
Bernoulli 20(3), 2014, 1432–1453
DOI: 10.3150/13-BEJ528

Skew-symmetric distributions and Fisher
information:
The double sin of the skew-normal
MARC HALLIN1 and CHRISTOPHE LEY2

1ECARES, Université Libre de Bruxelles, CP114, 50 Ave. F.D. Roosevelt, 1050 Brussels, Belgium, and
ORFE, Princeton University, Sherrerd Hall, Princeton, NJ 08544, USA. E-mail: mhallin@ulb.ac.be
2ECARES and Département de Mathématique, Université Libre de Bruxelles, CP210, Boulevard du Triom-
phe, 1050 Brussels, Belgium. E-mail: chrisley@ulb.ac.be

Hallin and Ley [Bernoulli 18 (2012) 747–763] investigate and fully characterize the Fisher singularity phe-
nomenon in univariate and multivariate families of skew-symmetric distributions. This paper proposes a
refined analysis of the (univariate) problem, showing that singularity can be more or less severe, inducing
n1/4 (“simple singularity”), n1/6 (“double singularity”), or n1/8 (“triple singularity”) consistency rates for
the skewness parameter. We show, however, that simple singularity (yielding n1/4 consistency rates), if any
singularity at all, is the rule, in the sense that double and triple singularities are possible for generalized
skew-normal families only. We also show that higher-order singularities, leading to worse-than-n1/8 rates,
cannot occur. Depending on the degree of the singularity, our analysis also suggests a simple reparametriza-
tion that offers an alternative to the so-called centred parametrization proposed, in the particular case of
skew-normal and skew-t families, by Azzalini [Scand. J. Stat. 12 (1985) 171–178], Arellano-Valle and Az-
zalini [J. Multivariate Anal. 113 (2013) 73–90], and DiCiccio and Monti [Quaderni di Statistica 13 (2011)
1–21], respectively.

Keywords: centred parametrization; consistency rates; skewing function; skew-normal distributions;
skew-symmetric distributions; singular Fisher information

1. Introduction

The skew-symmetric families, originally proposed in Azzalini and Capitanio [8] and Wang, Boyer
and Genton [29], are, in their univariate version, parametric families of probability density func-
tions (p.d.f.s) of the form

x �→ f �
ϑ (x) := 2σ−1f

(
σ−1(x − μ)

)
�

(
σ−1(x − μ), δ

)
, x ∈ R, (1.1)

(a) ϑ = (μ,σ, δ)′, with μ ∈ R a location parameter and σ ∈ R
+
0 a scale parameter, while

δ ∈ R plays the role of a skewness parameter;
(b) f : R → R

+
0 , the symmetric kernel, is a nonvanishing symmetric p.d.f. (such that, for any

z ∈ R, 0 �= f (−z) = f (z)), and
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(c) � : R × R → [0,1] is a skewing function, that is, satisfies

�(−z, δ) + �(z, δ) = 1, z, δ ∈ R and �(z,0) = 1/2, z ∈ R, (1.2)

and, in case (z, δ) �→ �(z, δ) admits a derivative of order s at δ = 0 for all z ∈ R,

∂s
z�(z, δ)|δ=0 = 0, z ∈ R and

(1.3)
for s even ∂s

δ �(z, δ)|δ=0 = 0, z ∈ R.

The assumption of a nonvanishing kernel f is not essential, and has been added, as in Hallin
and Ley [17], in order to ease calculations and avoid trivial complications. Condition (1.2) is clas-
sical; the less classical condition (1.3) is justified by the analogy with skewing functions of the
form �(z, δ) = �(δz), by far the most common ones: if � is s times continuously differentiable,
∂s
z�(δz) = δs(∂s�)(δz) obviously vanishes at δ = 0. Similarly, the fact that �(−y) + �(y) = 1

implies that ∂s�(δz) cancels at δ = 0 for even values of s. All skewing functions considered in
the literature, as well as those appearing in the examples developed in this paper and in Hallin
and Ley [17], satisfy (1.3). Further comments on skewing functions of the form �(z, δ) = �(δz)

can be found in Section 6.2.
The skew-normal family of Azzalini [4], for which the symmetric kernel f is the standard

Gaussian p.d.f. φ and the skewing function �(z, δ) = �(δz) for � the standard Gaussian cu-
mulative distribution function (c.d.f.), is by far the oldest and most popular example of such a
skew-symmetric family; varying f and �, however, yields a virtually infinite number of them.
Traditional examples include the skew-exponential power distributions of Azzalini [5], the skew-
Cauchy distributions of Arnold and Beaver [3], the skew-t densities of Azzalini and Capitanio [8],
or the generalized skew-normal distributions of Loperfido [22]; the latter result (along with ar-
bitrary �) from letting f = φ in (1.1), and play an important role in this paper. We refer to
Genton [14], Azzalini [6] or Ley [20] for background reading, details and examples.

Since the pioneering paper by Azzalini [4], it is well known that the scalar skew-normal distri-
bution suffers from a Fisher information singularity problem at δ = 0. More precisely, the Fisher
information matrix for the three-parameter density (1.1) in the scalar skew-normal case is singu-
lar – typically, with rank 2 instead of 3 – in the vicinity of symmetry, that is, at δ = 0. Such a
singularity violates the standard assumptions for root-n asymptotic inference, and skew-normal
distributions therefore may be difficult from an inferential point of view; in particular, traditional
tests of the null hypothesis of symmetry, at first sight, seem problematic.

That singularity problem has been discussed at length in a number of papers, among which
Azzalini and Capitanio [7], Pewsey [25], DiCiccio and Monti [12], Chiogna [10], Azzalini and
Genton [9] or Ley and Paindaveine [21]; see Hallin and Ley [17] for a detailed account. While all
authors were pointing at some special status for normal kernels, hence skew-normal distributions,
Hallin and Ley [17] have shown that this information singularity has no special relation to the
skew-normal case, but actually originates in an unfortunate mismatch between f and � – more
precisely, between two densities, the kernel f and an exponential density g� associated with the
skewing function � (see Section 2.1).

Singularity of Fisher information results in slower consistency rates in the estimation of the
skewness parameter (at δ = 0) – equivalently, it yields slower local alternative rates (contiguity
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rates) in tests of the null hypothesis of symmetry (δ = 0). That impact of singular Fisher informa-
tion on consistency/contiguity rates has been studied, in a general context, for the particular case
of a singularity of order one, by Rotnitzky et al. [27], who unify and reinforce earlier proposals
by, for example, Cox and Hinkley ([11], pages 117 and 118) or Lee and Chesher [19].

The typical rate, corresponding to a “simple singularity”, would be n1/4. However, it is well
known (see, e.g., Chiogna [10]) that, for skew-normal distributions, that n1/4 rate (for the es-
timation of δ at δ = 0) drops down to n1/6. In order to understand and explain this intriguing
phenomenon, we pursue and refine, in the present paper, the analysis of Fisher singularity ini-
tiated in Hallin and Ley [17]. We show that this deterioration from n1/4 to n1/6 is explained by
a “double singularity” property (a terminology that will become clear in the course of this pa-
per) – the double sin of the skew-normal. That n1/6 rate in turn possibly can drop further down
to n1/8, a case of “triple singularity”. This, however, as we show in Theorem 4.1, is the worst
case: “fourfold singularities” – quadruple sins – yielding n1/10 rates or worse, are excluded.

Our aim is to characterize, in the spirit of Hallin and Ley [17], among all families of
univariate skew-symmetric distributions suffering from Fisher singularity, those exhibiting that
simple/double/triple singularity phenomenon, and to show that there exist no higher-order ones.
It turns out that only Gaussian kernels can exhibit double (a fortiori, triple) singularity. The
skew-normal family is but one example; other cases are found in the aforementioned class
of generalized skew-normal distributions (Loperfido [22]). We also provide (in the spirit of
Rotnitzky et al. [27]) the reparametrizations and the scores taking care of simple, double and
triple singularities, and achieving the n1/4, n1/6 and n1/8 consistency/contiguity rates, respec-
tively, for δ at δ = 0.

With the same objective of overcoming the Fisher singularity problem, Azzalini [4], Arellano-
Valle and Azzalini [1], Arellano-Valle and Azzalini [2] and DiCiccio and Monti [13], in the
univariate skew-normal, multivariate skew-normal, and univariate skew-t cases, respectively, also
propose a nonlinear reparametrization, called the centred parametrization, which we discuss in
some detail in Section 6.1. Based on Gram–Schmidt orthogonalization (in the space of scores)
ideas, our reparametrizations are analytically simple, and lead to closed-form expressions of
the scores at δ = 0. As far as the asymmetry parameter is concerned, and depending on the
degree of Fisher singularity, they involve δ(1) := sign(δ)δ2, δ(2) := δ3, or δ(3) := sign(δ)δ4, thus
preserving the interpretation of skewness as a tuning parameter of the skewing mechanism and
the characterization of the null hypothesis of symmetry as δ = 0. Finally, our reparametrizations
apply to arbitrary skew-symmetric families with singular Fisher information at δ = 0.

The paper is organized as follows. Section 2 deals with the simple singularity case, Section 3
with double singularity. Section 4 analyzes the triple singularity case and shows that higher-
order ones are excluded. Examples for each type of singularity are provided in Section 5. We
conclude the paper with a discussion of Azzalini’s centred parametrization and its relation to
ours (Section 6.1), and some warnings (Section 6.2) about the potential dangers of the standard
skewing functions �(z, δ) = �(δz).

2. Simple singularity

In this section, we first briefly revisit the main result of Hallin and Ley [17] in order, mainly,
to settle the notation. We then show how to resolve the singularity problem via an adequate
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reparametrization leading, in general, to n1/4 consistency rates for δ in the vicinity of symmetry
– equivalently, to a reparametrization of skewness, of the form δ(1) := sign(δ)δ2, recovering n1/2

rates all over the parameter space.

2.1. Simple singularity: A mismatch between f and �

Throughout, we consider the skew-symmetric distributions with p.d.f. (1.1), along with regularity
assumptions on f and � that will be tightened from section to section. The minimal regularity
assumptions we need are those of Hallin and Ley [17].

Assumption (A1). (i) The symmetric kernel f is a standardized symmetric p.d.f. (ii) The mapping
z �→ f (z) is continuously differentiable, with derivative ḟ , at all z ∈ R. (iii) Letting ϕf := −ḟ /f ,
the information quantities σ−2 If for location and σ−2 Jf for scale, with

If :=
∫ ∞

−∞
ϕ2

f (z)f (z)dz and Jf :=
∫ ∞

−∞
(
zϕf (z) − 1

)2
f (z)dz,

are finite.

Assumption (A2). (i) The mapping (z, δ) �→ �(z, δ) is continuously differentiable at δ = 0
for all z ∈ R; (ii) the derivative ∂δ�(z, δ)|δ=0 =: ψ(z) admits a primitive 
; (iii) the quantity∫ ∞
−∞ ψ2(z)f (z)dz is finite.

Regarding Assumption (A1)(i), the term “standardized” means that the scale parameter (not
necessarily a standard error, so that finite second-order moments are not required) of the sym-
metric kernel equals one – an identification constraint for σ that does not imply any loss of
generality; see Hallin and Ley [17] for a discussion. All other assumptions ensure the existence
and finiteness of Fisher information for the original parametrization.

Under Assumptions (A1) and (A2), the score vector �f ;ϑ , at (μ,σ,0)′ =: ϑ0, takes the form

�f ;ϑ0(x) := gradϑ logf �
ϑ (x)|ϑ0 =: (�1

f ;ϑ0
(x), �2

f ;ϑ0
(x), �3

f ;ϑ0
(x)

)′

=
⎛
⎝ σ−1ϕf

(
σ−1(x − μ)

)
σ−1

(
σ−1(x − μ)ϕf

(
σ−1(x − μ)

) − 1
)

2ψ
(
σ−1(x − μ)

)
⎞
⎠ ,

where the factor 2 in �3
f ;ϑ0

follows from the fact that �(z,0) = 1/2 for all z ∈ R. Note that the
skewing function � plays no role in the score functions for μ and σ at δ = 0. The resulting 3 × 3
Fisher information matrix then exists, is finite, and takes the form

�f ;ϑ0 := σ−1
∫ ∞

−∞
�f ;ϑ0(x)�′

f ;ϑ0
(x)f

(
σ−1(x − μ)

)
dx =:

⎛
⎜⎝

γ 11
f ;ϑ0

0 γ 13
f ;ϑ0

0 γ 22
f ;ϑ0

0

γ 13
f ;ϑ0

0 γ 33
f ;ϑ0

⎞
⎟⎠
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with

γ 11
f ;ϑ0

= σ−2 If , γ 22
f ;ϑ0

= σ−2 Jf , γ 33
f ;ϑ0

= 4
∫ ∞

−∞
ψ2(z)f (z)dz

and

γ 13
f ;ϑ0

= 2σ−1
∫ ∞

−∞
ϕf (z)ψ(z)f (z)dz.

The zeroes in �f ;ϑ0 are easily obtained by noting that �1
f ;ϑ0

and �3
f ;ϑ0

are odd functions of

(x − μ), whereas �2
f ;ϑ0

is even with respect to the same quantity. Consequently, Fisher singu-

larity only can be caused by the collinearity of �1
f ;ϑ0

and �3
f ;ϑ0

. Starting from that elementary
observation, Hallin and Ley [17] show that the family of densities (1.1) characterized by a couple
(f,�) suffers from Fisher singularity at δ = 0 if and only if the symmetric kernel f belongs to
the exponential family

E
 :=
{
ga := exp(−a
)

/∫ ∞

−∞
exp

(−a
(z)
)

dz

∣∣∣a ∈ A
}

(2.1)

with minimal sufficient statistic 
 , natural parameter −a, and natural parameter space

A :=
{
a ∈ R such that

∫ ∞

−∞
exp

(−a
(z)
)

dz < ∞
}
,

yielding

γ 11
f ;ϑ0

= σ−2a2
∫ ∞

−∞
ψ2(z)f (z)dz and γ 13

f ;ϑ0
= 2σ−1a

∫ ∞

−∞
ψ2(z)f (z)dz. (2.2)

We refer the reader to the end of Section 2.1 in Hallin and Ley [17] for comments and a discussion
on the existence of couples (f,�) such that f ∈ E
 for given f and for given �, respectively.

2.2. Towards a singularity-free reparametrization: Orthogonalization

A natural way to handle this singularity problem consists in reparametrizing (1.1) in the spirit of
Rotnitzky et al. [27]. Assume that f and � are such that f ∈ E
 . The collinearity at ϑ0 between
the score for location and the score for skewness can be taken care of by a Gram–Schmidt or-
thogonalization process applied to the three components of �f ;ϑ0 . This process projects, in the L2

geometry of the information matrix, the score for skewness �3
f ;ϑ0

onto the subspace orthogonal

(at ϑ0) to the scores for location and scale �1
f ;ϑ0

and �2
f ;ϑ0

, so that the score for skewness be-

comes orthogonal to the score for location (since it is already orthogonal to �2
f ;ϑ0

). The resulting
score for skewness is

�
3(1)
f ;ϑ0

= �3
f ;ϑ0

− �1
f ;ϑ0

Cov
(
�1
f ;ϑ0

, �3
f ;ϑ0

)
/Var

(
�1
f ;ϑ0

)
,
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while the other two scores remain unchanged: �
1(1)
f ;ϑ0

= �1
f ;ϑ0

, �
2(1)
f ;ϑ0

= �2
f ;ϑ0

. As expected, in
view of (2.2),

�
3(1)
f ;ϑ0

(x) = 2ψ
(
σ−1(x − μ)

) − σ−1aψ
(
σ−1(x − μ)

)2σ−1a
∫ ∞
−∞ ψ2(z)f (z)dz

σ−2a2
∫ ∞
−∞ ψ2(z)f (z)dz

= 0.

This (orthogonal at ϑ0) system of scores is associated with the reparametrization (μ(1),

σ (1), δ)′, where μ(1) = μ + 2δσ/a and σ (1) = σ , hence

f �
μ(1),σ (1),δ

(x)

(2.3)
:= 2

(
σ (1)

)−1
f

((
x − μ(1) + 2δσ (1)/a

)
/σ (1)

)
�

((
x − μ(1) + 2δσ (1)/a

)
/σ (1), δ

)
.

Note that this reparametrization, which only affects the location parameter, is adopted for
the family as a whole, although the orthogonalization argument it is based on only holds at
(μ(1), σ (1),0)′ = (μ,σ,0)′ = ϑ0.

Since this reparametrization cancels, at δ = 0, the score for skewness, hence the linear term in
the Taylor expansion of the log-likelihood, second derivatives with respect to δ naturally come
into the picture. To be precise, since the linear term τ3∂δ logf �

μ(1),σ (1),δ
(x)|ϑ0 in the Taylor expan-

sion of logf �
ϑ0+(0,0,τ3)

′(x) about logf �
ϑ0

(x) happens to be zero, the first local approximation is

provided by the quadratic term (τ 2
3 /2)∂2

δ logf �
μ(1),σ (1),δ

(x)|ϑ0 – provided that second derivatives
exist. As a result, if the impact, on the log-likelihood of an i.i.d. sample of size n, of a perturba-
tion τ3 of δ = 0 is to exhibit the central-limit magnitude of n−1/2, τ3 itself has to be of magnitude
n−1/4 only; moreover, information about its sign is lost (a phenomenon which is also stressed
by Rotnitzky et al. [27]). This is the structural reason for slower-than-root-n consistency rates
(at ϑ0) for the skewness parameter δ in the singular case.

The existence of second-order derivatives requires reinforcing regularity assumptions; at the
same time it suggests reparametrizing skewness in terms of δ(1) = sign(δ)δ2 instead of δ.

2.3. Towards a singularity-free reparametrization: Second-order scores

Letting δ(1) = sign(δ)δ2, consider the reparametrization ϑ (1) := (μ(1), σ (1), δ(1))′. The rein-
forced regularity assumptions we need (at ϑ

(1)
0 = (μ(1), σ (1),0)′ = ϑ0) are as follows – recall

that here we only address the singular case under which f and � are such that f = ga ∈ E
 for
some a ∈ A (see (2.1)), so that f is entirely determined by � and the constant a, and we only
need strengthening Assumption (A2).

Assumption (A2+). Same as Assumption (A2) but moreover (i) the mapping (z, δ) �→ �(z, δ) is
twice continuously differentiable at (z,0), z ∈ R; (ii) denoting by z �→ ψ̇(z) = ∂δ∂z�(z, δ)|δ=0
the derivative of ψ , the quantities∫ ∞

−∞
ψ2(z)z2f (z)dz and

∫ ∞

−∞
(
2a−1ψ̇(z) − 2ψ2(z)

)2
f (z)dz
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are finite.

Assumption (A2+)(i) ensures the existence of the second derivative ∂2
δ f �

μ(1),σ (1),δ
(x)|ϑ0 (hence,

via l’Hospital’s rule, that of the simple derivative ∂δ(1)f �

ϑ (1) (x)|ϑ0 ), while Assumption (A2+)(ii)

guarantees the finiteness of the corresponding covariance matrix. Assumption (A2+)(i) also en-
tails ∂δ∂z�(z, δ)|δ=0 = ∂z∂δ�(z, δ)|δ=0 for all z ∈ R, so that this mixed derivative indeed co-
incides with ψ̇(z) (see Assumption (A2+)(ii)). As already pointed out, Assumption (A2+) not
only reinforces Assumption (A2) but also, via the requirement that f = ga ∈ E
 for some a ∈ A,
entails Assumption (A1), which is no longer needed.

Under Assumption (A2+), differentiating logf �
μ(1),σ (1),δ(1) with respect to δ(1) and, at δ(1) =

δ = 0, applying l’Hospital’s rule once leads to (with f �
μ(1),σ (1),δ

(x) as in (2.3))

∂δ(1) logf �

ϑ (1) (x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
√|δ(1)|∂δ logf �

μ(1),σ (1),δ
(x)

∣∣∣∣
δ=sign(δ(1))(δ(1))1/2

, if δ(1) �= 0,

±1

2
∂2
δ logf �

μ(1),σ (1),δ
(x)|δ=0, if δ(1) = 0,

(2.4)

where the undetermined sign at δ = 0 is due to the fact that the left derivative (minus sign) and
the right derivative (plus sign) do not coincide. It follows that, with the same sign indeterminacy,

∂δ(1) logf �

ϑ(1) (x)|
ϑ

(1)
0

= ±2
[
a−1ψ̇

(
σ−1(x − μ)

) − ψ2(σ−1(x − μ)
)]

, (2.5)

hence, in line with Section 2.1,

�
f ;ϑ (1)

0
(x) := (

�1
f ;ϑ (1)

0
(x), �2

f ;ϑ (1)
0

(x), �3
f ;ϑ (1)

0

(x)
)′

:=
⎛
⎝ ∂μ(1) logf �

ϑ (1) (x)|ϑ0

∂σ (1) logf �

ϑ (1) (x)|ϑ0

∂δ(1) logf �

ϑ (1) (x)|ϑ0

⎞
⎠

=
⎛
⎝ σ−1aψ

(
σ−1(x − μ)

)
σ−1

(
σ−1(x − μ)aψ

(
σ−1(x − μ)

) − 1
)

±2
[
a−1ψ̇

(
σ−1(x − μ)

) − ψ2
(
σ−1(x − μ)

)]
⎞
⎠

with covariance

�
f ;ϑ (1)

0
:= σ−1

∫ ∞

−∞
�
f ;ϑ (1)

0
(x)�′

f ;ϑ (1)
0

(x)f
(
σ−1(x − μ)

)
dx

(2.6)

=:

⎛
⎜⎜⎝

γ 11
f ;ϑ (1)

0

0 0

0 γ 22
f ;ϑ (1)

0

±γ 23
f ;ϑ (1)

0

0 ±γ 23
f ;ϑ (1)

0

γ 33
f ;ϑ (1)

0

⎞
⎟⎟⎠ ,
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where (finiteness of the integrals below follows from Assumption (A2+)(ii))

γ 11
f ;ϑ (1)

0
= a2σ−2

∫ ∞

−∞
ψ2(z)f (z)dz,

γ 22
f ;ϑ (1)

0
= σ−2

∫ ∞

−∞
(
aψ(z)z − 1

)2
f (z)dz,

γ 33
f ;ϑ (1)

0

= 4
∫ ∞

−∞
(
a−1ψ̇(z) − ψ2(z)

)2
f (z)dz

and

γ 23
f ;ϑ (1)

0

= 2σ−1
∫ ∞

−∞
(
aψ(z)z − 1

)(
a−1ψ̇(z) − ψ2(z)

)
f (z)dz.

The existence of a left and a right score for δ(1) at δ(1) = 0, a fact which does not occur
with 1

2∂2
δ logf �

μ(1),σ (1),δ
(x)|ϑ0 , is not a problem, as the linear term in the Taylor expansion of

logf �

ϑ
(1)
0 +(0,0,τ3)

′(x) about logf �

ϑ
(1)
0

(x) now is of the form |τ3|
2 ∂2

δ logf �
μ(1),σ (1),δ

(x)|ϑ0 , so that only

the sign of τ3 gets lost, as already mentioned.
Now, let us first assume that �

f ;ϑ (1)
0

has full rank. Under Assumption (A2+) and the new ϑ (1)-

parametrization, the model enjoys all the properties required for traditional root-n maximum
likelihood and Lagrange Multiplier or Rao score tests. For instance, denoting by X1, . . . ,Xn

an i.i.d. sample of size n from f �

ϑ
(1)
0

, the Lagrange Multiplier test rejects the null hypothesis of

symmetry (in favor of an asymmetry of unspecified sign) whenever the quadratic statistic

n−1(
∑n

i=1(�
3

f ;ϑ̂ (1)

0

(Xi) − (γ 23

f ;ϑ̂ (1)

0

/γ 22

f ;ϑ̂ (1)

0

)�2

f ;ϑ̂ (1)

0

(Xi)))
2

γ 33

f ;ϑ̂ (1)

0

− (γ 23

f ;ϑ̂ (1)

0

)2/γ 22

f ;ϑ̂ (1)

0

(ϑ̂
(1)

0 = (μ̂, σ̂ ,0) stands for a root-n consistent, under δ = 0, estimator of ϑ
(1)
0 = ϑ0) exceeds the

chi-square quantile (one degree of freedom) of order (1 − α).
Summing up, provided that �

f ;ϑ (1)
0

has full rank, root-n consistency/contiguity rates are

achieved for δ(1) = sign(δ)δ2. This implies the same root-n rates at any δ �= 0; at δ = 0, however,
an n1/2 rate for δ(1) means an n1/4 rate for δ = sign(δ(1))

√|δ(1)|. Note, however, that, despite
the fact that a Gram–Schmidt argument was used in the construction, �

f ;ϑ (1)
0

in general is not

diagonal: there is no reason, indeed, for the new score (2.5) to be orthogonal to those for μ(1)

and σ (1).
We have assumed, so far, that �

f ;ϑ (1)
0

has full rank. In most cases, the components of the

new score vector (�1
f ;ϑ (1)

0

, �2
f ;ϑ (1)

0

, �3
f ;ϑ (1)

0

)′ are not collinear anymore, so that �
f ;ϑ (1)

0
indeed is

nonsingular; our objective of a singularity-free parametrization thus is achieved, with consistency
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rate, in the vicinity of symmetry, of n1/4 for δ. But this is not a general rule: in the case of the
skew-normal family, for instance, Chiogna [10] showed that the correct rate for δ is only n1/6.
The explanation, as we shall see in the next section, lies in a double singularity phenomenon,
which occurs when �2

f ;ϑ (1)
0

and �3
f ;ϑ (1)

0

in turn are collinear (by construction, the location score

�1
f ;ϑ (1)

0

, at ϑ
(1)
0 , is orthogonal to the other two scores).

3. Double singularity

3.1. Double singularity: A special role for Gaussian kernels

The double singularity phenomenon (�2
f ;ϑ (1)

0

and �3
f ;ϑ (1)

0

collinear) takes place if and only if

b
(
azψ(z) − 1

)
/σ = (2/a)ψ̇(z) − 2ψ2(z) a.e.

(a.e. here and in the sequel means Lebesgue-a.e.) for some constant b ∈ R and a couple (f,�)

such that f ∈ E
 (see (2.1)). Rewriting this equation as

ψ̇(z) = − ab

2σ
+ a2b

2σ
zψ(z) + aψ2(z) a.e. (3.1)

yields a classical Riccati equation, whose solutions are of the form

ψ(z) = −ab

2σ
z (3.2)

or

ψ(z) = −ab

2σ
z + exp

(
−a2bz2

4σ

)/(
c − a

∫ z

0
exp

(
−a2by2

4σ

)
dy

)
, b, c ∈ R. (3.3)

First, note that b has to be negative, as otherwise ϕf (z) = aψ(z) would tend to −∞ irrespective
of the sign of a when z → ∞, implying positive values of ḟ in the right tail of f , which is of
course impossible for a density function. Furthermore, since both z �→ a

∫ z

0 exp(−a2by2/4σ)dy

and ψ are odd, the constant c in (3.3) has to be zero. By (2.1), the natural parameter space A
for the exponential family E
 associated with the mapping ψ of (3.3) then consists of the set of
values of a for which the integral

∫ ∞

−∞
exp

(−a
(z)
)

dz =
∫ ∞

−∞
exp

(
a2b

4σ
z2 + log

∣∣∣∣
∫ z

0
exp

(
−a2by2

4σ

)
dy

∣∣∣∣
)

dz

=
∫ ∞

−∞
exp

(
a2b

4σ
z2

)∣∣∣∣
∫ z

0
exp

(
−a2b

4σ
y2

)
dy

∣∣∣∣dz
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is finite. After a change of variable involving the quantity
√

a2|b|/4σ , this requirement appears
to be equivalent to ∫ ∞

−∞
exp

(−z2)∣∣∣∣
∫ z

0
exp

(
y2)dy

∣∣∣∣dz < ∞. (3.4)

However, one easily can check that limz→∞ z exp(−z2)| ∫ z

0 exp(y2)dy| = 1/2, which means that
exp(−z2)| ∫ z

0 exp(y2)dy| behaves as 1/z for large values of z. It follows that (3.4) is impossible.
Hence, the natural parameter space A is empty, meaning that no symmetric kernel f associated
to the mapping ψ of (3.3) can yield singular Fisher information. Therefore, the only admissible
solution to (3.1) is (3.2).

This finding is quite remarkable: combined with the fact that f ∈ E
 (which is equivalent to
ϕf = aψ ), it implies that double singularity only can occur for symmetric kernels f such that
ϕf (z) = c1z for some constant c1 – namely, for Gaussian kernels. Those Gaussian kernels more-
over should be combined with a skewing function � such that ψ(z) = c2z for some constant c2.

While Fisher singularity arises as a mismatch between the symmetric kernel and the skew-
ing function, and hence can occur with all possible symmetric kernels, the double singularity
phenomenon thus is specific to the Gaussian kernel, hence to a well-determined subclass of gen-
eralized skew-normal distributions (in the sense of Loperfido [22], see the Introduction). This
also implies that, under the assumptions made, n1/4 consistency rates for δ are achieved for all
other skew-symmetric families subject to Fisher singularity.

We formalize that result in the following theorem.

Theorem 3.1. Consider the skew-symmetric family defined in (1.1). Then:

(i) under Assumptions (A1) and (A2), the couple (f,�) leads to a skew-symmetric family
subject to Fisher singularity at δ = 0 if and only if the symmetric kernel f is related to the
skewing function � via the fact that f ∈ E
 , see (2.1);

(ii) under Assumption (A2+), the couple (f,�) leads to a skew-symmetric family subject to
the double singularity phenomenon if and only if the symmetric kernel f is the normal ker-
nel φ and the skewing function � moreover satisfies ψ(z) := ∂δ�(z, δ)|δ=0 = cz for some real
constant c; the family then is a particular case of the generalized skew-normal family (Loper-
fido [22]).

This theorem completely characterizes the double singularity problem, hence complements
the simple singularity characterization of Hallin and Ley [17].

3.2. A singularity-free reparametrization

Still inspired by Rotnitzky et al. [27], let us now proceed with this second singularity the way we
did with the first one, producing a second, hopefully singularity-free, reparametrization. Since
the symmetric kernel φ is the only candidate for this double singularity phenomenon, we limit
ourselves to f = φ. Moreover, we know from the previous section that ψ has to be of the form
ψ(z) = c2z; hence, in view of the fact that z = ϕφ(z) = aψ(z), we have c2 = 1/a. Applying the
same Gram–Schmidt idea as in Section 2.2, but with the score for scale �2

φ;ϑ (1) substituted for the
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score for location, we project �3
φ;ϑ (1) onto the subspace orthogonal to �1

φ;ϑ (1) and �2
φ;ϑ (1) in the

L2 geometry of the information matrix (2.6). The resulting residual score for skewness then, as
expected, is zero at ϑ

(1)
0 ; indeed

�3
φ;ϑ (1)

0

(x) − �2
φ;ϑ (1)

0
(x)Cov

(
�2
φ;ϑ (1)

0
, �3

φ;ϑ (1)
0

)
/Var

(
�2
φ;ϑ (1)

0

)

= ± 2

a2

(
1 − (x − μ)2

σ 2

)

− σ−1
(

(x − μ)2

σ 2
− 1

)±2σ−1
∫ ∞
−∞(z2 − 1)(a−2 − a−2z2)φ(z)dz

σ−2
∫ ∞
−∞(z2 − 1)2φ(z)dz

= 0.

Translating, as in Section 2.2, this projection in terms of parameters leads to a reparametriza-
tion of the form (μ(2), σ (2), δ)′, with

μ(2) = μ(1) = μ + 2δσ/a

and

σ (2) = σ (1) + δ(1)

Cov(�2
φ;ϑ (1)

0

, �3
φ;ϑ (1)

0

)

Var(�2
φ;ϑ (1)

0

)
= σ (1)

(
1 − 2δ2/a2).

Note that this reparametrization again is global, although the orthogonality argument above
only holds at δ = 0. Also note that σ (2) is not necessarily positive; although μ(2) and σ (2) jointly
characterize location and scale, they cannot be interpreted separately as a location and a scale
parameter. In line with previous notation, we denote by f �

μ(2),σ (2),δ
the resulting skew-symmetric

density, keeping in mind the fact that the symmetric kernel f is φ. The same remarks as for
the first reparametrization are in order: keeping δ as the skewness parameter yields n1/6 consis-
tency/contiguity rates. Indeed, the first two derivatives with respect to δ now cancel at δ = 0, so
that derivatives of order three play the dominant role in local approximations of log-likelihoods.

In the particular case of the skew-normal family, similar ideas have been exploited by Chiogna
[10], where the n1/6 rates also are established. The reparametrization developed there, however,
does not coincide with ours, as the orthogonalization it is based on holds at one specific value
ϑ∗

0 = (μ∗, σ ∗,0) of ϑ0 only ((μ∗, σ ∗) arbitrary but fixed). The resulting score for skewness
accordingly vanishes at ϑ∗

0, while ours vanishes at all ϑ0.
Appearance of third derivatives, in turn, suggests using δ(2) = δ3 as a new parameter of skew-

ness, yielding the reparametrization ϑ (2) := (μ(2), σ (2), δ(2))′, with ϑ
(2)
0 := (μ,σ,0)′ = ϑ0. The

new score for skewness then will be calculated according to

∂δ(2) logf �

ϑ(2) (x) =

⎧⎪⎪⎨
⎪⎪⎩

1

3(δ(2))2/3
∂δ logf �

μ(2),σ (2),δ
(x)

∣∣∣∣
δ=(δ(2))1/3

, if δ(2) �= 0,

1

6
∂3
δ logf �

μ(2),σ (2),δ
(x)|δ=0, if δ(2) = 0,

(3.5)
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and follows on applying l’Hospital’s rule twice. This, however, requires the following reinforce-
ment of Assumption (A2+).

Assumption (A2++). Same as Assumption (A2+), but now (i) the mapping (z, δ) �→ �(z, δ) is
three times continuously differentiable at (z,0) for all z ∈ R; (ii) letting ϒ(z) := ∂3

δ �(z, δ)|δ=0,
the integral

∫ ∞
−∞( 8

3a3 z3 − 8
a3 z + 1

3ϒ(z))2φ(z)dz is finite.

Assumption (A2++)(i) ensures the existence of the third-order derivative ∂3
δ f �

μ(2),σ (2),δ
at

ϑ
(2)
0 = ϑ0, while Assumption (A2++)(ii) guarantees finiteness of the corresponding covariance

matrix. Also note that the mixed derivative ∂z∂
2
δ �(z, δ)|δ=0 vanishes by the definition of skewing

functions; so does ∂2
z ∂δ�(z, δ)|δ=0 = ∂2

z ψ(z) for all z, since we are dealing (Theorem 3.1(ii))
with skewing functions such that ψ(z) = z/a is linear. Finally note that ϒ(z), by (1.2), is an odd
function. These facts greatly simplify calculations.

Assumption (A2++) implies, for this second reparametrization, the existence, at ϑ0, of a third-
order score vector �

φ;ϑ (2)
0

with finite covariance matrix �
φ;ϑ (2)

0
, enjoying the same properties as

the second-order scores described in Section 2.3. Elementary algebra yields

�
φ;ϑ (2)

0
(x) :=

⎛
⎜⎜⎝

�1
φ;ϑ (2)

0

�2
φ;ϑ (2)

0

�3
φ;ϑ (2)

0

⎞
⎟⎟⎠ :=

⎛
⎜⎝

∂μ(2) logf �

ϑ (2) (x)|ϑ0

∂σ (2) logf �

ϑ (2) (x)|ϑ0

∂δ(2) logf �

ϑ (2) (x)|ϑ0

⎞
⎟⎠

=

⎛
⎜⎜⎝

σ−1
(
σ−1(x − μ)

)
σ−1

((
σ−1(x − μ)

)2 − 1
)

8

3a3

(
σ−1(x − μ)

)3 − 8

a3
σ−1(x − μ) + 1

3
ϒ

(
σ−1(x − μ)

)
⎞
⎟⎟⎠

and

�
φ;ϑ (2)

0
:= σ−1

∫ ∞

−∞
�
φ;ϑ (2)

0
(x)�′

φ;ϑ (2)
0

(x)φ
(
σ−1(x − μ)

)
dx =:

⎛
⎜⎜⎝

γ 11
φ;ϑ (2)

0

0 γ 13
φ;ϑ (2)

0

0 γ 22
φ;ϑ (2)

0

0

γ 13
φ;ϑ (2)

0

0 γ 33
φ;ϑ (2)

0

⎞
⎟⎟⎠

with

γ 11
φ;ϑ (2)

0
= σ−2

∫ ∞

−∞
z2φ(z)dz = σ−2, γ 22

φ;ϑ (2)
0

= σ−2
∫ ∞

−∞
(
z2 − 1

)2
φ(z)dz = 2σ−2,

γ 33
φ;ϑ (2)

0

=
∫ ∞

−∞

(
8

3a3
z3 − 8

a3
z + 1

3
ϒ(z)

)2

φ(z)dz

and

γ 13
φ;ϑ (2)

0

= 1

3
σ−1

∫ ∞

−∞
zϒ(z)φ(z)dz.
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Here again, γ 13
φ;ϑ (2)

0

, in general, is not zero, and �
φ;ϑ (2)

0
is not diagonal.

If we assume, as in Section 2.3, that �
φ;ϑ (2)

0
has full rank, denoting by X1, . . . ,Xn an i.i.d.

sample of size n from f �

ϑ
(2)
0

, the score vector �
φ;ϑ (2)

0
provides a linear term to the Taylor ex-

pansion of the log-likelihood, as well as a Lagrange Multiplier-type test of the null hypothesis
of symmetry (in the generalized skew-normal family under study), based on the quadratic test
statistic

1

n

n∑
i=1

(
�3

φ;ϑ̂ (2)

0

(Xi) − σ 2γ 13

φ;ϑ̂ (2)

0

�1

φ;ϑ̂ (2)

0

(Xi)
)2

/
(
γ 33

φ;ϑ̂ (2)

0

− σ 2(γ 13

φ;ϑ̂ (2)

0

)2)
,

where ϑ̂
(2)

0 is, under the null hypothesis of symmetry, a root-n consistent estimator of location
and scale. The consistency/contiguity rate for δ (still, at δ = 0) is n1/6 while that for δ(2) uni-
formly remains n1/2, and the same comments can be made as in Section 2.3. The particular case
of the skew-normal family, from the point of view of Le Cam’s asymptotic theory of statistical
experiments, is studied in full detail by Hallin, Ley and Monti [18], thereby generalizing and
extending previous work by Salvan [28] where, despite the singularities, a locally optimal test
for normality against skew-normal alternatives is derived.

4. Higher-order singularities

It may happen, however, that �
φ;ϑ(2)

0
in turn is singular, the new third-order score for skewness

�3
φ;ϑ (2)

0

being (at ϑ
(2)
0 ) collinear to the score for location �1

φ;ϑ (2)
0

(note that, very clearly, it is

orthogonal to the score for scale �2
φ;ϑ (2)

0

). If this occurs, one has to go yet one step further with the

approximation of log-likelihoods, assuming the existence of fourth-order derivatives and ending
up with n1/8 consistency/contiguity rates for δ (but keeping n1/2 rates for a reparametrization
δ(3) = sign(δ)δ4 of skewness). That n1/8 rate, however, as we shall see, is the worst possible one.

We are skipping details, as they are very much the same as in Section 3. In order for �3
φ;ϑ (2)

0

=
8

3a3 z3 − 8
a3 z+ 1

3ϒ(z) to be linearly dependent of �1
φ;ϑ (2)

0

= z/σ , ϒ(z) necessarily has to be of the

form α1z + α2z
3, with α1 ∈ R and α2 = −8/a3 in order to cancel the term in z3. This condition

on the third derivative with respect to δ thus characterizes what we would call a triple singularity
case (the result is formally stated in Theorem 4.1 at the end of this section). It is quite easy to
construct examples suffering from this weird peculiarity; see Section 5.4.

The by now familiar machinery new singularity – Gram–Schmidt orthogonalization of scores
– reparametrization – new higher-order score for δ then applies, leading, after some direct ma-
nipulations, to the reparametrization ϑ (3) := (μ(3), σ (3), δ(3))′, with

μ(3) = μ(2) +
(

− 8

a3
+ α1

3

)
σδ3 = μ + 2

a
σδ +

(
− 8

a3
+ α1

3

)
σδ3,

σ (3) = σ (2) = σ
(
1 − 2δ2/a2)



The double sin of the skew-normal 1445

and

δ(3) = sign(δ)δ4.

This reparametrization of skewness entails, with the same left and right derivative interpretation
for ± as in (2.4),

∂δ(3) logf �

ϑ (3) (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4|δ(3)|3/4
∂δ logf �

μ(3),σ (3),δ
(x)

∣∣∣∣
δ=sign(δ(3))(δ(3))1/4

, if δ(3) �= 0,

± 1

24
∂4
δ logf �

μ(3),σ (3),δ
(x)

∣∣∣∣
δ=0

, if δ(3) = 0,

by means of a triple use of l’Hospital’s rule. This, however, requires fourth-order derivatives,
hence further strengthening of Assumption (A2++).

Assumption (A2+++). Same as Assumption (A2++), but now the mapping (z, δ) �→ �(z, δ) is
four times continuously differentiable at (z,0), z ∈ R.

Let us remark that we do not need to assume finiteness of Fisher information for skewness, as
this, as we shall see, will always be the case after this third reparametrization. Clearly, as in all
previous cases, both the score for location �1

φ;ϑ (3)
0

and the score for scale �2
φ;ϑ (3)

0

remain the same

as in the original parametrization, and the new fourth-order score for skewness, for skewing
functions satisfying ∂3

δ �(z, δ)|δ=0 = α1z − 8
a3 z3, becomes (after lengthy but quite elementary

calculation)

�3
φ;ϑ (3)

0

= ∂δ(3) logf �

ϑ (3) (x)|
ϑ

(3)
0

= −10

a4
+ 2α1

3a
+

(
6

a4
− 2α1

3a

)(
x − μ

σ

)2

+ 4

3a4

(
x − μ

σ

)4

.

One again easily can check that this quantity is centred under ϑ
(3)
0 . The interesting feature, how-

ever, is that the term 4
3a4 (

x−μ
σ

)4 by no means can cancel out, and hence prevents �3
φ;ϑ (3)

0

from

being any linear combination of the location and scale scores. Thus, the resulting (at ϑ
(3)
0 ) Fisher

information matrix

�
φ;ϑ (3)

0
:= σ−1

∫ ∞

−∞
�
φ;ϑ (3)

0
(x)�′

φ;ϑ (3)
0

(x)φ
(
σ−1(x − μ)

)
dx

=

⎛
⎜⎜⎜⎜⎝

σ−2 0 0

0 2σ−2 σ−1
(

28

a4
− 4α1

3a

)

0 σ−1
(

28

a4
− 4α1

3a

)
1304

3a8
− 112α1

3a5
+ 8α2

1

9a2

⎞
⎟⎟⎟⎟⎠
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(the finiteness of which is obvious) cannot be singular, which in turn implies that n1/8 rates of
convergence for δ are the worst possible! The structural reason behind this result lies in the fact
that, by the definition of skewing functions, ∂4

δ �(z, δ)|δ=0 equals zero, hence cannot interfere
in the fourth derivative, contrary to ∂3

δ �(z, δ)|δ=0 which plays the crucial role in canceling the
third-order derivative.

Those results are summarized in the following theorem, which complements Theorem 3.1.

Theorem 4.1. Consider the skew-symmetric family defined in (1.1). Then,

(i) under Assumption (A2++), the couple (f,�) leads to a skew-symmetric family subject
to the triple singularity phenomenon if and only if the symmetric kernel f is the normal kernel
φ and the skewing function � moreover is such that ψ(z) := ∂δ�(z, δ)|δ=0 = z/a for some
nonzero real constant a, and has third-order derivative ϒ(z) := ∂3

δ �(z, δ)|δ=0 = α1z − 8
a3 z3 for

some real constant α1 possibly zero.
(ii) under Assumption (A2+++), no couple (f,�) leads to a skew-symmetric family subject

to a fourfold/quadruple singularity phenomenon.

5. Examples

In this section, we illustrate our findings on the basis of some well-known examples of the liter-
ature. Our presentation goes crescendo: starting, for the sake of completeness, with singularity-
free families, we consider simple, double, and finally triple singularities.

5.1. Singularity-free families

Famous singularity-free examples comprise, inter alia, the skew-exponential power distribu-
tions of Azzalini [5] with p.d.f. 2c−1 exp(−|z|α/α)�(δ sign(z)|z|α/2(2/α)1/2) for α > 1 and
c = 2α1/α−1�(1/α), and the skew-t distributions of Azzalini and Capitanio [8] with p.d.f.
2tν(z)Tν+1(δz(ν +1)1/2(z2 +ν)−1/2) where tη and Tη, respectively, stand for the p.d.f. and c.d.f.
of a standard Student distribution with η degrees of freedom. These examples are discussed at
length in Hallin and Ley [17], where we refer to for details. In that same paper, an example of
skewing function for which no mismatching symmetric kernel exists is given, namely �(z, δ) =
�(δ sin(z)) with � : R → [0,1] a differentiable function satisfying �(−y) + �(y) = 1 for all
y ∈ R and such that �̇(0) = d�(y)/dy|y=0 exists and differs from zero.

5.2. Simple singularities

As shown in Hallin and Ley [17], the easiest-to-construct mismatching skewing function for
a given symmetric kernel f is of the form �(δϕf (z)), with � as described above. For any
symmetric kernel f , it is readily seen that the location and skewness scores then are collinear.

Under the assumptions made, double singularity requires the additional assumption that
�̈(0) := d2�(y)/(dy)2|y=0 exists and, by construction, equals zero. Theorem 3.1 then tells us
that among the p.d.f.s 2f (z)�(δϕf (z)) only the skew-normal, obtained for f = φ, suffers from
the double singularity. Thus all non-Gaussian kernels f yield examples of simple singularities.
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5.3. Double singularities

Concerning double singularity, a prominent example is of course Azzalini’s skew-normal family,
with p.d.f. 2φ(z)�(δz). Let us briefly show that higher-order singularities are excluded in that
family. Straightforward calculation yields a = √

2π and ϒ(z) = −(2π)−1/2z3, which is different
from − 8

a3 z3 = −(2/π)3/2z3. Hence, Theorem 4.1 readily yields the well-known result of n1/6

consistency rates for δ in the skew-normal distribution. For the sake of completeness, we also
provide for this famous example the corresponding score for skewness, which equals

4 − π

3π
√

2π
z3 − 4

π
√

2π
z.

Nadarajah and Kotz [24] propose another family of skew densities generated by the normal
kernel, with p.d.f.s of the form 2φ(z)G(δz) where G is some univariate symmetric c.d.f. They
call skew normal-G the resulting families of densities. Their definition includes as particular
cases the skew normal–normal model, the skew normal-t , the skew normal-Cauchy, the skew
normal-Laplace, the skew normal-logistic and the skew normal-uniform families. Theorem 3.1
tells us that all skew normal-G models suffer from double singularity, a fact that, except of
course for the skew normal–normal (which, up to an additional scale parameter, coincides with
the classical skew-normal), has never been noticed. Consequently, these models have to be treated
with much care when used for inferential purposes. The problem with those families obviously
stems from the product δz inside G; see Section 6.2 for further discussion of such skewing
functions.

5.4. Higher-order singularities

Let us further analyze the families of Nadarajah and Kotz [24]. Assume that G is three times
continuously differentiable. Elementary calculations show that a = 1/g(0), where g(z) :=
dG(z)/dz, and ϒ(z) = g̈(0)z3. We know from Theorem 4.1 that a triple singularity can only
occur if g̈(0) = − 8

a3 = −8(g(0))3. Among the distributions considered by Nadarajah and
Kotz [24], this equality holds for the skew normal-logistic only, for which g(0) = 1/4 and
g̈(0) = −1/8. Thus, while all their other skew normal-G distributions yield n1/6 consistency
rates for δ, the skew normal-logistic one requires the worst possible rates, namely n1/8 rates.

Finally, consider the “lifted” skew-normal distribution, with p.d.f.

2φ(z)�
(
δz − (4 − π)(6π)−1δ3z3). (5.1)

Here, a = √
2π and ϒ(z) = −(2/π)3/2z3 = − 8

(
√

2π)3 z3 = − 8
a3 z3, entailing, by Theorem 4.1,

a triple singularity and hence n1/8 consistency rates for δ. Note that this distribution is part of the
so-called class of flexible generalized skew-normal distributions defined in Ma and Genton [23].
More generally, in that paper, the authors have proposed flexible skew-symmetric distributions
with skewing functions of the form �(z, δ) := �(H�(δz)), with � as defined in Section 5.1 and
H� an odd polynomial of order � (meaning that the polynomial only contains odd power terms).
Since, in the first four derivatives, all terms of the form (δz)s with odd s ≥ 5 do not play any role,
one can directly construct an infinity of flexible generalized skew-normal distributions suffering
from triple singularity: take any odd polynomial H� with the terms in δz and (δz)3 as in (5.1),
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for instance,

2φ(z)�

(
δz − (4 − π)(6π)−1δ3z3 +

�∑
i=2

α2i+1(δz)
2i+1

)

with αi ∈ R and 2 ≤ � ∈ N.

6. Some concluding remarks

We conclude this paper by a short discussion of two structural issues: the centred parametrization
(Section 6.1) and the type of skewing function that causes most of the trouble when using a
Gaussian kernel (Section 6.2).

6.1. The centred parametrization

In order to remedy Fisher singularity problems, Azzalini [4], in the very same paper where he
first introduces the skew-normal densities, and for the specific case of the skew-normal family,
suggested an alternative parametrization, the so-called centred parametrization. Denoting by Z

a random variable with skew-normal density 2φ(z)�(δz), let Y := μ + σZ a.s. (σ > 0): Y then
has skew-normal density 2σ−1φ(σ−1(z−μ))�(δσ−1(z−μ)). That density has finite third-order
moments: letting θ1 := E[Y ] and θ2 := Var1/2[Y ], define γ1 := E[(Y − θ1)

3]/θ3
2 as Y ’s (hence

also Z’s) third standardized cumulant. The triple θ := (θ1, θ2, γ1)
′ provides a parametrization of

the skew-normal family, the centred parametrization (hereafter CP). The terminology “centred”
refers to the fact that the new location and scale parameters θ1 and θ2 are such that (Y − θ1)/θ2 =
(Z − E[Z])/Var1/2[Z] has mean zero and variance one, whereas the original location and scale
μ and σ values lead to (Y − μ)/σ = Z, which is not centred about its mean. Azzalini calls μ, σ

and δ direct parameters, since they can be directly read from the density of Y .
Besides Azzalini [4], the centred parametrization has been discussed in Azzalini and Capi-

tanio [7], Pewsey [25] and Chiogna [10], to cite but these, for the skew-normal family, extended
to the multinormal setup in Arellano-Valle and Azzalini [1], and to the skew-t distributions in
DiCiccio and Monti [13] and Arellano-Valle and Azzalini [2].

The CP does not suffer from the Fisher singularity problem, and provides parameters that
can all be estimated at the usual n1/2 rate. It is well-suited for inferential purposes (see, e.g.,
Pewsey [25]), and enjoys a simple traditional moment-based interpretation (which is the main
motivation for Arellano-Valle and Azzalini [2] to extend it to the skew-t context although skew-t
families do not exhibit any Fisher singularity).

The main drawback of the CP lies in its complicated analytical form. Expressing the centred
parameters θ in terms of the original ones ϑ yields (for the skew-normal family)

θ1 = μ + σ
√

2/πδ
(
1 + δ2)−1/2

, θ2 = σ
(
1 + δ2(1 − 2/π)

)1/2(
1 + δ2)−1/2

and

γ1 = 4 − π

2

(
2

π

)3/2

δ3(1 + δ2(1 − 2/π)
)−3/2

.
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The success of skew-symmetric families is largely due to the analytical simplicity of the decom-
position (1.1) of a skew density into the product of a symmetric kernel and a skewing function.
That simplicity is closely related to the original ϑ parametrization, and gets lost in the CP. So
is the flexibility that allows for combining various symmetric kernels and skewing functions in
(1.1) without altering its structure: contrary to the mapping ϑ �→ f �

ϑ (x), which does not depend
on (f,�), the mapping θ �→ f �

θ (x) very much does. Although simple from the point of view of
interpretation, the CP thus does not avoid analytical complexity, which results into lengthy and
very tedious calculations – see Chiogna [10].1

Both the centred parametrization and those we are proposing in this paper are motivated by
Fisher singularity problems at δ = 0, and both are losing some of the simplicity of the origi-
nal parametrization. The CP, however, is guided by interpretability considerations (the centred
parameters always are the mean, the standard error, and the third-order cumulant); although solv-
ing the Fisher singularity problem in the skew-normal family, there is no guarantee it does so in
other skew-symmetric families. Our reparametrizations, on the contrary, are guided by Fisher
information considerations, and are specifically designed to solve the Fisher singularity prob-
lem, irrespective of the skew-symmetric family under study – with distinctive forms for simple,
double, and triple singularity. The way they deal with δ (exponentiating it into sign(δ)δ2, δ3,
or sign(δ)δ4) preserves its interpretation, regardless of the chosen symmetric kernel, as a tuning
quantity in the skewing mechanism that generates the family. Finally, due to their Gram–Schmidt
nature, our reparametrizations are tailored for the construction of optimal tests of symmetry of
the Lagrange Multiplier or Rao score type.

For the sake of comparison, we provide, in the Appendix, the scores for skewness associated
with each of the two reparametrizations (the CP and ours) in the skew-normal family.

6.2. A brief discussion of skewing functions of the form �(z, δ) = �(δz)

We conclude this section with a few comments on the most frequent type of skewing function,
namely �(z, δ) = �(δz) with � : R → [0,1] satisfying �(−y)+�(y) = 1 for all y ∈ R (and the
required differentiability conditions). Such functions are the most natural examples of a skewing
function such that ψ(z) is linear, yielding a risky combination with the Gaussian kernel φ.

The original skew-normal family of Azzalini [4] is based on �(z, δ) = �(δz); the same type
of skewing function has been used, inter alia, by:

- Azzalini and Capitanio [7] for skew-symmetric densities of the form 2f (z)G(δz), with G

some univariate symmetric distribution function (in fact, Azzalini and Capitanio proposed
multivariate skew-elliptical distributions, but elliptical symmetry here boils down to plain
univariate symmetry);

1We take this opportunity to indicate two unfortunate typos in that paper, namely (i) an exponent −1/2 is missing in the

expression of δ (λ in the notation of the paper) in terms of γ1 on page 338, and (ii) the score function u�(φ∗, γ ∗
1 ) on

page 339, instead of three linear terms, should involve a quadratic term for the θ2-score and a term of the form (x3 − 3x)

for the γ1-score.
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- Gupta, Chang and Huang [16] for their skew-uniform, skew-t , skew-Cauchy, skew-Laplace
and skew-logistic distributions, which all are special cases of Azzalini and Capitanio’s [7]
construction;

- Nadarajah and Kotz [24] for their skew normal-G distributions, as described in the previous
sections; and by

- Gómez, Venegas and Bolfarine [15] for their skew g-normal densities 2g(z)�(δz) where,
contrary to the skew normal-G distributions, normality is present in the skewing function
and not in the symmetric kernel.

As shown in this paper, skewing functions of the form �(δz) are harmless whenever the symmet-
ric kernel is not Gaussian. In view of this, the skew g-normal distributions (free of any singularity
except for g = φ) are inferentially preferable to the skew normal-G ones (which exhibit at least
double singularity). An early important warning on the combination of a Gaussian kernel with
such skewing functions has been given by Pewsey [26], who has shown that all densities of the
form 2φ(z)G(δz) (G some symmetric univariate c.d.f.) suffer from the singularity problem. His
results are thus in total agreement with our general findings. The peculiarities of the skew-normal
distribution, which belongs to all of the above-cited classes of distributions, have been discussed
at length in the literature. We hope that this paper sheds some more light on the structural reasons
behind those peculiarities, and provides further warning about the dangers of Gaussian kernels
in combination with skewing functions of the form �(δz).

Appendix: Expressions of the score functions for the
skew-normal distribution

In this Appendix, we provide the explicit expressions of the score functions for skewness in the
skew-normal case (at any value of the skewness parameter, not only in the vicinity of symmetry)
for both the centred parametrization and ours (as described in Section 3.2).

In our reparametrization ϑ (2), the score for skewness ∂δ(2) logf �

ϑ (2) (x) takes on the guise of a

ratio h1(μ
(2), σ (2), δ(2))/h2(μ

(2), σ (2), δ(2)), with

h1(μ
(2), σ (2), δ(2))

:= exp

(
− (δ(2))2/3(

√
2π(δ(2))1/3σ (2) − (δ(2))2/3(x − μ(2)) + π(x − μ(2)))2

2π2(σ (2))2

)(
σ (2)

)−1

× (
π − (

δ(2)
)2/3)(4π

(
δ(2)

)1/3
σ (2) + √

2π3/2(x − μ(2)
) − 3

√
2π

(
δ(2)

)2/3(
x − μ(2)

))
− 4π2(δ(2)

)1/3
�

(√
2π(δ(2))2/3σ (2) − δ(2)(x − μ(2)) + π(δ(2))1/3(x − μ(2))

πσ (2)

)

+ 2

(σ (2))2

(
π − (

δ(2)
)2/3)

�

(√
2π(δ(2))2/3σ (2) − δ(2)(x − μ(2)) + π(δ(2))1/3(x − μ(2))

πσ (2)

)

× (−√
2π3/2σ (2)

(
x − μ(2)

) − 2δ(2)
(
x − μ(2)

)2 + 3
√

2π
(
δ(2)

)2/3
σ (2)

(
x − μ(2)

)
+ 2π

(
δ(2)

)1/3((
x − μ(2)

)2 − (
σ (2)

)2))
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and h2(μ
(2), σ (2), δ(2)) := 6π2(π − (δ(2))2/3)(δ(2))2/3

×�

(√
2π(δ(2))2/3σ (2) − δ(2)(x − μ(2)) + π(δ(2))1/3(x − μ(2))

πσ (2)

)
.

In the CP reparametrization θ = (θ1, θ2, γ1)
′, the score for skewness ∂γ1 logf �

(θ1,θ2,γ1)
(x) takes

on the guise hCP
1 (θ1, θ2, γ1) + hCP

2 (θ1, θ2, γ1)/h
CP
3 (θ1, θ2, γ1), with

hCP
1 (θ1, θ2, γ1) = − 1

3γ
1/3
1 (γ

2/3
1 + ((4 − π)/2)2/3)

+ 1

3

(
2

4 − π

)2/3 (x − θ1 + (2/(4 − π))1/3γ
1/3
1 θ2)

2

γ
1/3
1 θ2

2 (1 + γ
2/3
1 (2/(4 − π))2/3)2

− 1

3

(
2

4 − π

)1/3 x − θ1 + (2/(4 − π))1/3γ
1/3
1 θ2

γ
2/3
1 θ2(1 + γ

2/3
1 (2/(4 − π))2/3)

,

hCP
2 (θ1, θ2, γ1)

= 21/6 exp

(
π(4 − π)−2/3γ

2/3
1 (x − θ1 + (2/(4 − π))1/3γ

1/3
1 θ2)

2

24/3(1 + (2/(4 − π))2/3γ
2/3
1 )(−1 + 2−1/3(π − 2)(4 − π)−2/3γ

2/3
1 )θ2

2

)

× (
(x − θ1)

(
2(4 − π)2/3(π − 2)γ

4/3
1 + 22/3(π − 4)2)

+ θ2
(
22/3(4 − π)2γ1 + 4(4 − π)5/3γ

1/3
1

))
and

hCP
3 (θ1, θ2, γ1)

= 3(4 − π)7/3θ2γ
2/3
1

(
1 + γ

2/3
1

(
2

4 − π

)2/3)3/2(
2 − 22/3(π − 2)(4 − π)−2/3γ

2/3
1

)3/2

× �

(
21/3√π(4 − π)−1/3γ

1/3
1 (x − θ1 + γ

1/3
1 θ2(2/(4 − π))1/3)

θ2(1 + 22/3(4 − π)−2/3γ
2/3
1 )1/2(2 − 22/3(π − 2)(4 − π)−2/3γ

2/3
1 )1/2

)
.

Both score functions look equally complex. Under symmetry (either δ(2) = 0 or γ1 = 0),
they both yield an indetermination of the form 0/0, apparently calling for tedious applications
of l’Hospital’s rule. For the ϑ (2) reparametrization we are proposing, such algebra is not re-
quired, though, as explicit expressions involving higher order derivatives already have been de-
rived analytically (and follow quite directly from the Gram–Schmidt orthogonalization struc-
ture): see (3.5). In the CP reparametrization θ , the required algebra is so tedious as to defeat our
version of MATHEMATICA.
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