p I H I p k k H( , ) ,
(17)k

k
f

k
f

k
k k

∑ ρ≥










I p H,
(18)

f

k
k k

where we used the monotonicity under partial trace in the inequality. Equation (16) can be also used to show the 
selective monotonicity. The selective monotonicity is the property of a resource measure that it does not increase 
on average. Namely, for any operation = ∑j j   where j is a covariant completely-positive trace non-increasing 
map for any j, the selective monotonicity states that
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∑ρ σ≥I H p I H( , ) ( , )
(19)

f

k
k

f
k

where  ρ=p Tr( ( ))k k  and σ ρ= p( )/k k k. The selective monotonicity is not regarded as a necessary property for 
resource quantifiers in general, but it is a reasonable feature shared by many important resource monotones17. 
This can be easily shown by considering another covariant operation ⋅ = ∑ ⋅ ⊗ | 〉〈 | k k( ) ( )k k  :

 ρ ρ≥ ⊗I H I H( , ) ( ( ), ) (20)f f

∑ σ=





⊗ | 〉〈 | ⊗





I p k k H,
(21)

f

k
k k

∑ σ= .p I H( , )
(22)k

k
f

k

where we used the monotonicity under covariant operations in the inequality and (16) in the second equality.

Decrease under measurements not disturbing the conserved quantity. In ref.67, the dynamics of 
Wigner-Yanase skew information under the measurement that does not disturb the conserved quantity have been 
investigated. Specifically, they considered the measurement operation ⋅ = ∑ ⋅ †M E E( ) j j j  whose measurement 
operators commute with the observable corresponding to the conserved quantity: = ∀E H j[ , ] 0,j . This implies 

ρ ρ=M H HTr[ ( ) ] Tr[ ], so the expectation value of the conserved quantity is not disturbed. For such a measure-
ment, they asked whether the Wigner-Yanase skew information would decrease under deterministic 
measurement

ρ ρ≤I M H I H( ( ), ) ( , ), (23)WY WY

and under selective measurement

∑ σ ρ≤p I H I H( , ) ( , )
(24)j

j
WY

j
WY

where ρ= †p E ETr[ ]j j j  and σ ρ= †E E p/j j j j. They proved that (23) holds in general and proved (24) holds for 
two-dimensional systems, while they left the higher dimensional cases as a conjecture.

By our resource-theoretic approach, (23) and (24) are naturally shown for general dimensions and any skew 
information (not only for the Wigner-Yanase skew information). To see this, note that the condition 

= ∀E H j[ , ] 0,j  implies that M is a covariant operation and ⋅ †E Ej j  are covariant completely-positive trace 
non-increasing maps. Then, (23), (24), and their generalizations with If replacing IWY hold true as immediate 
consequences from the monotonicity and selective monotonicity of the skew informations as asymmetry 
monotones.

invariance under covariant unitaries. Another immediate property of the skew informations as asymme-
try monotones is the invariance under unitary that commutes with the observable, namely,

ρ ρ= †I H I U U H( , ) ( , ) (25)f f

for U such that =U H[ , ] 0. This commuting property means that U is a free unitary in the resource theory of 
asymmetry.

Equation (25) is due to a generic feature of asymmetry monotones; if (25) did not hold, it would imply that 
only one-way transformation between ρ and ρ †U U  would be possible under free operations. Since U is a free 
unitary, clearly ρ ρ→ †U U  is possible. However, since =U H[ , ] 0 implies =†U H[ , ] 0, U† is also free unitary, so 

ρ ρ→†U U  is also possible by free unitary, which is a contradiction.

Superadditivity
Superadditivity of the skew informations refers to the property that the skew informations for total states are 
never less than the sum of local skew informations. Formally, we say that the supearadditivity holds if for any 

∈n ,

∑ρ ρ≥… …
=

I H I H( , ) ( , )
(26)

f
n n

k

n
f

k k1 1
1

holds for any ρ …N1  and …H n1  with = ∑ ⊗… =H Hn k
n

k k1 1  where ρ ρ= …Trk k n1  is the reduced state on the k th 
subsytem, and k is the identity operator acting on the subsystems other than k th subsystem. An equivalent form 
of this is the superadditivity for general bipartite states

ρ ρ ρ≥ +I H I H I H( , ) ( , ) ( , ) (27)
f f f

12 12 1 1 2 2
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for any ρ12 and H12 with  = ⊗ + ⊗H H H12 1 2. The equivalence can be seen by observing that the former 
implies the latter by taking n = 2, and the latter imples the former by

∑

ρ ρ ρ

ρ ρ ρ

ρ

≥ +

≥ + +
…

≥

… … … …

… …

=

I H I H I H

I H I H I H

I H

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , )

f
n n

f f
n n

f f f
n n

k

n
f

k k

1 1 1 1 2 2

1 1 2 2 3 3

1

where we sequentially used (27) to obtain (26). Note that it also means that the violation of (26) implies the vio-
lation of (27).

Here, we employ an operational argument to show that for any choice of f, there exists n for which (26) is vio-
lated for some ρ …n1  and …H n1 . It automatically leads to the violation of (27) for any skew information. The idea is 
that one can construct a covariant operation which creates larger sum of the local asymmetry than the global 
asymmetry. For such a covariant operation, we consider the protocol proposed by Åberg68, and use it as a tool to 
prove the violation of the superadditivity (For this purpose, one can also consider other covariant operations46,69). 
Surprisingly, we also observe that the violation of the Wigner-Yanase skew information already occurs after two 
applications of Åberg’s protocol on the bipartite system. We finally prove a weaker version of superadditivity with 
a constant multiplied to one side of the inequality. We show that our inequality is optimal in terms of the multi-
plied constant where its optimality can be concisely shown by an operational argument. Our result proves the 
conjecture proposed in ref.54 as a special case.

Åberg’s protocol. We briefly review the protocol proposed by Åberg, which may implement an asymmet-
ric operation by applying a covariant operation over system and ancillary system with an asymmetric resource 
state68. The resource state in the ancillary system works as a ‘catalyst’ in the sense that the sequential use of the 
resource state does not decrease the accuracy of the implementation of the desired operation on the system.

Let S be a d-level system with the Hamiltonian = ∑ | 〉〈 |=
−H j j jS j

d
0
1  and A be an ancillary system with the 

Hamiltonian = ∑ | 〉〈 |∈H j j jA j . Suppose that we would like to implement some unitary U on S but only have 
access to global unitaries on SA that commutes with the total Hamiltonian  = ⊗ + ⊗H H Ht S A. Consider the 
following unitary V U( ) on SA,

∑= | 〉〈 | | 〉〈 | ⊗ Δ
=

−
−V U j j U k k( )

(28)j k

d
k j

, 0

1

where Δ = ∑ | + 〉〈 |∈ j j1j  is the operator that shifts the energy level in the ancillary system by one unit. It is easy 
to see that V U( ) commutes with the total Hamiltonian as required; =V U H[ ( ), ] 0t . Then, the quantum operation 
  applied on S is written by

ρ ρ σ= ⊗ †V U V U( ) Tr [ ( ) ( ) ] (29)A

∑ σ ρ= Δ | 〉〈 |.− + + − †U U j mTr[ ] ( )
(30)jklm

l m k j
jk kl lm

where = 〈 | | 〉O j O k:jk  for an operator O. Because of the commuting condition and that the partial trace is covari-
ant, the quantum operation   is also covariant. Noting that the ideal implementation of U gives ρ =†U U

ρ∑ | 〉〈 |†U U j m( )jklm jk kl lm , it can be seen that the accuracy of the implementation only depends on the values of 
σΔTr[ ]a  for = − − … −a d d2( 1), , 2( 1), and if σΔ ∼Tr( ) 1a  for this range of a, ρ ρ∼ †U U( ) . One good choice 

for σ is σ η η= | 〉〈 |l
M

l
M  where η = ∑ | + 〉=

− i ll
M

M i
M1

0
1  for some l and M. By taking M large,  ρ( ) converges to 

ρ †U U .
What is remarkable about this protocol is that it is perfectly repeatable in the sense that one can reuse the 

resource state again and again without degrading the quality of the implementation of U. This can be seen by 
considering the reduced state on the ancillary system A after one application of the protocol

σ ρ σ′ = ⊗ .†V U V UTr [ ( ) ( ) ] (31)S

It is straightforward to confirm that

σ σ′Δ = Δ ∀ .aTr[ ] Tr[ ], (32)a a

Since the effect of channel   is only determined by σΔTr( )a , ρ( )  remains the same although the reduced 
resource state gets changed. This perfect repeatability plays an important role in the following discussion.Note 
also that one could introduce a lower bound for the spectrum of HA above to ensure the existence of the ground 
energy while keeping the perfect repeatability of the protocol by constantly supplying sufficient energy into the 
ancillary system68. Since such energy supply does not bring any asymmetry into the system, the following argu-
ment on the violation of superadditivity still holds.
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Violation of superadditivity. Consider N two-level systems …S S, , N1  and infinite-dimensional ancillary 
system A with Hamiltonians = | 〉〈 |H 1 1Si

 and = ∑ | 〉〈 |∈H j j jA j , and the initial state of the form

ρ σ= | 〉〈 | ⊗⊗


0 0 (33)
N

A0

where σA is an asymmetric resource state on A. We choose this form for the sake of discussion, but the following 
argument can be easily extended to more general choice of systems and initial state. Imagine that we sequentially 
apply the Åberg’s unitary (28) on Sm and A at the mth step of the protocol. Let VS Am

 be the unitary applied over Sm 
and A, and define  ⋅ = ⋅ †V V( )m S A S Am m

, and =… −� ���k k k1 1 1    . Then, the reduced state on …S SN1  after N 
applications of the unitary is

ρ ρ ρ= =…  
Tr [ ( )] : ( ) (34)f S A N, 1 0 0V A

where we defined = …: TrA N1A V . An important observation is that because of the commutation relation 
=V U H[ ( ), ] 0t ,  is a covariant operation, i.e.

 ρ ρ=− − −e e e e( ) ( ) (35)iH t iH t iH t iH tt t S S

where

  ∑= ⊗ + ⊗ = ⊗ .⊗

=
H H H H H,

(36)
t S

n
A S

j

N

S S
1

j j

Since  is covariant, asymmetry of ρ
f S,  must be no larger than the asymmetry of ρ

0, and it holds true for any 
N one chooses. Let us now take If as an asymmetry monotone. Then, this observation leads to that 

ρ ρ≤
 

I I( ) ( )f
f S

f
, 0 . Furthermore, using the additivity of If for product states and the fact that | 〉〈 |0 0  is symmetric, we 

get ρ σ=


I I( ) ( )f f
A0 . It implies that if we start with the resource state σA with finite asymmetry (skew information), 

the asymmetry of the system is upper bounded by the initial asymmetry contained in σA. However, if we take U to 
be something that can create asymmetry, such as =

−( )U 1 1
1 1

1
2

, the reduced state of each subsystem gains 
non-zero asymmetry. Since the Åberg’s protocol is perfectly repeatable, one can take N large enough that the sum 
of local asymmetry exceeds the initial asymmetry. This argument shows the following theorem on the violation of 
the superadditivity.

Theorem 1. Any skew information If cannot be superadditive.

Proof. We explicitly construct the state violating the superadditivity by the above protocol. Consider the asymmet-
ric resource state σA with σI ( )f

A  being finite. Let ρ
0 be the initial state defined by (33) and ρ

f S,  be the final state 
obtained by (34). Then,

σ ρ ρ= ≥
 

I H I H I H( , ) ( , ) ( ( ), ) (37)
f

A A
f

t
f

S0 0

ρ=


I H( , ) (38)
f

f S S,

where in the first equality, we used the additivity of the skew information for product states, and in the inequality, 
we used the monotonic property of the skew information as an asymmetry measure under covariant operations. 
Suppose, to the contrary, superadditivity holds. Then we must have

∑ρ ρ≥
=

 
I H I H( , ) ( , )

(39)
f

f S S
k

N
f

f S S,
1

, k k

ρ=


NI H( , ) (40)
f

f S S, 1 1

where ρ ρ=
 

Tr [ ]f S S f S, ,k k
 is the reduced state on Sk. The equality is because ρ ρ=

 f S f S, ,i j
 for all i j,  due to the perfect 

repeatability of the Åberg’s protocol. However, since one can take U such that ρ >


I H( , ) 0f
f S S, 1

, N can be taken 
large enough so that ρ σ>


NI H I H( , ) ( , )f

f S S
f

A A, 1
, which is a contraction. Hence, If cannot be superadditive.

The above construction utilizes the fact that the Åberg’s protocol is perfectly repeatable, so we needed to con-
sider multipartite setting where N could be large. Interestingly, we find that application of the Åberg’s protocol on 
two qubits already shows the violation of the superadditivity for the Wigner-Yanase skew information. Here, we 
present a family of such bipartite states.

Let us set =
−( )U 1 1

1 1
1
2

 in (28) and σ η η= | 〉〈 |A M
l

M
l  where
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∑η| 〉 = | + 〉.
=

−

M
i l1

(41)M
l

i

M

0

1

for some M and l. Roughly, M specifies the amount of asymmetry in the ancillary system, and l refers to the ‘posi-
tion’ of the coherence in the spectrum. When =N 2, the total state after the protocol is

ψ η η η η| 〉 = | 〉| 〉 + | 〉| 〉 + | 〉| 〉 + | 〉| 〉 .
∼ − − −1

2
( 00 01 10 11 ) (42)M

l
M
l

M
l

M
l(2) 1 1 2

Taking the partial trace over A,

ρ ψ ψ

α α α
α α
α α
α α α

= | 〉〈 |

=













∼ ∼


Tr

1
4

1
1 1
1 1

1 (43)

S S A
(2) (2)

1 1 2

1 1

1 1

2 1 1

1 2

where α η η= 〈 | 〉 =− −
i M

l i
M
l M i

M
. It gives

ρ ρ

α

α= =













 

1
2

1
2

2
1

(44)
S S

1

11 2

Note that σi only depends on M. Figure 1 shows the relation between M and the degree of superadditivity 
ρ ρ ρΔ = − +
  

I I H I H I H( , ) ( ( , ) ( , ))WY WY
S S

WY
S S

WY
S S12 1 2 1 1 2 2

. It can be seen that the superadditivity is violated for 
all ≥M 2.

One can also see that the maximum violation occurs at =M 4, which gives α =1
3
4
, α =2

1
2

, and approaches 
0 as M increases. This asymptotic behavior is expected because at the limit of → ∞M , the implementation of U 
on each subsystem becomes perfect, and it brings ρ → | + 〉| + 〉

S S1 2
. Since the skew information is additive for 

product state, Δ →I 0WY  in this limit. It would be interesting to look into what contributes to the large violation; 
we leave the thorough analysis for future work.

Weak superadditivity. Although the superadditivity does not hold in general, one can still ask whether 
some weaker version of superadditivity holds. It has been shown that the following weak superadditivity for the 
Wigner-Yanase skew information holds54:

ρ ρ ρ≥ +I H I H I H( , ) 1
2

( ( , ) ( , )) (45)
WY WY WY

12 12 1 1 2 2

where  = ⊗ + ⊗H H H12 1 2. They also conjectured that the factor 1
2

 is optimal in the sense that the largest 
constant β such that

ρ β ρ ρ≥ +I H I H I H( , ) ( ( , ) ( , )) (46)
WY WY WY

12 12 1 1 2 2

holds for any ρ12 and H12 is 1
2

.

Figure 1. Relation between M and ΔIWY  = ρ


I H( , )WY
S S S S1 2 1 2

 − ρ


I H( ( , )WY
S S1 1

 + ρ


I H( , ))WY
S S2 2

. Each data 
point corresponds to ΔIWY for ∈M , ≥M 1.
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The following theorem further extends (45) to general skew informations defined on any number of subsys-
tems and identifies the optimal constant associated with it. The above conjecture is shown to be true as a special 
case of this result. We find that a similar resource-theoretic approach again provides a concise operational proof.

Theorem 2. For any ρ …k1  and = ∑ ⊗…H Hk j j j12 ,

∑ρ ρ≥… …
=

I H
k

I H( , ) 1 ( , )
(47)

f
k k

j

k
f

j j1 12
1

holds. Moreover, 
k
1  is the maximum constant for β(k) such that

∑ρ β ρ≥… …
=

I H k I H( , ) ( ) ( , )
(48)

f
k k

j

k
f

j j1 12
1

holds for any ρ …k1  and …H k12 .

Proof. Since partial trace is a covariant operation, monotonicity of the skew information under covariant opera-
tions implies

ρ ρ∀ ≥ .… …i I H I H, ( , ) ( , ) (49)
f

k k
f

i i1 12

By summing over i and dividing both sides by k, we obtain

∑ρ ρ≥ .… …
=

I H
k

I H( , ) 1 ( , )
(50)

f
k k

j

k
f

j j1 12
1

We next show that the factor 1/k is optimal for any k. Suppose there exists β′ >
k
1  such that

∑ρ β ρ≥ ′… …
=

I H I H( , ) ( , )
(51)

f
k k

j

k
f

j j1 12
1

holds for any ρ …k1  and …H k12  for some k. Let =N kn for some positive integer n, and ρ …N1  and …H N12  be state 
and Hamiltonian defined on the N subsystems. We call these N subsystems unit subsystems. Since (51) should 
hold for any choice of state and Hamiltonian, we apply it to k subsystems each of which consists of −kn 1 unit sub-
systems, which gives

∑ρ β ρ≥ ′… …
=

… …− −I H I H( , ) ( , )
(52)

f
N N

j

k
f

k
j

k
j

1 12
1

1 1n n1 1

where ρ
… −k
j

1 n 1 and 
… −H

k
j

1 n 1 denote the reduced state and Hamiltonian defined on the jth larger subsystem. We 
keep applying (51) by dividing each subsystem into k equal-sized subsystems until it reaches the unit subsystem. 

=n Nlogk  levels of division completes the task, and we end up with

∑ρ β ρ≥ ′… …
=

I H I H( , ) ( ) ( , )
(53)

f
N N

n

j

N
f

j j1 12
1

∑ ρ=






 .

β′

=N
I H1 ( , )

(54)j

N
f

j j

log (1/ )

1

k

Note that β′ <log (1/ ) 1k  due to the assumption that β′ > k1/ . It implies that if the left hand side is finite value 
that does not depend on N, the sum of local asymmetry on the right hand side must grow sublinearly with N 
because otherwise one could take sufficiently large N that violates the inequality. However, there exists a covariant 
operation that constructs a state with ρ∑ ∝= I H N( , )j

N f
j j1  while ρ =… …I H( , ) (1)f

S N N121
  for any N. Åberg’s 

protocol is such an example since all the smallest subsystems have the identical marginal states because of the 
perfect repeatability while the final global asymmetry is finite because of the monotonicity of the skew informa-
tions and that the whole protocol is a covariant operation. This is a contradiction, and hence we must have 
β ≤k k( ) 1/ . The equality is achieved due to (50).

Distributed quantum clocks. Theorem 1 and 2 provide an interesting implication for the situation where 
quantum clocks are distributed to multiple parties. Suppose that k parties …A A A, , , k1 2  share some number of 
copies of state ρ …k1  while each party only has access to their reduced state and does not know the description of 
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the global state ρ …k1 . Assume also that they share a limited amount of entanglement among each other, which 
only enables them to send a limited number of qubits by quantum teleportation although they can freely make 
classical communication. This is a situation relevant to the setups such as quantum network and distributed quan-
tum computation70,71.

From the perspective that the skew informations are asymmetry monotones, it is natural to see that they serve 
as resources for metrological tasks30. In particular, when the conserved quantity is the Hamiltonian, the skew 
informations may be seen as relevant quantifiers for usefulness as quantum clocks72. Suppose that A1 desires to 
possess a quantum clock with the amount of skew information ρ>I I H( , )f f

th 1 1 . In such a situation, A1 could ask 
the other parties to send their states via quantum teleportation, but A1 would like to make sure that it will be 
indeed possible to achieve the desired level of asymmetry by doing so because otherwise the precious entangle-
ment will be wasted. To this end, suppose A1 asks the other parties to measure the skew information of their own 
reduced state (by, for instance, a method provided by ref.64) and report it back by classical communication. A1 
then tries to infer the total skew information she would obtain ρ … …I H( , )f

k k1 1, ,  by reported values 
ρ = …I H j k( , ), 2, ,f j j .
Theorem 1 warns A1 not to make a naive decision in which she asks the other parties to send their states when 

ρ∑ ≥= I H I( , )j
k f

j j
f

1 th because it may be the case that ρ …k1  significantly violates the superadditivity relation with 
ρ <… …I H I( , )f

k k
f

1 1, , th. On the other hand, Theorem 2 ensures that if A1 asks the other parties to send their states 
only when ρ∑ ≥= I H I( , )

k j
k f

j j
f1

1 th, she will certainly obtain the enough amount of asymmetry. Moreover, it is the 
best possible she can do because 1/k is the maximum constant to ensure that ρ ≥… …I H I( , )f

k k
f

1 1, , th holds as 
shown in Theorem 2.

conclusions
We analyzed properties of the general family of skew informations from operational perspectives in the context 
of resource theory of asymmetry. We showed that such operational approach may give clearer physical mean-
ings as well as simpler proofs of some of the properties of the skew informations. We proved the violation of 
superadditivity for general family of skew informations by constructing a covariant operation that creates a state 
violating the superadditivity. Our proof has high contrast to the previous numerical-based approaches in that 
it can be applicable to general family of skew informations and also suggests a way of constructing the states 
showing the violation. We observed that it is indeed a good “violation producer” by looking at the bipartite states 
produced by the protocol, which allowed us to provide a familiy of bipartite states violating the superadditivity of 
the Wigner-Yanase skew information. We also showed a weak superadditivity relation and proved the optimality 
of the inequality by an operational approach, which encompasses the previously postulated conjecture as a spe-
cial case. We finally discussed an application of the violation of superadditivity and weak superadditivity relation 
proved in this work to a situation where quantum clocks are distributed to multiple parties, providing the optimal 
strategy for a single party to ensure that the enough amount of asymmetry will be obtained after costly quantum 
communications.

It would be interesting to push this approach further and give clearer picture of what kind of property of states 
contributes to the violation of superadditivity since it would ultimately give insights into the genuine quantum 
nature of the quantum state in a system with conserved quantity. Our results indicate much potential of analyzing 
information-theoretic quantities from operational perspectives, and resource theories appear to be useful tools 
for that purpose. It would thus be intriguing to extend the analysis to a broader class of the quantities beyond the 
skew informations as well.

— Note added. Recently, we became aware of an independent related work by I. Marvian and R. W. Spekkens 
where they showed that no faithful asymmetry monotones can be subadditive or superadditive69.
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