
Abstract
Given a topology of clock tree and a library of buffers,

we propose an efficient skew sensitivity minimization
algorithm using dynamic programming approach. Our
algorithm finds the optimum buffer sizes, its insertion levels
in the clock tree, and optimum wire widths to minimize the
skew sensitivity under manufacturing variations. Careful
fine tuning by shifting buffer locations at the last stage
preserves the minimum skew sensitivity property and reduce
the interconnect length. For a given clock tree of n points
and a library of s different buffer sizes, the run time of the
presented algorithm is O(log3n⋅ s2).

Experimental results show a significant reduction of
clock skews ranging from 87 times to 144 times compared
to the clock skews before applying the proposed algorithm.
We also observe a further reduction of the propagation
delay of clock signals as a result of applying the proposed
skew sensitivity algorithm.

1 Introduction
The increase in complexity of synchronous ASICs has

made the clock signal distribution a considerable limiting
factor of overall performance. Clock skew contributes
about 10% of clock rate in recent ASICs[1]. This number
will increase as ASIC technology advances. Controlling
clock signal becomes harder as circuits get faster, chips
become larger, and minimum feature size is scaled down.
Because variations in the parameters of clock buffers,
interconnection parameter variations, and capacitive
loading variations contribute to clock skew, these
parameters must be considered in calculating the minimum
effective clock skew. If these manufacturing variations are
not considered, zero skew in theory results in a
considerable skew in practice and thus affects the cycle
time of the system.

A number of research has been done to minimize clock
skew and delay. H-tree[1], MMM[6], and KCR[8] reduce
and balance wire length.

Tsay[11] devised a zero-skew merging scheme using
Elmore delay model. Chao et al.[3] proposed a two-phase
algorithm which enhanced Tsay’s work. DME[2] builds the
clock tree in a bottom up fashion.

Recently Pullela[8] proposed to insert buffers by using

exhaustive search. We propose an optimal buffering
mechanism using dynamic programming approach which
drastically reduce the complexity of the operation. The
method can reduce the total propagation delay significantly
while preserving the zero-skew property. For a given clock
tree ofn points and a library ofs different buffer sizes, the
run time of the presented algorithm isO(log3n⋅ s2). The
remainder of the paper is organized as follows. We
formulate the zero-skew buffering problem in the next
section. Then we describe the optimal buffer synthesis
algorithm. The last section contains our experimental
results and comparison with previous works.

2 Problem Formulation
There are a number of circuit parameters that have

effects on the clock skew. Some can be controlled by
designers and some are under little designer control.
Parameters such as process, voltage, and temperature vary
due to the fluctuations of the manufacturing process. We
assume that wire width and buffer size are parameters
designers can control.

Given wire width,w, and buffer size, v, as control
parameters, we define the skew sensitivity,SS, as the
maximum difference between skews under varying values
of w and v due to process variations. Hence the goal of
skew sensitivity minimization is to find the optimumw and
v that achieve minimumSS. Intuitively, simply increasingw
and v seem to reduce the skew sensitivity. It is true to a
certain point and the skew sensitivity decreases with larger
w and b. However as the absolute value of propagation
delay increases with largerw andv, their differences also
increase and result in larger skews.

We assume the same size buffer on the same level of a
tree. Also proposed algorithm searches finite number of
sizes of buffers available in the given library. Thus we fix
parameters of a minimum size buffer and assume an integer
multiples of minimum buffer sizes. We start the algorithm
from the given topology. This topology is generated by
SASPO[4] algorithm, which is known to generate an
efficient topology.

Based on above assumptions, we can formulate the skew
sensitivity minimization (SSM) problem formally as
follows.

Skew Sensitivity Minimization of Buffered Clock Tree

Jae Chung and Chung-Kuan Cheng

Department of Computer Science and Engineering
University of California at San Diego; La Jolla, CA 92093-0114

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0280 $3.50

Problem SSM: Given a clock treeT(E,V) with n leaf
nodes and a library of buffers withs different size buffers,
find an optimum level of buffers with proper sizes and wire
widths that minimizes skew sensitivity.

3 Skew sensitivity minimization

3.1 Wire width variance
We can derive an equation of propagation delay as a function
of wire width. In Figure 1 we calculate the propagation delay
between two pointsS andL. The clock driver is driven by a
source resistance ofRs and the load has capacitanceCL. The
wire between two points have resistance value ofrw andcw
and modeled byπ equivalent circuit.

Figure 1. Wire width optimization

Let w be the width andl be the length of the wire section
betweenS andL. Also letkr, kc, andkf be the resistance
coefficient, capacitance coefficient, and fringe capacitance
coefficient respectively. Then the wiring capacitance and
resistance is given ascw=(kc⋅w +kf)⋅l and rw=kr ⋅l /w
respectively. Equation (1) is the delay formula as a function
of width and length of the interconnect wire sectionS and
L. By setting t/ w equal to zero we get equation (2),
which gives us the optimum wire width for delay sensitivity
under wire width variation.

(1)

(2)

Observation of equation (2) indicates that the optimum
wire width is a function of input resistance and load
capacitance along withkr andkc, and does not depend on
the length of the wire section between the source and load if
kf=0. Also according to equation (2), because load
capacitance is large at the higher level of the clock tree,
wire widths at the top level is wider and becomes narrower
as the level goes down the clock tree. This is desirable since
clock skew is greatly affected by the width variation at the
top level.

Rs

CL

wire

rw

cw/2

S L

cw/2

∂ ∂

t Rs kc w l kf l⋅ CL+ +⋅ ⋅()
kr

w
l

kc w l kf l⋅+⋅ ⋅
2

CL+()⋅+=

w
kr CL kf l 2⁄⋅+()⋅

kc Rs⋅
=

3.2 Buffer size variance
Wire width is not the only parameters in manufacturing
variations. Buffer variance must also be considered to
reflect true manufacturing variations. In general, the value
of buffer length is the minimum achievable and the absolute
value of CMOS buffer size can vary by 10% to 20% of
minimum width. Thus, we add 15% to each buffer width in
one path from the root and subtract 15% to each buffer
width in another path from the root. This gives us the worst
case simulation of the buffer width variation during
manufacturing process.

To analyze the effect of the buffer size on delay, the input
capacitance and output resistance are represented in terms
of buffer sizev1 for buffer 1 andv2 for buffer 2.

Figure 2. Buffered clock model

The propagation delay from buffer 1 to latch in Figure 2
is given by equation (3). Total delayt is divided into
delay(l1,v1, l 2,v2) in (4) anddelay(l2,v2) in (5) .
delay(l1,v1,l2,v2) represents a delay frombuffer 1 to buffer 2
anddelay(l2,v2) represents a delay belowbuffer 2, which is
shown to be independent of the size ofbuffer 1 (v1) in (5).

(3)

(4)

(5)

4 Skew sensitivity minimization algorithm
In the skew sensitivity minimization (SSM) algorithm,

we maintain a matrixB[b,l,s], which represents the
minimum skew withb buffer levels, the highest buffer
locating at levell and buffer sizes. The algorithm inputs the
clock topology from the given circuit.BufferInsert() is the
main function which inserts buffers of optimum sizes to
minimize the clock skew sensitivity. After the completion
of BufferInsert(), the content of lookup tableB[b,l,s] will be
complete and we can retrieve all the buffer parameters
which yield the minimum skew sensitivity. As a last step,
fine tuning byBufferReposition() repositions buffers (see
section 4.3) to minimize wire length while maintaining the
minimum skew property.

BufferInsert() calls ConstructTable(b,l,s) to build the

buffer1 buffer2 latch

wire 1 wire 2

rs1/v1 tb

CLv2cb

rs2/v2

wire 1 wire 2buffer2

r1

c1

r2

/2c1/2 c2/2c2/2

t rs1 v1⁄() c1 v+
2
cb() r1 c1 2⁄ v2c

b
+() +⋅+=

tb rs2 v2⁄() c2 CL+() r2 c2 2⁄ CL+()⋅+ +

delay l1 v1 l2 v2, , ,() rs1 v1⁄() c1 v+
2
cb() r1 c1 2⁄ v2c

b
+()+=

delay l2 v2,() tb rs2 v2⁄() c2 CL+() r2 c2 2⁄ CL+()⋅+ +=

lookup tableB[b,l,s] for all b, l, ands. For each iteration,
the algorithm reads the lookup table and finds a
combination of buffer location and buffer size that yields
the smallest skews. The searching can be written as:

(6),

where MinSkew() calculates the skew sensitivity (SS) from
level l to levell’ . To computeB[b, l, s] we need to know the
values of MinSkew(l,s,l’,s’) and B[b-1,l’,s’]. While
calculating the partialSS, the algorithm performs the
WireSizing() for optimum wire size between level l and
level l’ as outlined in section 3.MinSkew() then selects two
paths in the clock tree and returns the calculated partialSS
from level l to levell’ . Two pathspath 1 andpath 2 are set
by varying uniform wire widths bywδ and by varying fixed
buffer size by sδ on two different paths in the given clock
tree.

Algorithm SSM
ClockTree = ReadTopology();
BufferInsert(ClockTree, BufferLibrary);
Select the best result;
BufferReposition(ClockTree);
print minimum delay, buffer levels, andbuffer sizes;

Procedure BufferInsert(ClockTree, BufferLibrary)
for b := 1 to maxbuffer do

for l := 1 tomaxlevel do
for s := 1 tomaxsize do

B[b, l, s] = ConstructTable(b, l, s);
return B[b, l, s];

Procedure ConstructTable(b, l, s)
for l’ := 1 tol-1 do

for s’ := 1 tos do
SS= min[MinSkew(l, s, l’, s’) + B[b-1, l’, s’]];
keep minimum SSresult;

return SS;

Procedure MinSkew(l, s, l’, s’)
inset buffer atl with sizes;
insert buffers atl’ with sizes’;
WireSize(l, l’);
call SetPath(l, l’) to setpath 1 andpath 2;
partial SS= CalcSkew(path1, path2, l, l’);
return partial SS;

4.1 Run time analysis
The run time of our optimum buffer synthesis algorithm

is dominated by for loops. Since there are two loops for
number of buffers and levels in procedure Buffer, it takes
O(log2n) time. Two loops for different buffer sizes require

B b l s, ,[] min MinSkew l s l' s', , ,() B b 1− l ' s', ,[]+[]=

O(s2). And wire sizing operation requiresO(logn) time.
Together, the total run time is O(log3n ⋅ s2).

We now show that the complexity of an exhaustive
approach is computationally expensive. Sincen is the
number of leaf nodes,logn is the number of levels in
T(E,V). Trying all different buffer sizes, including no
buffer, for each level requires O((s+1)logn) time. This can
be rewritten as O(nlog(s+1)), and this is a polynomial time
complexity with high exponent. For example whenlogn=12
and the assumed value ofs=10, the ratio of run time of an
exhaustive approach and our proposed dynamic
programming based algorithm is 1.8 ⋅107.

4.2 Optimality of SSM
In general to be able to use dynamic programming

algorithm, the problem must satisfy two properties [5].
i) optimal substructure, an optimal solution to the problem
contains within it optimal solutions to subproblems.
ii)overlapping subproblems, recursive or exhaustive
algorithm will visit the same problem many times.

Lemma 1 SSM has theoptimal substructure property.
In Figure 2, lettsl denote the delay from the clock source to
latch. Similarlytsb is the delay from the source to the buffer
andtbl is the delay from the buffer to latch. We knowtsl =
tsb + tbl. Due to theisolation property of the buffer, size and
location of the buffer which yields minimumtbl remains
same regardless of the selection of the buffer at the higher
level. After inserting a buffer between wire1 and wire2, the
delay tsb effectively becomes isolated by the buffer input
capacitance,Cb.

Lemma 2 SSM has theoverlapping subproblems property.
As shown in section 4.1, an exhaustive method requires an
exponential run time when we consider clock tree level as
an input. According to the recurrence relation in equation
(6), to computeB[b,l,s], we only need to knowB[b-1, l, s]
andMinSkew(l, s, l’, s’).

As a consequence ofLemma 1 andLemma 2, we can state
the following theorem.
Theorem Dynamic programming algorithm to the SSM
problem achieves an optimal solution.

4.3 Buffer repositioning
During the merging stage, often times an excessive

detouring is required to maintain minimum skew
sensitivity. To avoid an excessive detouring, we adjust the
location of buffers along its routing path.

In Figure 3,ti is the delay of subtree i and ci is the
capacitance of subtreei. The delay after the buffer is added
is calculated based on a formula which takes into account of
the buffer input capacitance.

Figure 3. Buffer repositioning

For example, delays seen at point 3 in Figure 3 is given by,
(7)

(8),

+ (tb1 + t1)

wheretleft is the delay from p3 to p2 andtright is the delay
from p3 to p1. In equation (8) we can observe thatr1 ⋅ Cp1 is
a new term by shifting buffer1 from its original position p1
to left. By putting equations (7) and (8) equal, we solve the
tapping point without introducing excessive detouring of
wires.

5 Experimental results
Proposed algorithm, skew sensitivity minimization

(SSM), is implemented and tested on five benchmark
circuits. The buffer parameters are derived from [10] and
based on the 0.5 micron CMOS technology. The output
resistance is 3170Ω, input capacitance is 10fF, and the
buffer internal delay is 35.5 ps for 1X buffer. We assume up
to 10 different buffers are available in the library
(s=10).Buffer parameters used in Pullela [8] were not
available [9] and we could not compare with SSM. Table 1
compares the skew values under various conditions.

Table 1: Skew sensitivity comparison.

The values in the second column, skew before SSM, are
measured by varying uniform wire widths bywδ and by
varying fixed buffer size by sδ on two different paths. We
used a value ofwδ to be 15% of the unit wire width and sδ
to be 15% of the unit buffer size to simulate the worst case

benchmarks

(# of pins)
Skew before
SSM (sec)

Skew after
SSM (sec) Ratio

r1 (267) 5.98⋅10-11 5.47⋅10-13 109.32
r2 (598) 9.71⋅10-11 9.91⋅10-13 97.98
r3 (862) 1.60⋅10-10 1.72⋅10-12 93.02
r4 (1903) 2.28⋅10-10 2.60⋅10-12 87.69
r5 (3101) 1.75⋅10-9 1.21⋅10-11 144.63

t12

t11

t22

t21

c11

c12

c21

c21

buffer1buffer2
p2 p1

p3

l2 l1l3

t1t2

cp1cp2

buffer2

p2 p1tb2

cb2

rb2 tb1

cb1

rb1r2 r3 r1p3
buffer1

tleft r2 c2 2⁄ cb2+() rb2 Cp2 tb2 t2+()+⋅+=

tright r3 c3 2⁄ Cb1+() r1 c1 2⁄ Cp1+() rb1 c1 Cp1+()+ +=

manufacturing variations. The third column values are
measured by the same manufacturing variation simulation
after applying an SSM algorithm. Compared to the second
column, the skew drops from 87 times (r4 circuit) to 144
times (r5 circuit).

Table 2: Propagation delay comparison.

Table 2 lists the propagation delays from SASPO [4] and
SSM. Compared to SASPO[4], which does not insert any
buffers, we see a dramatic reduction of propagation delay
for all test cases. This version of SASPO aims at reducing
delays and for a fair comparison, we assumed the same
technology parameters. Over 11 times of reduction is
reported inr4 and r5 test cases. It is obvious that the
proposed skew sensitivity minimization algorithm not only
helps reduce the skew sensitivity, but also greatly reduces
the propagation delay.

 References
[1] H. Bakoglu, Circuits, Interconnections and Packaging

for VLSI. Addison-Wesley, 1990.
[2] K. D. Boese and A. B. Kahng, “Zero-Skew Clock

Routing Trees with Minimum Wire-length,” Proc. 5th
IEEE Intl. Conf on ASIC, NY, pp. 17 - 21, 1992.

[3] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, “Zero-Skew Clock Net
Routing,” Proc. 29th ACM/IEEE Design Automation
Conf., pp. 518-523, 1992.

[4] N.-C. Chou, C.-K. Cheng, “Wire Length and Delay
Minimization in General Clock Net Routing,” Proc.
IEEE Intl. Conf. on Computer-Aided Design, pp. 552-
555, 1993.

[5] T. Cormen, C. Leiserson, and R. Rivest, Introduction to
Algorithms. MIT Press, 1990.

[6] M. A. B. Jackson, A. Srinivan, and E. S. Kuh. “Clock
Routing for high performance ics.” Proc. Design
Automation Conferences, pp. 573-579, 1990

[7] A. Kahng, J. Cong, G. Robins. “High-Performance
Clock Routing Based on Recursive Geometric
Matching,” Proceedings of Design Automation
Conferences, pp. 322-327, 1991

[8] S. Pullela, N. Menezes, J. Omar, L. Pillage, “Skew and
Delay Optimization for Reliable Buffered Clock Trees”,
Proc. IEEE Intl. Conf. on Computer-Aided Design, pp.
556-562, 1993.

[9] S. Pullela, L. Pillage, Personal communication.
[10] T. Sakurai, “A Unified Theory for Mixed CMOS/

BiCMOS Buffer Optimization,” IEEE Journal of Solid-
State Circuits, vol. 27, no. 7, July 1992.

[11] R.-S. Tsay, “Exact Zero Skew,” Proc. IEEE Intl. Conf.
on Computer Aided Design, pp. 336-339, 1991.

benchmarks
(# of pins)

SASPO
(ns)

SSM
(ns)

ratio
over SASPO

r1 (267) 1.119 0.481 2.3
r2 (598) 3.807 0.667 5.7
r3 (862) 3.861 0.685 5.6
r4 (1903) 11.934 1.042 11.5
r5 (3101) 18.457 1.593 11.6

