Skew Spectra of Oriented Graphs

Bryan Shader
Department of Mathematics
University of Wyoming, Laramie, WY 82071-3036, USA
email: bshader@uwyo.edu
Wasin So
Department of Mathematics
San Jose State University, San Jose, CA 95192-0103, USA
email: so@math.sjsu.edu

Submitted: Jul 20, 2009; Accepted: Nov 5, 2009; Published: Nov 13, 2009
Mathematics Subject Classification: 05C50

Abstract

An oriented graph G^{σ} is a simple undirected graph G with an orientation σ, which assigns to each edge a direction so that G^{σ} becomes a directed graph. G is called the underlying graph of G^{σ}, and we denote by $\operatorname{Sp}(G)$ the adjacency spectrum of G. Skew-adjacency matrix $S\left(G^{\sigma}\right)$ of G^{σ} is introduced, and its spectrum $S p_{S}\left(G^{\sigma}\right)$ is called the skew-spectrum of G^{σ}. The relationship between $S p_{S}\left(G^{\sigma}\right)$ and $S p(G)$ is studied. In particular, we prove that (i) $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$ for some orientation σ if and only if G is bipartite, (ii) $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$ for any orientation σ if and only if G is a forest, where $\mathbf{i}=\sqrt{-1}$.

1 Introduction

Let G be a simple graph. With respect to a labeling, the adjacency matrix $A(G)$ is the symmetric matrix $\left[a_{i j}\right]$ where $a_{i j}=a_{j i}=1$ if $\{i, j\}$ is an edge of G, otherwise $a_{i j}=a_{j i}=0$. The spectrum $S p(G)$ of G is defined as the spectrum of $A(G)$. Note that the definition is well defined because symmetric matrices with respect to different labelings are permutationally similar, and so have same spectra. Also note that $S p(G)$ consists of only real eigenvalues because $A(G)$ is real symmetric.

Example 1.1. Consider the path graph P_{4} on 4 vertices. With respect to two different
labelings, $A\left(P_{4}\right)$ takes the form

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

And the spectrum $S p\left(P_{4}\right)$ is $\left\{ \pm \frac{\sqrt{5}+1}{2}, \pm \frac{\sqrt{5}-1}{2}\right\}$.
Example 1.2. Consider the star graph $S T_{5}$ on 5 vertices. With respect to two different labelings, $A\left(S T_{5}\right)$ takes the form

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \text { or }\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

And the spectrum $S p\left(S T_{5}\right)$ is $\left\{-2,0^{(3)}, 2\right\}$.
Example 1.3. Consider the cycle graph C_{4} on 4 vertices. With respect to two different labelings, $A\left(C_{4}\right)$ takes the form

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] .
$$

And the spectrum $S p\left(C_{4}\right)$ is $\left\{-2,0^{(2)}, 2\right\}$.
Let G^{σ} be a simple graph with an orientation σ, which assigns to each edge a direction so that G^{σ} becomes a directed graph. With respect to a labeling, the skew-adjacency matrix $S\left(G^{\sigma}\right)$ is the real skew symmetric matrix $\left[s_{i j}\right]$ where $s_{i j}=1$ and $s_{j i}=-1$ if $i \rightarrow j$ is an arc of G^{σ}, otherwise $s_{i j}=s_{j i}=0$. The skew spectrum $S p_{S}\left(G^{\sigma}\right)$ of G^{σ} is defined as the spectrum of $S\left(G^{\sigma}\right)$. Note that the definition is well defined because real skew symmetric matrices with respect to different labelings are permutationally similar, and so have same spectra. Also note that $S p_{S}\left(G^{\sigma}\right)$ consists of only purely imaginary eigenvalues because $S\left(G^{\sigma}\right)$ is real skew symmetric.

Example 1.4. Consider the directed path graph P_{4}^{σ} on 4 vertices. With respect to two different labelings, $S\left(P_{4}^{\sigma}\right)$ takes the form

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right] \text { or }\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] .
$$

And the skew spectrum $S p_{S}\left(P_{4}^{\sigma}\right)$ is $\left\{ \pm \frac{\sqrt{5}+1}{2} \mathbf{i}, \pm \frac{\sqrt{5}-1}{2} \mathbf{i}\right\}$.

Example 1.5. Consider the oriented star graph $S T_{5}^{\sigma}$ on 5 vertices with the center as a sink. With respect to two different labelings, $S\left(S T_{5}^{\sigma}\right)$ takes the form

$$
\left[\begin{array}{ccccc}
0 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
-1 & -1 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

And the skew spectrum $S p_{S}\left(S T_{5}^{\sigma}\right)$ is $\left\{-2 \mathbf{i}, 0^{(3)}, 2 \mathbf{i}\right\}$.
Example 1.6. Consider two different orientations on the cycle graph C_{4} (with the same labeling) such that their skew adjacency matrices are:

$$
S\left(C_{4}^{\sigma_{1}}\right)=\left[\begin{array}{cccc}
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & -1 & 0
\end{array}\right], \quad S\left(C_{4}^{\sigma_{2}}\right)=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0
\end{array}\right]
$$

respectively. And the skew spectra are

$$
S p_{S}\left(C_{4}^{\sigma_{1}}\right)=\left\{-2 \mathbf{i}, 0^{(2)}, 2 \mathbf{i}\right\}, \quad S p_{S}\left(C_{4}^{\sigma_{2}}\right)=\left\{-\sqrt{2} \mathbf{i}^{(2)}, \sqrt{2} \mathbf{i}^{(2)}\right\}
$$

respectively.
Examples 1.1, 1.2, 1.4, and 1.5 suggest that $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$. Indeed, it is proved in [1] that $S p_{S}\left(T^{\sigma}\right)=\mathbf{i} S p(T)$ for any tree T and any orientation σ. However Examples 1.3 and 1.6 show that it is not true in general because $S p_{S}\left(C_{4}^{\sigma_{1}}\right) \neq S p_{S}\left(C_{4}^{\sigma_{2}}\right) \neq \mathbf{i} S p\left(C_{4}\right)$, even though $S p_{S}\left(C_{4}^{\sigma_{1}}\right)=\mathbf{i} S p\left(C_{4}\right)$. The goal of this short note is to show that trees are the only connected graphs with such property.

2 Main Results

Throughout this section, notation and terminology are as in [3]. First we need a lemma which is an extension of Theorem 7.3.7 in [3].
Lemma 2.1. Let $A=\left[\begin{array}{cc}0 & X \\ X^{T} & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & X \\ -X^{T} & 0\end{array}\right]$ be two real matrices. Then $S p(B)=\mathbf{i} S p(A)$.

Proof. W.L.O.G. let X be $m \times n(m \leqslant n)$ with the singular value decomposition $X=$ $P \Sigma Q^{T}$ where P and Q are orthogonal matrices, and Σ is diagonal. Then

$$
A=\left[\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right]\left[\begin{array}{cc}
0 & \Sigma \\
\Sigma^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
P^{T} & 0 \\
0 & Q^{T}
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right]\left[\begin{array}{cc}
0 & \Sigma \\
-\Sigma^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
P^{T} & 0 \\
0 & Q^{T}
\end{array}\right] .
$$

Write $\Sigma=\operatorname{Diag}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, and so $S p(A)=\left\{ \pm a_{1}, \ldots, \pm a_{m}, 0^{(n-m)}\right\}, S p(B)=$ $\left\{ \pm a_{1} \mathbf{i}, \ldots, \pm a_{m} \mathbf{i}, 0^{(n-m)}\right\}$. Consequently, $S p(B)=\mathbf{i} S p(A)$.

Theorem 2.2. G is a bipartite graph if and only if there is an orientation σ such that $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$.

Proof. (Necessity) If G is bipartite, then there is a labeling such that the adjacency matrix of G is of the form

$$
A(G)=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

Let σ be the orientation such that the skew-adjacency matrix of G^{σ} is of the form

$$
S\left(G^{\sigma}\right)=\left[\begin{array}{cc}
0 & X \\
-X^{T} & 0
\end{array}\right] .
$$

By Lemma 2.1, $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$.
(Sufficiency) Suppose that $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$ for some orientation σ. Since $S\left(G^{\sigma}\right)$ is a real skew symmetric matrix, $S p_{S}\left(G^{\sigma}\right)$ has only pure imaginary eigenvalues and so is symmetric about the real axis. Then $S p(G)=-\mathbf{i} S p_{S}\left(G^{\sigma}\right)$ is symmetric about the imaginary axis. Hence G is bipartite, see Theorem 3.11 in [2].

Let $|X|$ denote the matrix whose entries are the absolute values of the corresponding entries in X. For real matrices X and $Y, X \leqslant Y$ means that $Y-X$ has nonnegative entries. $\rho(X)$ denotes the spectral radius of a square matrix X. The next lemma is a special case of Theorem 8.4.5 in [3]. We provide here a shorter proof.

Lemma 2.3. Let A be an irreducible nonnegative matrix and B be a real positive semidefinite matrix such that $|B| \leqslant A$ (entry-wise) and $\rho(A)=\rho(B)$. Then $A=D B D$ for some real matrix D such that $|D|=I$, the identity matrix.

Proof. Since B is real positive semi-definite, there exists a real vector x such that $B x=$ $\rho(B) x$. Write $x=D|x|$ for some real matrix D such that $|D|=I$. Moreover, $D B D \leqslant|B| \leqslant A$ and $\rho(D B D)=\rho(B)$. Since A is irreducible nonnegative, so is A^{T}. By Perron-Frobenius theory [3], there is a positive vector y such that $A^{T} y=$ $\rho\left(A^{T}\right) y$, and so $y^{T} A=\rho\left(A^{T}\right) y^{T}=\rho(A) y$. Now we have $y^{T}(A-D B D)|x|=$ $y^{T} A|x|-y^{T} D B D|x|=\rho(A) y^{T}|x|-y^{T} D B x=\rho(A) y^{T}|x|-y^{T} D \rho(B) x=\rho(A) y^{T}|x|-$ $y^{T} \rho(B)|x|=0$ because $\rho(A)=\rho(B)$. Consequently, $A|x|=D B D|x|$ because $A-D B D \geqslant 0$ and $|x| \geqslant 0$. It follows that $A|x|=D B D|x|=\rho(B)|x|=\rho(A)|x|$, which means that $|x|$ is a multiple of the Perron vector of A. In particular, $|x|>0$. Finally we have $A=D B D$ because of $A|x|=D B D|x|$ and $A \geqslant D B D$.

Theorem 2.4. Let $X=\left[\begin{array}{ll}C & * \\ * & *\end{array}\right]$ be a $(0,1)$-matrix where C is a $k \times k(k \geqslant 2)$ circulant matrix with the first row as $[1,0, \ldots, 0,1]$. Let Y be obtained from X by changing the $(1,1)$ entry to -1 . If $X^{T} X$ is irreducible then $\rho\left(X^{T} X\right)>\rho\left(Y^{T} Y\right)$.

Proof. Note that $\left|Y^{T} Y\right| \leqslant X^{T} X$ (entry-wise), and so $\rho\left(Y^{T} Y\right) \leqslant \rho\left(X^{T} X\right)$ by PerronFrobenius theory [3]. Now suppose that $\rho\left(X^{T} X\right)=\rho\left(Y^{T} Y\right)$. Since $X^{T} X$ is irreducible, by Lemma 2.3, there exists a signature matrix $D=\operatorname{Diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ such that $X^{T} X=D Y^{T} Y D$. Therefore $\left[X^{T} X\right]_{i j}=d_{i} d_{j}\left[Y^{T} Y\right]_{i j}$ for all i, j. Note that the first k columns of X are $\left[\begin{array}{cccc}1 & 0 & \cdots & 1 \\ 1 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ a_{1} & a_{2} & \cdots & a_{k}\end{array}\right]$ and the first k columns of Y are $\left[\begin{array}{cccc}-1 & 0 & \cdots & 1 \\ 1 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ a_{1} & a_{2} & \cdots & a_{k}\end{array}\right]$. Now, for $i=1, \ldots, k-1,\left[X^{T} X\right]_{i, i+1}=1+a_{i}^{T} a_{i+1}$ and $\left[Y^{T} Y\right]_{i, i+1}=1+a_{i}^{T} a_{i+1}$. Using $d_{i} d_{j}\left[Y^{T} Y\right]_{i j}=\left[X^{T} X\right]_{i j}$, we have $d_{i} d_{i+1}=1$ for $i=1, \ldots, k-1$. Hence $d_{1} d_{k}=1$. On the other hand, $-1+a_{1}^{T} a_{k}=d_{1} d_{k}\left[Y^{T} Y\right]_{1 k}=$ $\left[X^{T} X\right]_{1 k}=1+a_{1}^{T} a_{k}$, which is impossible.

Theorem 2.5 Let G be a connected graph. Then G is a tree if and only if $S p_{S}\left(G^{\sigma}\right)=$ i $S p(G)$ for any orientation σ.

Proof. (Necessity) See the proof of Theorem 3.3 in [1].
(Sufficiency) Suppose $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$ for any orientation σ. By Theorem 2.2, G is a bipartite graph. And so there is a labeling of G such that

$$
A(G)=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

where X is an $m \times n(0,1)$ - matrix with $m \leqslant n$. Since G is connected, $X^{T} X$ is indeed a positive matrix and so irreducible. Now assume that G is NOT a tree. Then G has at least an even cycle because G is bipartite. W.L.O.G. X has the form $\left[\begin{array}{ll}C & * \\ * & *\end{array}\right]$ where C is a $k \times k(k \geqslant 2)$ circulant matrix with the first row as $[1,0, \ldots, 0,1]$. Let Y be obtained from X by changing the $(1,1)$ entry to -1 . Consider the orientation σ of G such that

$$
S\left(G^{\sigma}\right)=\left[\begin{array}{cc}
0 & Y \\
-Y^{T} & 0
\end{array}\right]
$$

By hypothesis, $S p\left(G^{\sigma}\right)=\mathbf{i} S p(G)$ and hence X and Y have the same singular values. It follows that $\rho\left(X^{T} X\right)=\rho\left(Y^{T} Y\right)$, which contradicts Theorem 2.4.

Corollary 2.6 G is a forest if and only if $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} S p(G)$ for any orientation σ.

Proof. (Necessity) Let $G=G_{1} \cup \cdots \cup G_{r}$ where G_{j} 's are trees. Then $G^{\sigma}=G_{1}^{\sigma_{1}} \cup \cdots \cup G_{r}^{\sigma_{r}}$. By Theorem 2.5, $S p_{S}\left(G_{j}^{\sigma_{j}}\right)=\mathbf{i} S p\left(G_{j}\right)$ for all $j=1,2, \ldots, r$. Hence $S p_{S}\left(G^{\sigma}\right)=$ $S p_{S}\left(G_{1}^{\sigma_{1}}\right) \cup \cdots \cup S p_{S}\left(G_{j}^{\sigma_{j}}\right)=\mathbf{i} S p\left(G_{1}\right) \cup \cdots \cup \mathbf{i} S p\left(G_{r}\right)=\mathbf{i} S p\left(G_{1} \cup \cdots \cup G_{r}\right)=\mathbf{i} S p(G)$. (Sufficiency) Suppose that G is NOT a forest. Then $G=G_{1} \cup \cdots \cup G_{r}$ where G_{1}, \ldots, G_{t} are connected, but not trees, and G_{t+1}, \ldots, G_{r} are trees. By Theorem 2.2, G is a bipartite graph. And so there is a labeling of G such that

$$
A(G)=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

where $X=X_{1} \oplus \cdots \oplus X_{r}$ and the $(1,1)$-entry of each X_{j} is 1 . Let Y_{j} be obtained from X_{j} by changing the $(1,1)$ entry to -1 . Consider an orientation σ of G such that

$$
S\left(G^{\sigma}\right)=\left[\begin{array}{cc}
0 & Y \\
-Y^{T} & 0
\end{array}\right]
$$

where $Y=Y_{1} \oplus \cdots \oplus Y_{r}$. By Lemma 2.1, $S p_{S}\left(G^{\sigma}\right)=\mathbf{i} \operatorname{Sp}(G)$ implies that the singular values of X coincide with the singular values of Y. Since G_{t+1}, \ldots, G_{r} are trees, the singular values of X_{j} coincide with the singular values Y_{j} for $j=t+1, \ldots, r$. Hence the singular values of $X_{1} \oplus \cdots \oplus X_{t}$ coincide with the singular values of $Y_{1} \oplus \cdots \oplus Y_{t}$. Since G_{1}, \ldots, G_{t} are not trees, we have $\rho\left(X_{j}^{T} X_{j}\right)>\rho\left(Y_{j}^{T} Y_{j}\right)$ for $j=1, \ldots, t$. Consequently,

$$
\max _{1 \leqslant j \leqslant n} \rho\left(X_{j}^{T} X_{j}\right)=\max _{1 \leqslant j \leqslant n} \rho\left(Y_{j}^{T} Y_{j}\right)=\rho\left(Y_{j_{0}}^{T} Y_{j_{0}}\right)<\rho\left(X_{j_{0}}^{T} X_{j_{0}}\right) \leqslant \max _{1 \leqslant j \leqslant n} \rho\left(X_{j}^{T} X_{j}\right)
$$

a contradiction.

Acknowledgment: The authors would like to thank Professor Jane Day for reading the early drafts.

References

[1] C. Adiga, R. Balakrishnan and Wasin So, The Skew Energy of a Digraph, Preprint, 2009.
[2] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs Theory and Application, Third Ed., Johann Ambosius Barth, Heidelberg, Leipzig, 1995.
[3] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1987.

